Pharmacological Profiles of Oligomerized μ-Opioid Receptors
Abstract
:1. Introduction
2. Oligomerization of μ-Opioid Receptor
2.1. The Roles of MOR in the Physiological Effects of Opioids
2.2. Pharmacological Responses of Oligomerized MOR
2.2.1. MOR-DOR
2.2.2. MOR-KOR
2.2.3. MOR-ORL1
2.2.4. MOR- sst2A
2.2.5. MOR-NK1
2.2.6. MOR-CB1R
2.2.7. MOR-mGluR5
3. Bivalent Ligands of Oligomerized μ-Opioid Receptor
3.1. MOR-DOR Bivalent Ligands
3.2. MOR-KOR Bivalent Ligands
3.3. MOR-ORL1 Bivalent Ligands
3.4. MOR-mGluR5 Bivalent Ligands
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Ruan, X. Drug-related side effects of long-term intrathecal morphine therapy. Pain Phys. 2007, 10, 357–366. [Google Scholar]
- McCarberg, B.H. Overview and treatment of opioid-induced constipation. Postgrad. Med. 2013, 125, 7–17. [Google Scholar] [CrossRef]
- Ford, A.C.; Brenner, D.M.; Schoenfeld, P.S. Efficacy of Pharmacological Therapies for the Treatment of Opioid-Induced Constipation: Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2013, 108, 1566–1574. [Google Scholar] [CrossRef]
- Ahlbeck, K. Opioids: a two-faced Janus. Curr. Med. Res. Opin. 2011, 27, 439–448. [Google Scholar] [CrossRef]
- Jan, S.A. Introduction: landscape of opioid dependence. J. Manag. Care Pharm. 2010, 16, S4–8. [Google Scholar]
- McCarberg, B.H. Chronic pain: Reducing costs through early implementation of adherence testing and recognition of opioid misuse. Postgrad. Med. 2011, 123, 132–139. [Google Scholar] [CrossRef]
- McCarberg, B.H. A critical assessment of opioid treatment adherence using urine drug testing in chronic pain management. Postgrad. Med. 2011, 123, 124–131. [Google Scholar]
- McCarberg, B.H. Pain management in primary care: strategies to mitigate opioid misuse, abuse, and diversion. Postgrad. Med. 2011, 123, 119–130. [Google Scholar] [CrossRef]
- Juurlink, D.N.; Dhalla, I.A. Dependence and addiction during chronic opioid therapy. J. Med. Toxicol. 2012, 8, 393–399. [Google Scholar] [CrossRef]
- Cox, B.M.; Borsodi, A.; Caló, G.; Chavkin, C.; Christie, M.J.; Civelli, O.; Devi, L.A.; Evans, C.; Henderson, G.; Höllt, V.; Kieffer, B.; Kitchen, I.; Kreek, M.J.; Liu-Chen, L.Y.; Meunier, J.C.; Portoghese, P.S.; Shippenberg, T.S.; Simon, E.J.; Toll, L.; Traynor, J.R.; Ueda, H.; Wong, Y.H. Opioid receptors. IUPHAR database (IUPHAR-DB). Available online: http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=50 (accessed on 07 October2013).
- Dhawan, B.N.; Cesselin, F.; Raghubir, R.; Reisine, T.; Bradley, P.B.; Portoghese, P.S.; Hamon, M. International Union of Pharmacology. XII. Classification of opioid receptors. Pharmacol. Rev. 1996, 48, 567–592. [Google Scholar]
- Knapp, R.J.; Malatynska, E.; Collins, N.; Fang, L.; Wang, J.Y.; Hruby, V.J.; Roeske, W.R.; Yamamura, H.I. Molecular biology and pharmacology of cloned opioid receptors. FASEB J. 1995, 9, 516–525. [Google Scholar]
- Satoh, M.; Minami, M. Molecular pharmacology of the opioid receptors. Pharmacol. Ther. 1995, 68, 343–364. [Google Scholar] [CrossRef]
- Alfaras-Melainis, K.; Gomes, I.; Rozenfeld, R.; Zachariou, V.; Devi, L. Modulation of opioid receptor function by protein-protein interactions. Front. Biosci. 2009, 14, 3594–3607. [Google Scholar]
- Mollereau, C.; Parmentier, M.; Mailleux, P.; Butour, J.L.; Moisand, C.; Chalon, P.; Caput, D.; Vassart, G.; Meunier, J.C. ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett. 1994, 341, 33–38. [Google Scholar] [CrossRef]
- Chiou, L.C.; Liao, Y.Y.; Fan, P.C.; Kuo, P.H.; Wang, C.H.; Riemer, C.; Prinssen, E.P. Nociceptin/orphanin FQ peptide receptors: pharmacology and clinical implications. Curr. Drug Targets 2007, 8, 117–135. [Google Scholar] [CrossRef]
- Connor, M.; Christie, M.D. Opioid receptor signalling mechanisms. Clin. Exp. Pharmacol. Physiol. 1999, 26, 493–499. [Google Scholar] [CrossRef]
- Henderson, G.; McKnight, A.T. The orphan opioid receptor and its endogenous ligand--nociceptin/orphanin FQ. Trends Pharmacol. Sci. 1997, 18, 293–300. [Google Scholar] [CrossRef]
- Calo, G.; Guerrini, R.; Rizzi, A.; Salvadori, S.; Regoli, D. Pharmacology of nociceptin and its receptor: a novel therapeutic target. Br. J. Pharmacol. 2000, 129, 1261–1283. [Google Scholar] [CrossRef]
- Evans, C.J.; Keith, D.E., Jr.; Morrison, H.; Magendzo, K.; Edwards, R.H. Cloning of a delta opioid receptor by functional expression. Science 1992, 258, 1952–1955. [Google Scholar]
- Kieffer, B.L.; Befort, K.; Gaveriaux-Ruff, C.; Hirth, C.G. The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc. Natl. Acad. Sci. USA 1992, 89, 12048–12052. [Google Scholar] [CrossRef]
- Li, S.; Zhu, J.; Chen, C.; Chen, Y.W.; Deriel, J.K.; Ashby, B.; Liu-Chen, L.Y. Molecular cloning and expression of a rat kappa opioid receptor. Biochem. J. 1993, 295( Pt 3), 629–633. [Google Scholar]
- Chen, Y.; Mestek, A.; Liu, J.; Yu, L. Molecular cloning of a rat kappa opioid receptor reveals sequence similarities to the mu and delta opioid receptors. Biochem. J. 1993, 295( Pt 3), 625–628. [Google Scholar]
- Fukuda, K.; Kato, S.; Mori, K.; Nishi, M.; Takeshima, H. Primary structures and expression from cDNAs of rat opioid receptor delta- and mu-subtypes. FEBS Lett. 1993, 327, 311–314. [Google Scholar] [CrossRef]
- Meng, F.; Xie, G.X.; Thompson, R.C.; Mansour, A.; Goldstein, A.; Watson, S.J.; Akil, H. Cloning and pharmacological characterization of a rat kappa opioid receptor. Proc. Natl. Acad. Sci. USA 1993, 90, 9954–9958. [Google Scholar]
- Yasuda, K.; Raynor, K.; Kong, H.; Breder, C.D.; Takeda, J.; Reisine, T.; Bell, G.I. Cloning and functional comparison of kappa and delta opioid receptors from mouse brain. Proc. Natl. Acad. Sci. USA 1993, 90, 6736–6740. [Google Scholar]
- Tallent, M.; Dichter, M.A.; Bell, G.I.; Reisine, T. The cloned kappa opioid receptor couples to an N-type calcium current in undifferentiated PC-12 cells. Neuroscience 1994, 63, 1033–1040. [Google Scholar] [CrossRef]
- Piros, E.T.; Prather, P.L.; Law, P.Y.; Evans, C.J.; Hales, T.G. Voltage-dependent inhibition of Ca2+ channels in GH3 cells by cloned mu- and delta-opioid receptors. Mol. Pharmacol. 1996, 50, 947–956. [Google Scholar]
