Effects of N-Acetylcysteine and Alpha-Ketoglutarate on OVCAR3 Ovarian Cancer Cells: Insights from Integrative Bioinformatics and Experimental Validation
Abstract
1. Introduction
2. Materials and Methods
2.1. Network Pharmacology Analysis
2.1.1. Identification of Common Genes Related to AKG, NAC, and Ovarian Cancer
2.1.2. Compound–Target Pharmacology Network Construction
2.1.3. Enrichment Analysis
2.2. Experimental Validation
2.2.1. Preparation of NAC and AKG Stock Solutions and Vehicle Controls
2.2.2. pH Adjustment of Treatment and Vehicle Media
2.2.3. Cell Culture and Treatments
2.2.4. MTT Assay
2.2.5. Synergistic Analysis
2.2.6. Annexin V/PI Assay
2.2.7. Scratch Assay
2.2.8. Colony Formation Assay
2.2.9. Statistical Analysis
3. Results
3.1. Identification of Targets of NAC and AKG in Ovarian Cancer
3.2. GO and KEGG Pathway Enrichment Analysis
3.3. In Vitro Validation
3.3.1. NAC and AKG Reduced OVCAR3 Cell Viability
3.3.2. NAC and AKG Synergistically Reduced Cell Viability
3.3.3. NAC and AKG Induced Apoptosis in OVCAR3 Cells
3.3.4. NAC and AKG Inhibited Cell Migration in OVCAR3 Cells
3.3.5. NAC and AKG Suppressed Colony Formation of OVCAR3 Cells
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peremiquel-Trillas, P.; Frias-Gomez, J.; Alemany, L.; Ameijide, A.; Vilardell, M.; Marcos-Gragera, R.; Paytubi, S.; Ponce, J.; Martínez, J.M.; Pineda, M.; et al. Predicting Ovarian-Cancer Burden in Catalonia by 2030: An Age–Period–Cohort Modelling. Int. J. Environ. Res. Public Health 2022, 19, 1404. [Google Scholar] [CrossRef] [PubMed]
- Mazidimoradi, A.; Momenimovahed, Z.; Allahqoli, L.; Tiznobaik, A.; Hajinasab, N.; Salehiniya, H.; Alkatout, I. The global, regional and national epidemiology, incidence, mortality, and burden of ovarian cancer. Health Sci. Rep. 2022, 5, e936. [Google Scholar] [CrossRef] [PubMed]
- Lheureux, S.; Gourley, C.; Vergote, I.; Oza, A.M. Epithelial ovarian cancer. Lancet 2019, 393, 1240–1253. [Google Scholar] [CrossRef] [PubMed]
- Varghese, S.; Lim, M.C.; Armbrust, R.; Pareja, R.; Fotopoulou, C. Worldwide barriers of optimal surgical care provision in advanced ovarian cancer. Int. J. Gynecol. Obstet. 2025, 171, 129–137. [Google Scholar] [CrossRef]
- Shi, Y.; Xiong, X.; Sun, Y.; Geng, Z.; Chen, X.; Cui, X.; Lv, J.; Ge, L.; Jia, X.; Xu, J. IGF2BP2 promotes ovarian cancer growth and metastasis by upregulating CKAP2L protein expression in an m6A-dependent manner. FASEB J. 2023, 37, e23183. [Google Scholar] [CrossRef]
- Tanha, K.; Mottaghi, A.; Nojomi, M.; Moradi, M.; Rajabzadeh, R.; Lotfi, S.; Janani, L. Investigation on factors associated with ovarian cancer: An umbrella review of systematic review and meta-analyses. J. Ovarian Res. 2021, 14, 153. [Google Scholar] [CrossRef]
- Phung, M.T.; Muthukumar, A.; Trabert, B.; Webb, P.M.; Jordan, S.J.; Terry, K.L.; Cramer, D.W.; Titus, L.J.; Risch, H.A.; Doherty, J.A.; et al. Effects of risk factors for ovarian cancer in women with and without endometriosis. Fertil. Steril. 2022, 118, 960–969. [Google Scholar] [CrossRef]
