Morphological Features of Organelles during Apoptosis: An Overview
Abstract
:1. Introduction
2. Cytoskeleton
3. Endoplasmic Reticulum
4. Golgi Apparatus
5. Lysosomes
6. Mitochondria
7. Conclusions
Acknowledgments
Conflict of Interest
References
- Joza, N.; Susin, S.A.; Daugas, E.; Stanford, W.L.; Cho, S.K.; Li, C.Y.; Sasaki, T.; Elia, A.J.; Cheng, H.Y.; Ravagnan, L.; et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 2001, 410, 549–554. [Google Scholar] [CrossRef]
- Le Bras, M.; Rouy, I.; Brenner, C. The modulation of inter-organelle cross-talk to control apoptosis. Med. Chem. 2006, 2, 1–12. [Google Scholar] [CrossRef]
- Soldani, C.; Bottone, M.G.; Fraschini, A.; Croce, A.C.; Bottiroli, G.; Scovassi, A.I.; Pellicciari, C. Apoptosis as a Consequence of Multiple Organelle Damage in Cultured Tumor Cells after Photosensitization with Rose Bengal Acetate. In Cell Apoptosis and Cancer; Taylor, A.W., Ed.; NOVA Science: Hauppauge, NY, USA, 2007; pp. 23–45. [Google Scholar]
- Bottone, M.G.; Giansanti, V.; Veneroni, P.; Bernocchi, G.; Scovassi, A.I.; Pellicciari, C. The Apoptosis-Inducing Factor (AIF) Moves from Mitochondria to the Nucleus and Back to the Cytoplasm, during Apoptosis. In Mitochondria: Structure, Functions and Dysfunctions; Svensson, O.L., Ed.; NOVA Science: Hauppauge, NY, USA, 2010; pp. 123–140. [Google Scholar]
- Santin, G.; Scietti, L.; Veneroni, P.; Barni, S.; Bernocchi, G.; Bottone, M.G. Effects of Cisplatin in neuroblastoma rat cells: damage to cellular organelles. Int. J. Cell Biol. 2012, 2012, 1–6. [Google Scholar]
- Núñez, R.; Sancho-Martínez, S.M.; Novoa, J.M.; López-Hernández, F.J. Apoptotic volume decrease as a geometric determinant for cell dismantling into apoptotic bodies. Cell Death Differ. 2010, 17, 1665–1671. [Google Scholar] [CrossRef]
- Soldani, C.; Croce, A.C.; Bottone, M.G.; Fraschini, A.; Biggiogera, M.; Bottiroli, G.; Pellicciari, C. Apoptosis in tumour cells photosensitized with Rose Bengal acetate is induced by multiple organelle photodamage. Histochem. Cell Biol. 2007, 128, 485–495. [Google Scholar] [CrossRef]
- Grimm, S. The ER-mitochondria interface: the social network of cell death. Biochim. Biophys. Acta 2012, 1823, 327–334. [Google Scholar] [CrossRef]
- Fraschini, A.; Bottone, M.G.; Scovassi, A.I.; Denegri, M.; Risueño, M.C.; Testillano, P.S.; Martin, T.E.; Biggiogera, M.; Pellicciari, C. Changes in extranucleolar transcription during actinomycin D-induced apoptosis. Histol. Histopathol. 2005, 20, 107–117. [Google Scholar]
- Jiang, Z.; Hu, Z.; Zeng, L.; Lu, W.; Zhang, H.; Li, T.; Xiao, H. The role of the Golgi apparatus in oxidative stress: Is this organelle less significant than mitochondria? Free Radic. Biol. Med. 2011, 50, 907–917. [Google Scholar] [CrossRef]
- Soldani, C.; Bottone, M.G.; Croce, A.C.; Fraschini, A.; Bottiroli, G.; Pellicciari, C. The Golgi apparatus is a primary site of intracellular damage after photosensitization with Rose Bengal acetate. Eur. J. Histochem. 2004, 48, 443–448. [Google Scholar]
- Bottone, M.G.; Santin, G.; Soldani, C.; Veneroni, P.; Scovassi, A.I.; Alpini, C. Intracellular distribution of Tankyrases as detected by multicolor immunofluorescence techniques. Eur. J. Histochem. 2012, 56, e4. [Google Scholar]
- Kurz, T.; Terman, A.; Gustafsson, B.; Brunk, U.T. Lysosomes in iron metabolism, ageing and apoptosis. Histochem. Cell Biol. 2008, 129, 389–406. [Google Scholar] [CrossRef]
- Kirkegaard, T.; Jäättelä, M. Lysosomal involvement in cell death and cancer. Biochim. Biophys. Acta 2009, 1793, 746–754. [Google Scholar] [CrossRef]