- Johnson, P.S.; Wang, J.B.; Wang, W.F.; Uhl, G.R. Expressed mu opiate receptor couples to adenylate cyclase and phosphatidyl inositol turnover. Neuroreport 1994, 5, 507–509. [Google Scholar] [CrossRef]
- Spencer, R.J.; Jin, W.; Thayer, S.A.; Chakrabarti, S.; Law, P.Y.; Loh, H.H. Mobilization of Ca2+ from intracellular stores in transfected neuro2a cells by activation of multiple opioid receptor subtypes. Biochem. Pharmacol. 1997, 54, 809–818. [Google Scholar] [CrossRef]
- Henry, D.J.; Grandy, D.K.; Lester, H.A.; Davidson, N.; Chavkin, C. Kappa-opioid receptors couple to inwardly rectifying potassium channels when coexpressed by Xenopus oocytes. Mol. Pharmacol. 1995, 47, 551–557. [Google Scholar]
- Ikeda, K.; Kobayashi, K.; Kobayashi, T.; Ichikawa, T.; Kumanishi, T.; Kishida, H.; Yano, R.; Manabe, T. Functional coupling of the nociceptin/orphanin FQ receptor with the G-protein-activated K+ (GIRK) channel. Brain Res. Mol. Brain Res. 1997, 45, 117–126. [Google Scholar] [CrossRef]
- Fukuda, K.; Kato, S.; Morikawa, H.; Shoda, T.; Mori, K. Functional coupling of the delta-, mu-, and kappa-opioid receptors to mitogen-activated protein kinase and arachidonate release in Chinese hamster ovary cells. J. Neurochem. 1996, 67, 1309–1316. [Google Scholar]
- Li, L.Y.; Chang, K.J. The stimulatory effect of opioids on mitogen-activated protein kinase in Chinese hamster ovary cells transfected to express mu-opioid receptors. Mol. Pharmacol. 1996, 50, 599–602. [Google Scholar]
- Kieffer, B.L. Opioids: first lessons from knockout mice. Trends Pharmacol. Sci. 1999, 20, 19–26. [Google Scholar] [CrossRef]
- Matthes, H.W.; Smadja, C.; Valverde, O.; Vonesch, J.L.; Foutz, A.S.; Boudinot, E.; Denavit-Saubie, M.; Severini, C.; Negri, L.; Roques, B.P.; Maldonado, R.; Kieffer, B.L. Activity of the delta-opioid receptor is partially reduced, whereas activity of the kappa-receptor is maintained in mice lacking the mu-receptor. J. Neurosci. 1998, 18, 7285–7295. [Google Scholar]
- Sora, I.; Takahashi, N.; Funada, M.; Ujike, H.; Revay, R.S.; Donovan, D.M.; Miner, L.L.; Uhl, G.R. Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc. Natl. Acad. Sci. USA 1997, 94, 1544–1549. [Google Scholar]
- Tian, M.; Broxmeyer, H.E.; Fan, Y.; Lai, Z.; Zhang, S.; Aronica, S.; Cooper, S.; Bigsby, R.M.; Steinmetz, R.; Engle, S.J.; et al. Altered hematopoiesis, behavior, and sexual function in mu opioid receptor-deficient mice. J. Exp. Med. 1997, 185, 1517–1522. [Google Scholar] [CrossRef]
- Matthes, H.W.; Maldonado, R.; Simonin, F.; Valverde, O.; Slowe, S.; Kitchen, I.; Befort, K.; Dierich, A.; Le Meur, M.; Dolle, P.; et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 1996, 383, 819–823. [Google Scholar] [CrossRef]
- Loh, H.H.; Liu, H.C.; Cavalli, A.; Yang, W.; Chen, Y.F.; Wei, L.N. mu Opioid receptor knockout in mice: Effects on ligand-induced analgesia and morphine lethality. Brain Res Mol Brain Res 1998, 54, 321–326. [Google Scholar] [CrossRef]
- Roy, S.; Liu, H.C.; Loh, H.H. mu-Opioid receptor-knockout mice: the role of mu-opioid receptor in gastrointestinal transit. Brain Res. Mol. Brain Res. 1998, 56, 281–283. [Google Scholar] [CrossRef]
- Gaveriaux-Ruff, C.; Matthes, H.W.; Peluso, J.; Kieffer, B.L. Abolition of morphine-immunosuppression in mice lacking the mu-opioid receptor gene. Proc. Natl. Acad. Sci. USA 1998, 95, 6326–6330. [Google Scholar] [CrossRef]
- Whistler, J.L.; Chuang, H.H.; Chu, P.; Jan, L.Y.; von Zastrow, M. Functional dissociation of mu opioid receptor signaling and endocytosis: Implications for the biology of opiate tolerance and addiction. Neuron 1999, 23, 737–746. [Google Scholar] [CrossRef]
- Williams, J.T.; Christie, M.J.; Manzoni, O. Cellular and synaptic adaptations mediating opioid dependence. Physiol. Rev. 2001, 81, 299–343. [Google Scholar]
- Ferguson, S.S. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 2001, 53, 1–24. [Google Scholar]
- Law, P.Y.; Erickson, L.J.; El-Kouhen, R.; Dicker, L.; Solberg, J.; Wang, W.; Miller, E.; Burd, A.L.; Loh, H.H. Receptor density and recycling affect the rate of agonist-induced desensitization of mu-opioid receptor. Mol. Pharmacol. 2000, 58, 388–398. [Google Scholar]
- Koch, T.; Schulz, S.; Schroder, H.; Wolf, R.; Raulf, E.; Hollt, V. Carboxyl-terminal splicing of the rat mu opioid receptor modulates agonist-mediated internalization and receptor resensitization. J. Biol. Chem. 1998, 273, 13652–13657. [Google Scholar]
- Lefkowitz, R.J. G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. J. Biol. Chem. 1998, 273, 18677–18680. [Google Scholar] [CrossRef]
- Sternini, C.; Spann, M.; Anton, B.; Keith, D.E., Jr.; Bunnett, N.W.; von Zastrow, M.; Evans, C.; Brecha, N.C. Agonist-selective endocytosis of mu opioid receptor by neurons in vivo. Proc. Natl. Acad. Sci. USA 1996, 93, 9241–9246. [Google Scholar] [CrossRef]
- Finn, A.K.; Whistler, J.L. Endocytosis of the mu opioid receptor reduces tolerance and a cellular hallmark of opiate withdrawal. Neuron 2001, 32, 829–839. [Google Scholar] [CrossRef]
- Connor, M.; Osborne, P.B.; Christie, M.J. Mu-opioid receptor desensitization: is morphine different? Br. J. Pharmacol. 2004, 143, 685–696. [Google Scholar] [CrossRef]
- Alvarez, V.A.; Arttamangkul, S.; Dang, V.; Salem, A.; Whistler, J.L.; Von Zastrow, M.; Grandy, D.K.; Williams, J.T. mu-Opioid receptors: Ligand-dependent activation of potassium conductance, desensitization, and internalization. J. Neurosci. 2002, 22, 5769–5776. [Google Scholar]
- Angers, S.; Salahpour, A.; Bouvier, M. Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol. 2002, 42, 409–435. [Google Scholar] [CrossRef]
- Devi, L.A. Heterodimerization of G-protein-coupled receptors: Pharmacology, Signaling and trafficking. Trends Pharmacol. Sci. 2001, 22, 532–537. [Google Scholar] [CrossRef]
- George, S.R.; O'Dowd, B.F.; Lee, S.P. G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat. Rev. Drug Discov. 2002, 1, 808–820. [Google Scholar] [CrossRef]
- Li-Wei, C.; Can, G.; De-He, Z.; Qiang, W.; Xue-Jun, X.; Jie, C.; Zhi-Qiang, C. Homodimerization of human mu-opioid receptor overexpressed in Sf9 insect cells. Protein Pept. Lett. 2002, 9, 145–152. [Google Scholar] [CrossRef]