- Zhang, L.; Muscat, J.E.; Chinchilli, V.M.; Behura, C.G. Trends in Cancer Incidence and Mortality in US Adolescents and Young Adults, 2016–2021. Cancers 2024, 16, 3153. [Google Scholar] [CrossRef]
- Hong, M.-K.; Ding, D.-C. Early diagnosis of ovarian cancer: A comprehensive review of the advances, challenges, and future directions. Diagnostics 2025, 15, 406. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Y.; Lv, X.; Gao, M.; Gong, X.; Yao, Q.; Liu, Y. Nanoparticle-based combination therapy for ovarian cancer. Int. J. Nanomed. 2023, 18, 1965–1987. [Google Scholar] [CrossRef]
- Naeini, S.H.; Mavaddatiyan, L.; Kalkhoran, Z.R.; Taherkhani, S.; Talkhabi, M. Alpha-ketoglutarate as a potent regulator for lifespan and healthspan: Evidences and perspectives. Exp. Gerontol. 2023, 175, 112154. [Google Scholar] [CrossRef]
- An, D.; Zeng, Q.; Zhang, P.; Ma, Z.; Zhang, H.; Liu, Z.; Li, J.; Ren, H.; Xu, D. Alpha-ketoglutarate ameliorates pressure overload-induced chronic cardiac dysfunction in mice. Redox Biol. 2021, 46, 102088. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Liu, H.; Peng, L.; He, W.; Li, S. Potential clinical applications of alpha-ketoglutaric acid in diseases. Mol. Med. Rep. 2022, 25, 151. [Google Scholar] [CrossRef]
- Wu, N.; Yang, M.; Gaur, U.; Xu, H.; Yao, Y.; Li, D. Alpha-ketoglutarate: Physiological functions and applications. Biomol. Ther. 2016, 24, 1–8. [Google Scholar] [CrossRef]
- Junghans, P.; Derno, M.; Pierzynowski, S.; Hennig, U.; Rudolph, P.E.; Souffrant, W.B. Intraduodenal infusion of α-ketoglutarate decreases whole body energy expenditure in growing pigs. Clin. Nutr. 2006, 25, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, J.; Im, S.S.; Kim, B.; Kim, E.-Y.; Min, H.-J.; Heo, J.; Chang, E.-J.; Choi, K.-C.; Shin, D.-M.; et al. Glutamine-mediated epigenetic regulation of cFLIP underlies resistance to TRAIL in pancreatic cancer. Exp. Mol. Med. 2024, 56, 1013–1026. [Google Scholar] [CrossRef]
- Bott, A.J.; Shen, J.; Tonelli, C.; Zhan, L.; Sivaram, N.; Jiang, Y.-P.; Yu, X.; Bhatt, V.; Chiles, E.; Zhong, H.; et al. Glutamine anabolism plays a critical role in pancreatic cancer by coupling carbon and nitrogen metabolism. Cell Rep. 2019, 29, 1287–1298.e6. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.Q.; Hanse, E.A.; Habowski, A.N.; Li, H.; Ishak Gabra, M.B.; Yang, Y.; Lowman, X.H.; Ooi, A.M.; Liao, S.Y.; Edwards, R.A.; et al. α-Ketoglutarate attenuates Wnt signaling and drives differentiation in colorectal cancer. Nat. Cancer 2020, 1, 345–358. [Google Scholar] [CrossRef]
- Kaławaj, K.; Sławińska-Brych, A.; Mizerska-Kowalska, M.; Żurek, A.; Bojarska-Junak, A.; Kandefer-Szerszeń, M.; Zdzisińska, B. Alpha Ketoglutarate Exerts In vitro Anti-Osteosarcoma Effects through Inhibition of Cell Proliferation, Induction of Apoptosis via the JNK and Caspase 9-Dependent Mechanism, and Suppression of TGF-β and VEGF Production and Metastatic Potential of Cells. Int. J. Mol. Sci. 2020, 21, 9406. [Google Scholar] [CrossRef]
- Sun, X.; Zhu, M.J. Butyrate inhibits indices of colorectal carcinogenesis via enhancing α-ketoglutarate-dependent DNA demethylation of mismatch repair genes. Mol. Nutr. Food Res. 2018, 62, 1700932. [Google Scholar] [CrossRef]