- Česen, M.H.; Pegan, K.; Spes, A.; Turk, B. Lysosomal pathways to cell death and their therapeutic applications. Exp. Cell Res. 2012, 318, 1245–1251. [Google Scholar] [CrossRef]
- Repnik, U.; Stoka, V.; Turk, V.; Turk, B. Lysosomes and lysosomal cathepsins in cell death. Biochim. Biophys. Acta 2012, 1824, 22–33. [Google Scholar] [CrossRef]
- Johansson, A.C.; Appelqvist, H.; Nilsson, C.; Kågedal, K.; Roberg, K.; Ollinger, K. Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis 2010, 15, 527–540. [Google Scholar] [CrossRef] [Green Version]
- Repnik, U.; Turk, B. Lysosomal-mitochondrial cross-talk during cell death. Mitochondrion 2010, 10, 662–669. [Google Scholar] [CrossRef]
- Schrader, K.; Huai, J.; Jöckel, L.; Oberle, C.; Borner, C. Non-caspase proteases: Triggers or amplifiers of apoptosis? Cell Mol. Life Sci 2010, 67, 1607–1618. [Google Scholar] [CrossRef]
- Alpini, C.; Lotzniker, M.; Valaperta, S.; Bottone, M.G.; Malatesta, M.; Montanelli, A.; Merlini, G. Characterization for anti-cytoplasmic antibodies specificity by morphological and molecular techniques. Autoimmun. Highlights 2012, 3, 79–85. [Google Scholar] [CrossRef]
- Kroemer, G.; Petit, P.; Zamzami, N.; Vayssiere, J.L.; Mignotte, B. The biochemistry of programmed cell death. FASEB J. 1995, 9, 1277–1287. [Google Scholar]
- Green, D.R.; Kroemer, G. The pathophysiology of mitochondrial cell death. Science 2004, 305, 626–629. [Google Scholar] [CrossRef]
- Giansanti, V.; Camboni, T.; Piscitelli, F.; Prosperi, E.; La Regina, G.; Lazzè, M.C.; Santin, G.; Silvestri, R.; Scovassi, A.I. Study of the effects of a new pyrazolecarboxamide: Changes in mitochondria and induction of apoptosis. Int. J. Biochem. Cell Biol. 2009, 41, 1890–1898. [Google Scholar] [CrossRef]
- Giansanti, V.; Villalpando Rodriguez, G.E.; Savoldelli, M.; Gioia, R.; Forlino, A.; Mazzini, G.; Pennati, M.; Zaffaroni, N.; Scovassi, A.I.; Torriglia, A. Characterization of stress response in human retinal epithelial cells. J. Cell. Mol. Med. 2013, 17, 103–115. [Google Scholar] [CrossRef]
- Kroemer, G.; Reed, J.C. Mitochondrial control of cell death. Nat. Med. 2000, 6, 513–519. [Google Scholar] [CrossRef]
- Lorenzo, H.K.; Susin, S.A.; Penninger, J.; Kroemer, G. Apoptosis inducing factor (AIF): A phylogenetically old, caspase-independent effector of cell death. Cell Death Differ. 1999, 6, 516–524. [Google Scholar]
- Scovassi, A.I.; Soldani, C.; Veneroni, P.; Bottone, M.G.; Pellicciari, C. Changes of mitochondria and relocation of the Apoptosis-Inducing Factor during apoptosis. Ann. N.Y. Acad. Sci. 2009, 1171, 12–17. [Google Scholar] [CrossRef]
- Henson, P.M.; Hume, D.A. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol. 2006, 27, 244–225. [Google Scholar] [CrossRef]
- Penaloza, C.; Lin, L.; Lockshin, R.A.; Zakeri, Z. Cell death in development: shaping the embryo. Histochem. Cell Biol. 2006, 126, 149–158. [Google Scholar] [CrossRef]
- Kerr, J.F.R.; Wyllie, A.H.; Currie, A.R. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 1972, 26, 239–257. [Google Scholar]
- Biggiogera, M.; Bottone, M.G.; Pellicciari, C. Nuclear ribonucleoprotein-containing structures undergo severe rearrangement during spontaneous thymocyte apoptosis. A morphological study by electron microscopy. Histochem. Cell Biol. 1997, 107, 331–336. [Google Scholar] [CrossRef]
- Biggiogera, M.; Bottone, M.G.; Scovassi, A.I.; Soldani, C.; Vecchio, L.; Pellicciari, C. Rearrangement of nuclear ribonucleoprotein (RNP)-containing structures during apoptosis and transcriptional arrest. Biol. Cell 2004, 96, 603–615. [Google Scholar] [CrossRef]