- Gomes, I.; Jordan, B.A.; Gupta, A.; Trapaidze, N.; Nagy, V.; Devi, L.A. Heterodimerization of mu and delta opioid receptors: A role in opiate synergy. J. Neurosci. 2000, 20, RC110. [Google Scholar]
- Wang, D.; Sun, X.; Bohn, L.M.; Sadee, W. Opioid receptor homo- and heterodimerization in living cells by quantitative bioluminescence resonance energy transfer. Mol. Pharmacol. 2005, 67, 2173–2184. [Google Scholar] [CrossRef]
- Wang, H.L.; Hsu, C.Y.; Huang, P.C.; Kuo, Y.L.; Li, A.H.; Yeh, T.H.; Tso, A.S.; Chen, Y.L. Heterodimerization of opioid receptor-like 1 and mu-opioid receptors impairs the potency of micro receptor agonist. J. Neurochem. 2005, 92, 1285–1294. [Google Scholar] [CrossRef]
- Pfeiffer, M.; Koch, T.; Schroder, H.; Laugsch, M.; Hollt, V.; Schulz, S. Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization. J Biol. Chem. 2002, 277, 19762–19772. [Google Scholar]
- Pfeiffer, M.; Kirscht, S.; Stumm, R.; Koch, T.; Wu, D.; Laugsch, M.; Schroder, H.; Hollt, V.; Schulz, S. Heterodimerization of substance P and mu-opioid receptors regulates receptor trafficking and resensitization. J. Biol. Chem. 2003, 278, 51630–51637. [Google Scholar] [CrossRef]
- Hojo, M.; Sudo, Y.; Ando, Y.; Minami, K.; Takada, M.; Matsubara, T.; Kanaide, M.; Taniyama, K.; Sumikawa, K.; Uezono, Y. mu-Opioid receptor forms a functional heterodimer with cannabinoid CB1 receptor: Electrophysiological and FRET assay analysis. J. Pharmacol. Sci. 2008, 108, 308–319. [Google Scholar] [CrossRef]
- Schroder, H.; Wu, D.F.; Seifert, A.; Rankovic, M.; Schulz, S.; Hollt, V.; Koch, T. Allosteric modulation of metabotropic glutamate receptor 5 affects phosphorylation, internalization, and desensitization of the micro-opioid receptor. Neuropharmacology 2009, 56, 768–778. [Google Scholar] [CrossRef]
- Walwyn, W.; John, S.; Maga, M.; Evans, C.J.; Hales, T.G. Delta receptors are required for full inhibitory coupling of mu-receptors to voltage-dependent Ca(2+) channels in dorsal root ganglion neurons. Mol. Pharmacol. 2009, 76, 134–143. [Google Scholar] [CrossRef]
- Lee, C.W.; Yan, J.Y.; Chiang, Y.C.; Hung, T.W.; Wang, H.L.; Chiou, L.C.; Ho, I.K. Differential pharmacological actions of methadone and buprenorphine in human embryonic kidney 293 cells coexpressing human mu-opioid and opioid receptor-like 1 receptors. Neurochem. Res. 2011, 36, 2008–2021. [Google Scholar] [CrossRef]
- Jordan, B.A.; Devi, L.A. G-protein-coupled receptor heterodimerization modulates receptor function. Nature 1999, 399, 697–700. [Google Scholar] [CrossRef]
- George, S.R.; Fan, T.; Xie, Z.; Tse, R.; Tam, V.; Varghese, G.; O'Dowd, B.F. Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J. Biol. Chem. 2000, 275, 26128–26135. [Google Scholar]
- Traynor, J.R.; Elliott, J. delta-Opioid receptor subtypes and cross-talk with mu-receptors. Trends Pharmacol. Sci. 1993, 14, 84–86. [Google Scholar] [CrossRef]
- Macdonald, R.L.; Nelson, P.G. Specific-opiate-induced depression of transmitter release from dorsal root ganglion cells in culture. Science 1978, 199, 1449–1451. [Google Scholar]
- Sora, I.; Funada, M.; Uhl, G.R. The mu-opioid receptor is necessary for [D-Pen2,D-Pen5]enkephalin-induced analgesia. Eur. J. Pharmacol. 1997, 324, R1–R2. [Google Scholar] [CrossRef]
- Zhu, Y.; King, M.A.; Schuller, A.G.; Nitsche, J.F.; Reidl, M.; Elde, R.P.; Unterwald, E.; Pasternak, G.W.; Pintar, J.E. Retention of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid receptor knockout mice. Neuron 1999, 24, 243–252. [Google Scholar] [CrossRef]
- Abdelhamid, E.E.; Sultana, M.; Portoghese, P.S.; Takemori, A.E. Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. J. Pharmacol. Exp. Ther. 1991, 258, 299–303. [Google Scholar]
- Sanchez-Blazquez, P.; Garcia-Espana, A.; Garzon, J. Antisense oligodeoxynucleotides to opioid mu and delta receptors reduced morphine dependence in mice: Role of delta-2 opioid receptors. J. Pharmacol. Exp. Ther. 1997, 280, 1423–1431. [Google Scholar]
- Rothman, R.B.; Westfall, T.C. Allosteric modulation by leucine-enkephalin of [3H]naloxone binding in rat brain. Eur. J. Pharmacol. 1981, 72, 365–368. [Google Scholar] [CrossRef]
- Rothman, R.B.; Bowen, W.D.; Schumacher, U.K.; Pert, C.B. Effect of beta-FNA on opiate receptor binding: Preliminary evidence for two types of mu receptors. Eur. J. Pharmacol. 1983, 95, 147–148. [Google Scholar] [CrossRef]
- Fields, H.L.; Emson, P.C.; Leigh, B.K.; Gilbert, R.F.; Iversen, L.L. Multiple opiate receptor sites on primary afferent fibres. Nature 1980, 284, 351–353. [Google Scholar] [CrossRef]
- Egan, T.M.; North, R.A. Both mu and delta opiate receptors exist on the same neuron. Science 1981, 214, 923–924. [Google Scholar]
- Zieglgansberger, W.; French, E.D.; Mercuri, N.; Pelayo, F.; Williams, J.T. Multiple opiate receptors on neurons of the mammalian central nervous system. In vivo and in vitro studies. Life Sci. 1982, 31, 2343–2346. [Google Scholar] [CrossRef]
- Arvidsson, U.; Riedl, M.; Chakrabarti, S.; Lee, J.H.; Nakano, A.H.; Dado, R.J.; Loh, H.H.; Law, P.Y.; Wessendorf, M.W.; Elde, R. Distribution and targeting of a mu-opioid receptor (MOR1) in brain and spinal cord. J. Neurosci. 1995, 15, 3328–3341. [Google Scholar]
- Cheng, P.Y.; Liu-Chen, L.Y.; Pickel, V.M. Dual ultrastructural immunocytochemical labeling of mu and delta opioid receptors in the superficial layers of the rat cervical spinal cord. Brain Res. 1997, 778, 367–380. [Google Scholar] [CrossRef]
- Yu, V.C.; Richards, M.L.; Sadee, W. A human neuroblastoma cell line expresses mu and delta opioid receptor sites. J. Biol. Chem. 1986, 261, 1065–1070. [Google Scholar]
- Kazmi, S.M.; Mishra, R.K. Comparative pharmacological properties and functional coupling of mu and delta opioid receptor sites in human neuroblastoma SH-SY5Y cells. Mol. Pharmacol. 1987, 32, 109–118. [Google Scholar]
- Baumhaker, Y.; Wollman, Y.; Goldstein, M.N.; Sarne, Y. Evidence for mu-, delta-, and kappa-opioid receptors in a human neuroblastoma cell line. Life Sci. 1993, 52, PL205–PL210. [Google Scholar] [CrossRef]
- Palazzi, E.; Ceppi, E.; Guglielmetti, F.; Catozzi, L.; Amoroso, D.; Groppetti, A. Biochemical evidence of functional interaction between mu- and delta-opioid receptors in SK-N-BE neuroblastoma cell line. J. Neurochem. 1996, 67, 138–144. [Google Scholar]