- Kalyanaraman, B. NAC, NAC, Knockin’on Heaven’s door: Interpreting the mechanism of action of N-acetylcysteine in tumor and immune cells. Redox Biol. 2022, 57, 102497. [Google Scholar] [CrossRef]
- Hurst, G.A.; Shaw, P.B.; LeMaistre, C.A. Laboratory and clinical evaluation of the mucolytic properties of acetylcysteine. Am. Rev. Respir. Dis. 1967, 96, 962–970. [Google Scholar] [PubMed]
- Raghu, G.; Berk, M.; Campochiaro, P.A.; Jaeschke, H.; Marenzi, G.; Richeldi, L.; Wen, F.-Q.; Nicoletti, F.; Calverley, P.M.A. The multifaceted therapeutic role of N-acetylcysteine (NAC) in disorders characterized by oxidative stress. Curr. Neuropharmacol. 2021, 19, 1202. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-F.; Chan, C.-Y.; Hung, H.-C.; Chou, I.-T.; Yee, A.S.; Huang, C.-Y. N-acetylcysteine (NAC) inhibits cell growth by mediating the EGFR/Akt/HMG box-containing protein 1 (HBP1) signaling pathway in invasive oral cancer. Oral. Oncol. 2013, 49, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-G.; Woo, S.-M.; Ko, S.-G. Butein suppresses breast cancer growth by reducing a production of intracellular reactive oxygen species. J. Exp. Clin. Cancer Res. 2014, 33, 51. [Google Scholar] [CrossRef] [PubMed]
- Supino, R. MTT assays. In In Vitro Toxicity Testing Protocols; Springer: Berlin/Heidelberg, Germany, 1995; pp. 137–149. [Google Scholar]
- Liang, C.-C.; Park, A.Y.; Guan, J.-L. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2007, 2, 329–333. [Google Scholar] [CrossRef]
- Franken, N.A.; Rodermond, H.M.; Stap, J.; Haveman, J.; Van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef]
- Nicholson, K.M.; Anderson, N.G. The protein kinase B/Akt signalling pathway in human malignancy. Cell. Signal. 2002, 14, 381–395. [Google Scholar] [CrossRef]
- Nakatsumi, H.; Yonehara, S. Identification of functional regions defining different activity in caspase-3 and caspase-7 within cells. J. Biol. Chem. 2010, 285, 25418–25425. [Google Scholar] [CrossRef]
- Nicholson, D.W.; Ali, A.; Thornberry, N.A.; Vaillancourt, J.P.; Ding, C.K.; Gallant, M.; Gareau, Y.; Griffin, P.R.; Labelle, M.; Lazebnik, Y.A.; et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995, 376, 37–43. [Google Scholar] [CrossRef]
- Forsythe, H.L.; Jarvis, J.L.; Turner, J.W.; Elmore, L.W.; Holt, S.E. Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. J. Biol. Chem. 2001, 276, 15571–15574. [Google Scholar] [CrossRef] [PubMed]
- Young, J.C.; Hoogenraad, N.J.; Hartl, F.U. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 2003, 112, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Roe, S.M.; Cliff, M.J.; Williams, M.A.; Ladbury, J.E.; Cohen, P.T.; Barford, D. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. EMBO J. 2005, 24, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ruiz, A.; Villanueva, L.; González de Orduña, C.; López-Ferrer, D.; Higueras, M.A.; Tarín, C.; Rodríguez-Crespo, I.; Vázquez, J.; Lamas, S. S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc. Natl. Acad. Sci. USA 2005, 102, 8525–8530. [Google Scholar] [CrossRef]