- Biggiogera, M.; Pellicciari, C. Heterogeneous Ectopic RNP-Derived Structures (HERDS) are markers of transcriptional arrest. FASEB J. 2000, 14, 828–834. [Google Scholar]
- May, R.C.; Machesky, L.M. Phagocytosis and the actin cytoskeleton. J. Cell. Sci. 2001, 114, 1061–1077. [Google Scholar]
- Moss, D.K.; Lane, J.D. Microtubules: Forgotten players in the apoptotic execution phase. Trends Cell Biol. 2006, 16, 330–338. [Google Scholar] [CrossRef]
- Oropesa, M.; de la Mata, M.; Maraver, J.G.; Cordero, M.D.; Cotán, D.; Rodríguez-Hernández, A.; Domínguez-Moñino, I.; de Miguel, M.; Navas, P.; Sánchez-Alcázar, J.A. Apoptotic microtubule network organization and maintenance depend on high cellular ATP levels and energized mitochondria. Apoptosis 2011, 16, 404–424. [Google Scholar] [CrossRef]
- Franklin-Tong, V.E.; Gourlay, C.W. A role for actin in regulating apoptosis/programmed cell death: evidence spanning yeast, plants and animals. Biochem. J. 2008, 413, 389–404. [Google Scholar] [CrossRef]
- Bottone, M.G.; Soldani, C.; Tognon, G.; Gorrini, C.; Lazzè, M.C.; Brison, O.; Ciomei, M.; Pellicciari, C.; Scovassi, A.I. Multiple effects of paclitaxel are modulated by a high c-myc amplification level. Exp. Cell Res. 2003, 290, 49–59. [Google Scholar] [CrossRef]
- Bottone, M.G.; Soldani, C.; Veneroni, P.; Avella, D.; Pisu, M.; Bernocchi, G. Cell proliferation, Apoptosis and mitochondrial damage in rat B50 neuronal cells after cisplatin treatment. Cell Prolif. 2008, 41, 506–520. [Google Scholar] [CrossRef]
- Oyadomari, S.; Araki, E.; Mori, M. Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 2002, 7, 335–345. [Google Scholar] [CrossRef]
- Rios, R.M.; Bornens, M. The Golgi apparatus at the cell centre. Curr. Opin. Cell Biol. 2003, 15, 60–66. [Google Scholar] [CrossRef]
- Machamer, C.E. Golgi disassembly in apoptosis: Cause or effect? Trends Cell Biol. 2003, 13, 279–281. [Google Scholar] [CrossRef]
- Lane, J.; Allan, V. Microtubule-based membrane movement. Biochim. Biophys. Acta 1998, 29, 27–55. [Google Scholar]
- Lane, J.D.; Vergnolle, M.A.; Woodman, P.G.; Allan, V.J. Apoptotic cleavage of cytoplasmic dynein intermediate chain and p150(Glued) stops dynein-dependent membrane motility. J. Cell Biol. 2001, 153, 1415–1426. [Google Scholar] [CrossRef]
- Suria, H.; Chau, L.A.; Negrou, E.; Kelvin, D.J.; Madrenas, J. Cytoskeletal disruption induces T cell apoptosis by a caspase-3- mediated mechanism. Life Sci. 1999, 65, 2697–2707. [Google Scholar] [CrossRef]
- Verhagen, A.M.; Ekert, P.G.; Pakusch, M.; Silke, J.; Connolly, L.M.; Reid, G.E.; Moritz, R.L.; Simpson, R.J.; Vaux, D.L. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000, 102, 43–53. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bottone, M.G.; Santin, G.; Aredia, F.; Bernocchi, G.; Pellicciari, C.; Scovassi, A.I. Morphological Features of Organelles during Apoptosis: An Overview. Cells 2013, 2, 294-305. https://doi.org/10.3390/cells2020294
Bottone MG, Santin G, Aredia F, Bernocchi G, Pellicciari C, Scovassi AI. Morphological Features of Organelles during Apoptosis: An Overview. Cells. 2013; 2(2):294-305. https://doi.org/10.3390/cells2020294
Chicago/Turabian StyleBottone, Maria Grazia, Giada Santin, Francesca Aredia, Graziella Bernocchi, Carlo Pellicciari, and Anna Ivana Scovassi. 2013. "Morphological Features of Organelles during Apoptosis: An Overview" Cells 2, no. 2: 294-305. https://doi.org/10.3390/cells2020294
APA StyleBottone, M. G., Santin, G., Aredia, F., Bernocchi, G., Pellicciari, C., & Scovassi, A. I. (2013). Morphological Features of Organelles during Apoptosis: An Overview. Cells, 2(2), 294-305. https://doi.org/10.3390/cells2020294