- Gomes, I.; Gupta, A.; Filipovska, J.; Szeto, H.H.; Pintar, J.E.; Devi, L.A. A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc. Natl. Acad. Sci. USA 2004, 101, 5135–5139. [Google Scholar]
- Yekkirala, A.S.; Kalyuzhny, A.E.; Portoghese, P.S. Standard opioid agonists activate heteromeric opioid receptors: Evidence for morphine and [d-Ala(2)-MePhe(4)-Glyol(5)]enkephalin as selective mu-delta agonists. ACS Chem. Neurosci. 2010, 1, 146–154. [Google Scholar] [CrossRef]
- Daniels, D.J.; Lenard, N.R.; Etienne, C.L.; Law, P.Y.; Roerig, S.C.; Portoghese, P.S. Opioid-induced tolerance and dependence in mice is modulated by the distance between pharmacophores in a bivalent ligand series. Proc. Natl. Acad. Sci. USA 2005, 102, 19208–19213. [Google Scholar]
- Kest, B.; Lee, C.E.; McLemore, G.L.; Inturrisi, C.E. An antisense oligodeoxynucleotide to the delta opioid receptor (DOR-1) inhibits morphine tolerance and acute dependence in mice. Brain Res. Bull. 1996, 39, 185–188. [Google Scholar] [CrossRef]
- Lenard, N.R.; Daniels, D.J.; Portoghese, P.S.; Roerig, S.C. Absence of conditioned place preference or reinstatement with bivalent ligands containing mu-opioid receptor agonist and delta-opioid receptor antagonist pharmacophores. Eur. J. Pharmacol. 2007, 566, 75–82. [Google Scholar] [CrossRef]
- Liu, N.J.; von Gizycki, H.; Gintzler, A.R. Sexually dimorphic recruitment of spinal opioid analgesic pathways by the spinal application of morphine. J. Pharmacol. Exp. Ther. 2007, 322, 654–660. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Liu, N.J.; Gintzler, A.R. Formation of mu-/kappa-opioid receptor heterodimer is sex-dependent and mediates female-specific opioid analgesia. Proc. Natl. Acad. Sci. USA 2010, 107, 20115–20119. [Google Scholar] [CrossRef]
- Anton, B.; Fein, J.; To, T.; Li, X.; Silberstein, L.; Evans, C.J. Immunohistochemical localization of ORL-1 in the central nervous system of the rat. J. Comp. Neurol. 1996, 368, 229–251. [Google Scholar] [CrossRef]
- Moriwaki, A.; Wang, J.B.; Svingos, A.; van Bockstaele, E.; Cheng, P.; Pickel, V.; Uhl, G.R. mu Opiate receptor immunoreactivity in rat central nervous system. Neurochem. Res. 1996, 21, 1315–1331. [Google Scholar] [CrossRef]
- Daunais, J.B.; Letchworth, S.R.; Sim-Selley, L.J.; Smith, H.R.; Childers, S.R.; Porrino, L.J. Functional and anatomical localization of mu opioid receptors in the striatum, amygdala, and extended amygdala of the nonhuman primate. J. Comp. Neurol. 2001, 433, 471–485. [Google Scholar] [CrossRef]
- Houtani, T.; Nishi, M.; Takeshima, H.; Sato, K.; Sakuma, S.; Kakimoto, S.; Ueyama, T.; Noda, T.; Sugimoto, T. Distribution of nociceptin/orphanin FQ precursor protein and receptor in brain and spinal cord: a study using in situ hybridization and X-gal histochemistry in receptor-deficient mice. J. Comp. Neurol. 2000, 424, 489–508. [Google Scholar] [CrossRef]
- Ueda, H.; Yamaguchi, T.; Tokuyama, S.; Inoue, M.; Nishi, M.; Takeshima, H. Partial loss of tolerance liability to morphine analgesia in mice lacking the nociceptin receptor gene. Neurosci. Lett. 1997, 237, 136–138. [Google Scholar] [CrossRef]
- Ueda, H.; Inoue, M.; Takeshima, H.; Iwasawa, Y. Enhanced spinal nociceptin receptor expression develops morphine tolerance and dependence. J. Neurosci. 2000, 20, 7640–7647. [Google Scholar]
- Rutten, K.; De Vry, J.; Bruckmann, W.; Tzschentke, T.M. Pharmacological blockade or genetic knockout of the NOP receptor potentiates the rewarding effect of morphine in rats. Drug Alcohol Depend. 2011, 114, 253–256. [Google Scholar]
- Mandyam, C.D.; Altememi, G.F.; Standifer, K.M. beta-Funaltrexamine inactivates ORL1 receptors in BE(2)-C human neuroblastoma cells. Eur. J. Pharmacol. 2000, 402, R1–R37. [Google Scholar] [CrossRef]
- Pan, Y.X.; Bolan, E.; Pasternak, G.W. Dimerization of morphine and orphanin FQ/nociceptin receptors: Generation of a novel opioid receptor subtype. Biochem. Biophys. Res. Commun. 2002, 297, 659–663. [Google Scholar] [CrossRef]
- Evans, R.M.; You, H.; Hameed, S.; Altier, C.; Mezghrani, A.; Bourinet, E.; Zamponi, G.W. Heterodimerization of ORL1 and opioid receptors and its consequences for N-type calcium channel regulation. J. Biol. Chem. 2010, 285, 1032–1040. [Google Scholar]
- Schulz, S.; Schreff, M.; Koch, T.; Zimprich, A.; Gramsch, C.; Elde, R.; Hollt, V. Immunolocalization of two mu-opioid receptor isoforms (MOR1 and MOR1B) in the rat central nervous system. Neuroscience 1998, 82, 613–622. [Google Scholar]
- Schulz, S.; Schreff, M.; Schmidt, H.; Handel, M.; Przewlocki, R.; Hollt, V. Immunocytochemical localization of somatostatin receptor sst2A in the rat spinal cord and dorsal root ganglia. Eur. J. Neurosci. 1998, 10, 3700–3708. [Google Scholar] [CrossRef]
- Betoin, F.; Ardid, D.; Herbet, A.; Aumaitre, O.; Kemeny, J.L.; Duchene-Marullaz, P.; Lavarenne, J.; Eschalier, A. Evidence for a central long-lasting antinociceptive effect of vapreotide, an analog of somatostatin, involving an opioidergic mechanism. J. Pharmacol. Exp. Ther. 1994, 269, 7–14. [Google Scholar]
- Bereiter, D.A. Morphine and somatostatin analogue reduce c-fos expression in trigeminal subnucleus caudalis produced by corneal stimulation in the rat. Neuroscience 1997, 77, 863–874. [Google Scholar] [CrossRef]
- Rasmussen, K.; Beitner-Johnson, D.B.; Krystal, J.H.; Aghajanian, G.K.; Nestler, E.J. Opiate withdrawal and the rat locus coeruleus: Behavioral, Electrophysiological, and biochemical correlates. J. Neurosci. 1990, 10, 2308–2317. [Google Scholar]
- Bell, J.R.; Young, M.R.; Masterman, S.C.; Morris, A.; Mattick, R.P.; Bammer, G. A pilot study of naltrexone-accelerated detoxification in opioid dependence. Med. J. Aust. 1999, 171, 26–30. [Google Scholar]
- Aicher, S.A.; Punnoose, A.; Goldberg, A. mu-Opioid receptors often colocalize with the substance P receptor (NK1) in the trigeminal dorsal horn. J. Neurosci. 2000, 20, 4345–4354. [Google Scholar]
- Aicher, S.A.; Sharma, S.; Cheng, P.Y.; Liu-Chen, L.Y.; Pickel, V.M. Dual ultrastructural localization of mu-opiate receptors and substance p in the dorsal horn. Synapse 2000, 36, 12–20. [Google Scholar] [CrossRef]
- Foran, S.E.; Carr, D.B.; Lipkowski, A.W.; Maszczynska, I.; Marchand, J.E.; Misicka, A.; Beinborn, M.; Kopin, A.S.; Kream, R.M. A substance P-opioid chimeric peptide as a unique nontolerance-forming analgesic. Proc. Natl. Acad. Sci. USA 2000, 97, 7621–7626. [Google Scholar] [CrossRef]
- Herrero, J.F.; Laird, J.M.; Lopez-Garcia, J.A. Wind-up of spinal cord neurones and pain sensation: Much ado about something? Prog. Neurobiol. 2000, 61, 169–203. [Google Scholar] [CrossRef]
- Jasmin, L.; Tien, D.; Weinshenker, D.; Palmiter, R.D.; Green, P.G.; Janni, G.; Ohara, P.T. The NK1 receptor mediates both the hyperalgesia and the resistance to morphine in mice lacking noradrenaline. Proc. Natl. Acad. Sci. USA 2002, 99, 1029–1034. [Google Scholar]
- Murtra, P.; Sheasby, A.M.; Hunt, S.P.; De Felipe, C. Rewarding effects of opiates are absent in mice lacking the receptor for substance P. Nature 2000, 405, 180–183. [Google Scholar] [CrossRef]
- Ripley, T.L.; Gadd, C.A.; De Felipe, C.; Hunt, S.P.; Stephens, D.N. Lack of self-administration and behavioural sensitisation to morphine, but not cocaine, in mice lacking NK1 receptors. Neuropharmacology 2002, 43, 1258–1268. [Google Scholar] [CrossRef]
- Spike, R.C.; Puskar, Z.; Sakamoto, H.; Stewart, W.; Watt, C.; Todd, A.J. MOR-1-immunoreactive neurons in the dorsal horn of the rat spinal cord: Evidence for nonsynaptic innervation by substance P-containing primary afferents and for selective activation by noxious thermal stimuli. Eur. J. Neurosci. 2002, 15, 1306–1316. [Google Scholar]
- Braida, D.; Pozzi, M.; Cavallini, R.; Sala, M. Conditioned place preference induced by the cannabinoid agonist CP 55,940: Interaction with the opioid system. Neuroscience 2001, 104, 923–926. [Google Scholar]
- Manzanares, J.; Corchero, J.; Fuentes, J.A. Opioid and cannabinoid receptor-mediated regulation of the increase in adrenocorticotropin hormone and corticosterone plasma concentrations induced by central administration of delta(9)-tetrahydrocannabinol in rats. Brain Res. 1999, 839, 173–179. [Google Scholar] [CrossRef]
- Ledent, C.; Valverde, O.; Cossu, G.; Petitet, F.; Aubert, J.F.; Beslot, F.; Bohme, G.A.; Imperato, A.; Pedrazzini, T.; Roques, B.P.; et al. Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 1999, 283, 401–404. [Google Scholar] [CrossRef]
- Ghozland, S.; Matthes, H.W.; Simonin, F.; Filliol, D.; Kieffer, B.L.; Maldonado, R. Motivational effects of cannabinoids are mediated by mu-opioid and kappa-opioid receptors. J. Neurosci. 2002, 22, 1146–1154. [Google Scholar]
- Cichewicz, D.L. Synergistic interactions between cannabinoid and opioid analgesics. Life Sci. 2004, 74, 1317–1324. [Google Scholar] [CrossRef]
- Rodriguez, J.J.; Mackie, K.; Pickel, V.M. Ultrastructural localization of the CB1 cannabinoid receptor in mu-opioid receptor patches of the rat Caudate putamen nucleus. J. Neurosci. 2001, 21, 823–833. [Google Scholar]
- Salio, C.; Fischer, J.; Franzoni, M.F.; Mackie, K.; Kaneko, T.; Conrath, M. CB1-cannabinoid and mu-opioid receptor co-localization on postsynaptic target in the rat dorsal horn. Neuroreport 2001, 12, 3689–3692. [Google Scholar] [CrossRef]
- Pickel, V.M.; Chan, J.; Kash, T.L.; Rodriguez, J.J.; MacKie, K. Compartment-specific localization of cannabinoid 1 (CB1) and mu-opioid receptors in rat nucleus accumbens. Neuroscience 2004, 127, 101–112. [Google Scholar] [CrossRef]
- Rios, C.; Gomes, I.; Devi, L.A. mu opioid and CB1 cannabinoid receptor interactions: Reciprocal inhibition of receptor signaling and neuritogenesis. Br. J. Pharmacol. 2006, 148, 387–395. [Google Scholar] [CrossRef]
- Seeburg, P.H. The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci. 1993, 16, 359–365. [Google Scholar] [CrossRef]
- Conn, P.J.; Pin, J.P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 1997, 37, 205–237. [Google Scholar] [CrossRef]
- Bordi, F.; Ugolini, A. Involvement of mGluR(5) on acute nociceptive transmission. Brain Res. 2000, 871, 223–233. [Google Scholar] [CrossRef]
- Spooren, W.P.; Gasparini, F.; Salt, T.E.; Kuhn, R. Novel allosteric antagonists shed light on mglu(5) receptors and CNS disorders. Trends Pharmacol. Sci. 2001, 22, 331–337. [Google Scholar] [CrossRef]
- Green, M.D.; Yang, X.; Cramer, M.; King, C.D. In vitro metabolic studies on the selective metabotropic glutamate receptor sub-type 5 (mGluR5) antagonist 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl]-pyridine (MTEP). Neurosci. Lett. 2006, 391, 91–95. [Google Scholar] [CrossRef]
- Gabra, B.H.; Smith, F.L.; Navarro, H.A.; Carroll, F.I.; Dewey, W.L. mGluR5 antagonists that block calcium mobilization in vitro also reverse (S)-3,5-DHPG-induced hyperalgesia and morphine antinociceptive tolerance in vivo. Brain Res. 2008, 1187, 58–66. [Google Scholar] [CrossRef]
- Lee, H.J.; Choi, H.S.; Ju, J.S.; Bae, Y.C.; Kim, S.K.; Yoon, Y.W.; Ahn, D.K. Peripheral mGluR5 antagonist attenuated craniofacial muscle pain and inflammation but not mGluR1 antagonist in lightly anesthetized rats. Brain Res. Bull. 2006, 70, 378–385. [Google Scholar] [CrossRef]
- Hughes, J.; Smith, T.W.; Kosterlitz, H.W.; Fothergill, L.A.; Morgan, B.A.; Morris, H.R. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 1975, 258, 577–580. [Google Scholar] [CrossRef]
- Birdsall, N.J.; Hulme, E.C. C fragment of lipotropin has a high affinity for brain opiate receptors. Nature 1976, 260, 793–795. [Google Scholar] [CrossRef]
- Cox, B.M.; Goldstein, A.; Hi, C.H. Opioid activity of a peptide, beta-lipotropin-(61–91), derived from beta-lipotropin. Proc. Natl. Acad. Sci. USA 1976, 73, 1821–1823. [Google Scholar] [CrossRef]
- Li, C.H.; Chung, D.; Doneen, B.A. Isolation, characterization and opiate activity of beta-endorphin from human pituitary glands. Biochem. Biophys. Res. Commun. 1976, 72, 1542–1547. [Google Scholar] [CrossRef]
- Li, C.H.; Lemaire, S.; Yamashiro, D.; Doneen, B.A. The synthesis and opiate activity of beta-endorphin. Biochem. Biophys. Res. Commun. 1976, 71, 19–25. [Google Scholar] [CrossRef]
- Zadina, J.E.; Hackler, L.; Ge, L.J.; Kastin, A.J. A potent and selective endogenous agonist for the mu-opiate receptor. Nature 1997, 386, 499–502. [Google Scholar] [CrossRef]
- Goldstein, A.; Tachibana, S.; Lowney, L.I.; Hunkapiller, M.; Hood, L. Dynorphin-(1–13), an extraordinarily potent opioid peptide. Proc. Natl. Acad. Sci. USA 1979, 76, 6666–6670. [Google Scholar] [CrossRef]
- Costa, T.; Wuster, M.; Herz, A.; Shimohigashi, Y.; Chen, H.C.; Rodbard, D. Receptor binding and biological activity of bivalent enkephalins. Biochem. Pharmacol. 1985, 34, 25–30. [Google Scholar] [CrossRef]
- Shimohigashi, Y.; Costa, T.; Chen, H.C.; Rodbard, D. Dimeric tetrapeptide enkephalins display extraordinary selectivity for the delta opiate receptor. Nature 1982, 297, 333–335. [Google Scholar] [CrossRef]
- Lipkowski, A.W.; Konecka, A.M.; Sroczynska, I.; Przewlocki, R.; Stala, L.; Tam, S.W. Bivalent opioid peptide analogues with reduced distances between pharmacophores. Life Sci. 1987, 40, 2283–2288. [Google Scholar] [CrossRef]
- Lipkowski, A.W.; Konecka, A.M.; Sroczynska, I. Double-enkephalins--synthesis, activity on guinea-pig ileum, and analgesic effect. Peptides 1982, 3, 697–700. [Google Scholar] [CrossRef]
- Hazum, E.; Chang, K.J.; Leighton, H.J.; Lever, O.W., Jr.; Cuatrecasas, P. Increased biological activity of dimers of oxymorphone and enkephalin: Possible role of receptor crosslinking. Biochem. Biophys. Res. Commun. 1982, 104, 347–353. [Google Scholar] [CrossRef]
- Portoghese, P.S.; Ronsisvalle, G.; Larson, D.L.; Yim, C.B.; Sayre, L.M.; Takemori, A.E. Opioid agonist and antagonist bivalent ligands as receptor probes. Life Sci. 1982, 31, 1283–1286. [Google Scholar] [CrossRef]
- Portoghese, P.S.; Larson, D.L.; Yim, C.B.; Sayre, L.M.; Ronsisvalle, G.; Lipkowski, A.W.; Takemori, A.E.; Rice, K.C.; Tam, S.W. Stereostructure-activity relationship of opioid agonist and antagonist bivalent ligands. Evidence for bridging between vicinal opioid receptors. J. Med. Chem. 1985, 28, 1140–1141. [Google Scholar] [CrossRef]
- Schiller, P.W.; Nguyen, T.M.; Lemieux, C.; Maziak, L.A. A novel side-chain-linked antiparallel cyclic dimer of enkephalin. FEBS Lett. 1985, 191, 231–234. [Google Scholar] [CrossRef]
- Hazum, E.; Chang, K.J.; Cuatrecasas, P. Opiate (Enkephalin) receptors of neuroblastoma cells: Occurrence in clusters on the cell surface. Science 1979, 206, 1077–1079. [Google Scholar]
- Portoghese, P.S. From models to molecules: Opioid receptor dimers, Bivalent ligands, and selective opioid receptor probes. J. Med. Chem. 2001, 44, 2259–2269. [Google Scholar] [CrossRef]
- Jordan, B.A.; Cvejic, S.; Devi, L.A. Opioids and their complicated receptor complexes. Neuropsychopharmacology 2000, 23, S5–S18. [Google Scholar] [CrossRef]
- Erez, M.; Takemori, A.E.; Portoghese, P.S. Narcotic antagonistic potency of bivalent ligands which contain beta-naltrexamine. Evidence for bridging between proximal recognition sites. J. Med. Chem. 1982, 25, 847–849. [Google Scholar] [CrossRef]
- Gouldson, P.R.; Snell, C.R.; Bywater, R.P.; Higgs, C.; Reynolds, C.A. Domain swapping in G-protein coupled receptor dimers. Protein Eng. 1998, 11, 1181–1193. [Google Scholar] [CrossRef]
- Portoghese, P.S.; Takemori, A.E. Different receptor sites mediate opioid agonism and antagonism. J. Med. Chem. 1983, 26, 1341–1343. [Google Scholar] [CrossRef]
- Hjorth, S.A.; Thirstrup, K.; Grandy, D.K.; Schwartz, T.W. Analysis of selective binding epitopes for the kappa-opioid receptor antagonist nor-binaltorphimine. Mol. Pharmacol. 1995, 47, 1089–1094. [Google Scholar]
- Pascal, G.; Milligan, G. Functional complementation and the analysis of opioid receptor homodimerization. Mol. Pharmacol. 2005, 68, 905–915. [Google Scholar]
- Zheng, H.; Pearsall, E.A.; Hurst, D.P.; Zhang, Y.; Chu, J.; Zhou, Y.; Reggio, P.H.; Loh, H.H.; Law, P.Y. Palmitoylation and membrane cholesterol stabilize mu-opioid receptor homodimerization and G protein coupling. BMC Cell Biol. 2012, 13, 6. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, T.; Sromek, A.W.; Scrimale, T.; Bidlack, J.M.; Neumeyer, J.L. Synthesis and binding affinity of novel mono- and bivalent morphinan ligands for kappa, mu, and delta opioid receptors. Bioorganic Med. Chem. 2011, 19, 2808–2816. [Google Scholar] [CrossRef]
- Neumeyer, J.L.; Zhang, A.; Xiong, W.; Gu, X.H.; Hilbert, J.E.; Knapp, B.I.; Negus, S.S.; Mello, N.K.; Bidlack, J.M. Design and synthesis of novel dimeric morphinan ligands for kappa and micro opioid receptors. J. Med. Chem. 2003, 46, 5162–5170. [Google Scholar] [CrossRef]
- Peng, X.; Knapp, B.I.; Bidlack, J.M.; Neumeyer, J.L. Pharmacological properties of bivalent ligands containing butorphan linked to nalbuphine, naltrexone, and naloxone at mu, delta, and kappa opioid receptors. J. Med. Chem. 2007, 50, 2254–2258. [Google Scholar] [CrossRef]
- Peng, X.; Knapp, B.I.; Bidlack, J.M.; Neumeyer, J.L. Synthesis and preliminary in vitro investigation of bivalent ligands containing homo- and heterodimeric pharmacophores at mu, delta, and kappa opioid receptors. J. Med. Chem. 2006, 49, 256–262. [Google Scholar] [CrossRef]
- Decker, M.; Fulton, B.S.; Zhang, B.; Knapp, B.I.; Bidlack, J.M.; Neumeyer, J.L. Univalent and bivalent ligands of butorphan: Characteristics of the linking chain determine the affinity and potency of such opioid ligands. J. Med. Chem. 2009, 52, 7389–7396. [Google Scholar] [CrossRef]
- Mathews, J.L.; Peng, X.; Xiong, W.; Zhang, A.; Negus, S.S.; Neumeyer, J.L.; Bidlack, J.M. Characterization of a novel bivalent morphinan possessing kappa agonist and micro agonist/antagonist properties. J. Pharmacol. Exp. Ther. 2005, 315, 821–827. [Google Scholar] [CrossRef]
- Rady, J.J.; Holmes, B.B.; Portoghese, P.S.; Fujimoto, J.M. Morphine tolerance in mice changes response of heroin from mu to delta opioid receptors. Proc. Soc. Exp. Biol. Med. Soc. Exp. Biol. Med. (New York, N.Y.) 2000, 224, 93–101. [Google Scholar] [CrossRef]
- Vaught, J.L.; Takemori, A.E. Differential effects of leucine and methionine enkephalin on morphine-induced analgesia, acute tolerance and dependence. J. Pharmacol. Exp. Ther. 1979, 208, 86–90. [Google Scholar]
- Vaught, J.L.; Rothman, R.B.; Westfall, T.C. Mu and delta receptors: their role in analgesia in the differential effects of opioid peptides on analgesia. Life Sci. 1982, 30, 1443–1455. [Google Scholar] [CrossRef]
- Heyman, J.S.; Jiang, Q.; Rothman, R.B.; Mosberg, H.I.; Porreca, F. Modulation of mu-mediated antinociception by delta agonists: Characterization with antagonists. Eur. J. Pharmacol. 1989, 169, 43–52. [Google Scholar] [CrossRef]
- Heyman, J.S.; Vaught, J.L.; Mosberg, H.I.; Haaseth, R.C.; Porreca, F. Modulation of mu-mediated antinociception by delta agonists in the mouse: Selective potentiation of morphine and normorphine by [D-Pen2,D-Pen5]enkephalin. Eur. J. Pharmacol. 1989, 165, 1–10. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Portoghese, P.S.; Takemori, A.E. Involvement of delta 2 opioid receptors in the development of morphine dependence in mice. J. Pharmacol. Exp. Ther. 1993, 264, 1141–1145. [Google Scholar]
- Miyamoto, Y.; Bowen, W.D.; Portoghese, P.S.; Takemori, A.E. Lack of involvement of delta-1 opioid receptors in the development of physical dependence on morphine in mice. J. Pharmacol. Exp. Ther. 1994, 270, 37–39. [Google Scholar]
- Fundytus, M.E.; Schiller, P.W.; Shapiro, M.; Weltrowska, G.; Coderre, T.J. Attenuation of morphine tolerance and dependence with the highly selective delta-opioid receptor antagonist TIPP[psi]. Eur. J. Pharmacol. 1995, 286, 105–108. [Google Scholar] [CrossRef]
- Schiller, P.W.; Fundytus, M.E.; Merovitz, L.; Weltrowska, G.; Nguyen, T.M.; Lemieux, C.; Chung, N.N.; Coderre, T.J. The opioid mu agonist/delta antagonist DIPP-NH(2)[Psi] produces a potent analgesic effect, no physical dependence, and less tolerance than morphine in rats. J. Med. Chem. 1999, 42, 3520–3526. [Google Scholar] [CrossRef]
- Wells, J.L.; Bartlett, J.L.; Ananthan, S.; Bilsky, E.J. In vivo pharmacological characterization of SoRI 9409, a nonpeptidic opioid mu-agonist/delta-antagonist that produces limited antinociceptive tolerance and attenuates morphine physical dependence. J. Pharmacol. Exp. Ther. 2001, 297, 597–605. [Google Scholar]
- Ananthan, S.; Kezar, H.S., 3rd; Carter, R.L.; Saini, S.K.; Rice, K.C.; Wells, J.L.; Davis, P.; Xu, H.; Dersch, C.M.; Bilsky, E.J.; et al. Synthesis, Opioid receptor binding, and biological activities of naltrexone-derived pyrido- and pyrimidomorphinans. J. Med. Chem. 1999, 42, 3527–3538. [Google Scholar] [CrossRef]
- Portoghese, P.S.; Ronsisvalle, G.; Larson, D.L.; Takemori, A.E. Synthesis and opioid antagonist potencies of naltrexamine bivalent ligands with conformationally restricted spacers. J. Med. Chem. 1986, 29, 1650–1653. [Google Scholar] [CrossRef]
- Portoghese, P.S.; Larson, D.L.; Sayre, L.M.; Yim, C.B.; Ronsisvalle, G.; Tam, S.W.; Takemori, A.E. Opioid agonist and antagonist bivalent ligands. The relationship between spacer length and selectivity at multiple opioid receptors. J. Med. Chem. 1986, 29, 1855–1861. [Google Scholar] [CrossRef]
- Portoghese, P.S.; Larson, D.L.; Ronsisvalle, G.; Schiller, P.W.; Nguyen, T.M.; Lemieux, C.; Takemori, A.E. Hybrid bivalent ligands with opiate and enkephalin pharmacophores. J. Med. Chem. 1987, 30, 1991–1994. [Google Scholar] [CrossRef]
- Takemori, A.E.; Yim, C.B.; Larson, D.L.; Portoghese, P.S. Long-acting agonist and antagonist activities of naltrexamine bivalent ligands in mice. Eur. J. Pharmacol. 1990, 186, 285–288. [Google Scholar] [CrossRef]
- Costa, T.; Shimohigashi, Y.; Krumins, S.A.; Munson, P.J.; Rodbard, D. Dimeric pentapeptide enkephalin: a novel probe of delta opiate receptors. Life Sci. 1982, 31, 1625–1632. [Google Scholar] [CrossRef]
- Sasaki-Yagi, Y.; Kimura, S.; Imanishi, Y. Binding to opioid receptors of enkephalin derivatives taking alpha-helical conformation and its dimer. Int. J. Pept. Protein Res. 1991, 38, 378–384. [Google Scholar] [CrossRef]
- Yekkirala, A.S.; Kalyuzhny, A.E.; Portoghese, P.S. An Immunocytochemical-Derived Correlate for Evaluating the Bridging of Heteromeric Mu-Delta Opioid Protomers by Bivalent Ligands. ACS Chem. Biol. 2013, 8, 1412–1416. [Google Scholar] [CrossRef]
- Peng, X.; Neumeyer, J.L. Kappa receptor bivalent ligands. Curr. Top. Med. Chem. 2007, 7, 363–373. [Google Scholar] [CrossRef]
- Archer, S.; Glick, S.D.; Bidlack, J.M. Cyclazocine revisited. Neurochem. Res. 1996, 21, 1369–1373. [Google Scholar] [CrossRef]
- Zhang, S.; Yekkirala, A.; Tang, Y.; Portoghese, P.S. A bivalent ligand (KMN-21) antagonist for mu/kappa heterodimeric opioid receptors. Bioorganic Med. Chem. Lett. 2009, 19, 6978–6980. [Google Scholar] [CrossRef]
- Lahti, R.A.; Mickelson, M.M.; McCall, J.M.; Von Voigtlander, P.F. [3H]U-69593 a highly selective ligand for the opioid kappa receptor. Eur. J. Pharmacol. 1985, 109, 281–284. [Google Scholar] [CrossRef]
- Handa, B.K.; Land, A.C.; Lord, J.A.; Morgan, B.A.; Rance, M.J.; Smith, C.F. Analogues of beta-LPH61–64 possessing selective agonist activity at mu-opiate receptors. Eur. J. Pharmacol. 1981, 70, 531–540. [Google Scholar] [CrossRef]
- Daniels, D.J.; Kulkarni, A.; Xie, Z.; Bhushan, R.G.; Portoghese, P.S. A bivalent ligand (KDAN-18) containing delta-antagonist and kappa-agonist pharmacophores bridges delta2 and kappa1 opioid receptor phenotypes. J. Med. Chem. 2005, 48, 1713–1716. [Google Scholar] [CrossRef]
- Yekkirala, A.S.; Lunzer, M.M.; McCurdy, C.R.; Powers, M.D.; Kalyuzhny, A.E.; Roerig, S.C.; Portoghese, P.S. N-naphthoyl-beta-naltrexamine (NNTA), a highly selective and potent activator of mu/kappa-opioid heteromers. Proc. Natl. Acad. Sci. USA 2011, 108, 5098–5103. [Google Scholar] [CrossRef]
- Toll, L.; Khroyan, T.V.; Polgar, W.E.; Jiang, F.; Olsen, C.; Zaveri, N.T. Comparison of the antinociceptive and antirewarding profiles of novel bifunctional nociceptin receptor/mu-opioid receptor ligands: Implications for therapeutic applications. J. Pharmacol. Exp. Ther. 2009, 331, 954–964. [Google Scholar] [CrossRef]
- Hoskin, P.J.; Hanks, G.W. Opioid agonist-antagonist drugs in acute and chronic pain states. Drugs 1991, 41, 326–344. [Google Scholar] [CrossRef]
- Mello, N.K.; Kamien, J.B.; Lukas, S.E.; Drieze, J.; Mendelson, J.H. The effects of nalbuphine and butorphanol treatment on cocaine and food self-administration by rhesus monkeys. Neuropsychopharmacology 1993, 8, 45–55. [Google Scholar] [CrossRef]
- Bowen, C.A.; Negus, S.S.; Zong, R.; Neumeyer, J.L.; Bidlack, J.M.; Mello, N.K. Effects of mixed-action kappa/mu opioids on cocaine self-administration and cocaine discrimination by rhesus monkeys. Neuropsychopharmacology 2003, 28, 1125–1139. [Google Scholar]
- Huang, P.; Kehner, G.B.; Cowan, A.; Liu-Chen, L.Y. Comparison of pharmacological activities of buprenorphine and norbuprenorphine: norbuprenorphine is a potent opioid agonist. J. Pharmacol. Exp. Ther. 2001, 297, 688–695. [Google Scholar]
- Spagnolo, B.; Calo, G.; Polgar, W.E.; Jiang, F.; Olsen, C.M.; Berzetei-Gurske, I.; Khroyan, T.V.; Husbands, S.M.; Lewis, J.W.; Toll, L.; et al. Activities of mixed NOP and mu-opioid receptor ligands. Br. J. Pharmacol. 2008, 153, 609–619. [Google Scholar] [CrossRef]
- Lutfy, K.; Eitan, S.; Bryant, C.D.; Yang, Y.C.; Saliminejad, N.; Walwyn, W.; Kieffer, B.L.; Takeshima, H.; Carroll, F.I.; Maidment, N.T.; Evans, C.J. Buprenorphine-induced antinociception is mediated by mu-opioid receptors and compromised by concomitant activation of opioid receptor-like receptors. J. Neurosci. 2003, 23, 10331–10337. [Google Scholar]
- Montoya, I.D.; Gorelick, D.A.; Preston, K.L.; Schroeder, J.R.; Umbricht, A.; Cheskin, L.J.; Lange, W.R.; Contoreggi, C.; Johnson, R.E.; Fudala, P.J. Randomized trial of buprenorphine for treatment of concurrent opiate and cocaine dependence. Clin. Pharmacol. Ther. 2004, 75, 34–48. [Google Scholar] [CrossRef]
- Khroyan, T.V.; Zaveri, N.T.; Polgar, W.E.; Orduna, J.; Olsen, C.; Jiang, F.; Toll, L. SR 16435 [1-(1-(bicyclo[3.3.1]nonan-9-yl)piperidin-4-yl)indolin-2-one], a novel mixed nociceptin/orphanin FQ/mu-opioid receptor partial agonist: analgesic and rewarding properties in mice. J. Pharmacol. Exp. Ther. 2007, 320, 934–943. [Google Scholar]
- Zaveri, N.T.; Jiang, F.; Olsen, C.; Polgar, W.E.; Toll, L. Designing bifunctional NOP receptor-mu opioid receptor ligands from NOP receptor-selective scaffolds. Part I. Bioorganic Med. Chem. Lett. 2013, 23, 3308–3313. [Google Scholar] [CrossRef]
- Zaveri, N.T.; Jiang, F.; Olsen, C.M.; Deschamps, J.R.; Parrish, D.; Polgar, W.; Toll, L. A novel series of piperidin-4-yl-1,3-dihydroindol-2-ones as agonist and antagonist ligands at the nociceptin receptor. J. Med. Chem. 2004, 47, 2973–2976. [Google Scholar] [CrossRef]
- Zaveri, N.; Jiang, F.; Olsen, C.; Polgar, W.; Toll, L. Small-molecule agonists and antagonists of the opioid receptor-like receptor (ORL1, NOP): ligand-based analysis of structural factors influencing intrinsic activity at NOP. AAPS J. 2005, 7, E345–352. [Google Scholar] [CrossRef]
- Toll, L.; Berzetei-Gurske, I.P.; Polgar, W.E.; Brandt, S.R.; Adapa, I.D.; Rodriguez, L.; Schwartz, R.W.; Haggart, D.; O'Brien, A.; White, A.; et al. Standard binding and functional assays related to medications development division testing for potential cocaine and opiate narcotic treatment medications. NIDA Res. Monogr. 1998, 178, 440–466. [Google Scholar]
- Dooley, C.T.; Spaeth, C.G.; Berzetei-Gurske, I.P.; Craymer, K.; Adapa, I.D.; Brandt, S.R.; Houghten, R.A.; Toll, L. Binding and in vitro activities of peptides with high affinity for the nociceptin/orphanin FQ receptor, ORL1. J. Pharmacol. Exp. Ther. 1997, 283, 735–741. [Google Scholar]
- Gasparini, F.; Andres, H.; Flor, P.J.; Heinrich, M.; Inderbitzin, W.; Lingenhohl, K.; Muller, H.; Munk, V.C.; Omilusik, K.; Stierlin, C.; et al. [(3)H]-M-MPEP, a potent, subtype-selective radioligand for the metabotropic glutamate receptor subtype 5. Bioorganic Med. Chem. Lett. 2002, 12, 407–409. [Google Scholar] [CrossRef]
- Lee, J.S.; Ro, J.Y. Peripheral metabotropic glutamate receptor 5 mediates mechanical hypersensitivity in craniofacial muscle via protein kinase C dependent mechanisms. Neuroscience 2007, 146, 375–383. [Google Scholar] [CrossRef]
- Aoki, T.; Narita, M.; Shibasaki, M.; Suzuki, T. Metabotropic glutamate receptor 5 localized in the limbic forebrain is critical for the development of morphine-induced rewarding effect in mice. Eur. J. Neurosci. 2004, 20, 1633–1638. [Google Scholar] [CrossRef]
- Akgun, E.; Javed, M.I.; Lunzer, M.M.; Smeester, B.A.; Beitz, A.J.; Portoghese, P.S. Ligands that interact with putative MOR-mGluR5 heteromer in mice with inflammatory pain produce potent antinociception. Proc. Natl. Acad. Sci. USA 2013, 110, 11595–11599. [Google Scholar]
- Ballet, S.; Pietsch, M.; Abell, A.D. Multiple ligands in opioid research. Protein Pept. Lett. 2008, 15, 668–682. [Google Scholar] [CrossRef]
- Levac, B.A.; O'Dowd, B.F.; George, S.R. Oligomerization of opioid receptors: Generation of novel signaling units. Curr. Opin. Pharmacol. 2002, 2, 76–81. [Google Scholar] [CrossRef]
- Rios, C.D.; Jordan, B.A.; Gomes, I.; Devi, L.A. G-protein-coupled receptor dimerization: Modulation of receptor function. Pharmacol. Ther. 2001, 92, 71–87. [Google Scholar] [CrossRef]
- Thompson, A.A.; Liu, W.; Chun, E.; Katritch, V.; Wu, H.; Vardy, E.; Huang, X.P.; Trapella, C.; Guerrini, R.; Calo, G.; Roth, B.L.; Cherezov, V.; Stevens, R.C. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 2012, 485, 395–399. [Google Scholar] [CrossRef]
- Wu, H.; Wacker, D.; Mileni, M.; Katritch, V.; Han, G.W.; Vardy, E.; Liu, W.; Thompson, A.A.; Huang, X.P.; Carroll, F.I.; et al. Structure of the human kappa-opioid receptor in complex with JDTic. Nature 2012, 485, 327–332. [Google Scholar] [CrossRef]
- Granier, S.; Manglik, A.; Kruse, A.C.; Kobilka, T.S.; Thian, F.S.; Weis, W.I.; Kobilka, B.K. Structure of the delta-opioid receptor bound to naltrindole. Nature 2012, 485, 400–404. [Google Scholar] [CrossRef]
- Manglik, A.; Kruse, A.C.; Kobilka, T.S.; Thian, F.S.; Mathiesen, J.M.; Sunahara, R.K.; Pardo, L.; Weis, W.I.; Kobilka, B.K.; Granier, S. Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 2012, 485, 321–326. [Google Scholar] [CrossRef]
- Filizola, M.; Devi, L.A. Structural biology: How opioid drugs bind to receptors. Nature 2012, 485, 314–317. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lee, C.W.-S.; Ho, I.-K. Pharmacological Profiles of Oligomerized μ-Opioid Receptors. Cells 2013, 2, 689-714. https://doi.org/10.3390/cells2040689
Lee CW-S, Ho I-K. Pharmacological Profiles of Oligomerized μ-Opioid Receptors. Cells. 2013; 2(4):689-714. https://doi.org/10.3390/cells2040689
Chicago/Turabian StyleLee, Cynthia Wei-Sheng, and Ing-Kang Ho. 2013. "Pharmacological Profiles of Oligomerized μ-Opioid Receptors" Cells 2, no. 4: 689-714. https://doi.org/10.3390/cells2040689