- Woodford, M.R.; Dunn, D.M.; Blanden, A.R.; Capriotti, D.; Loiselle, D.; Prodromou, C.; Panaretou, B.; Hughes, P.F.; Smith, A.; Ackerman, W.; et al. The FNIP co-chaperones decelerate the Hsp90 chaperone cycle and enhance drug binding. Nat. Commun. 2016, 7, 12037. [Google Scholar] [CrossRef]
- Woodford, M.R.; Sager, R.A.; Marris, E.; Dunn, D.M.; Blanden, A.R.; Murphy, R.L.; Rensing, N.; Shapiro, O.; Panaretou, B.; Prodromou, C.; et al. Tumor suppressor Tsc1 is a new Hsp90 co-chaperone that facilitates folding of kinase and non-kinase clients. EMBO J. 2017, 36, 3650–3665. [Google Scholar] [CrossRef]
- Paré, G.; Vitry, J.; Merchant, M.L.; Vaillancourt, M.; Murru, A.; Shen, Y.; Elowe, S.; Lahoud, M.H.; Naccache, P.H.; McLeish, K.R.; et al. The Inhibitory Receptor CLEC12A Regulates PI3K-Akt Signaling to Inhibit Neutrophil Activation and Cytokine Release. Front. Immunol. 2021, 12, 650808. [Google Scholar] [CrossRef]
- Sun, M.; Song, L.; Li, Y.; Zhou, T.; Jope, R.S. Identification of an antiapoptotic protein complex at death receptors. Cell Death Differ. 2008, 15, 1887–1900. [Google Scholar] [CrossRef]
- Modzelewska, K.; Newman, L.P.; Desai, R.; Keely, P.J. Ack1 mediates Cdc42-dependent cell migration and signaling to p130Cas. J. Biol. Chem. 2006, 281, 37527–37535. [Google Scholar] [CrossRef]
- Gripp, K.W.; Bifeld, E.; Stabley, D.L.; Hopkins, E.; Meien, S.; Vinette, K.; Sol-Church, K.; Rosenberger, G. A novel HRAS substitution (c.266C>G; p.S89C) resulting in decreased downstream signaling suggests a new dimension of RAS pathway dysregulation in human development. Am. J. Med. Genet. A 2012, 158a, 2106–2118. [Google Scholar] [CrossRef]
- Takino, T.; Koshikawa, N.; Miyamori, H.; Tanaka, M.; Sasaki, T.; Okada, Y.; Seiki, M.; Sato, H. Cleavage of metastasis suppressor gene product KiSS-1 protein/metastin by matrix metalloproteinases. Oncogene 2003, 22, 4617–4626. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Fujii, K.; Zhang, L.; Roberts, T.; Fu, H. Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc. Natl. Acad. Sci. USA 2001, 98, 7783–7788. [Google Scholar] [CrossRef] [PubMed]
- Gelkop, S.; Gish, G.D.; Babichev, Y.; Pawson, T.; Isakov, N. T cell activation-induced CrkII binding to the Zap70 protein tyrosine kinase is mediated by Lck-dependent phosphorylation of Zap70 tyrosine 315. J. Immunol. 2005, 175, 8123–8132. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Liu, A.-D.; Hou, G.-Q.; Zhang, X.; Ren, K.; Chen, X.-Z.; Li, S.S.C.; Wu, Y.-S.; Cao, X. N-acetylcysteine decreases malignant characteristics of glioblastoma cells by inhibiting Notch2 signaling. J. Exp. Clin. Cancer Res. 2019, 38, 2. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Lee, D.M.; Lee, C.-H.; Heo, S.-H.; Won, S.Y.; Im, J.-H.; Cho, M.-K.; Nam, H.-S.; Lee, S.-H. Suppression of human prostate cancer PC-3 cell growth by N-acetylcysteine involves over-expression of Cyr61. Toxicol. Vitr. 2011, 25, 199–205. [Google Scholar] [CrossRef]
- Zheng, J.; Lou, J.R.; Zhang, X.-X.; Benbrook, D.M.; Hanigan, M.H.; Lind, S.E.; Ding, W.-Q. N-Acetylcysteine interacts with copper to generate hydrogen peroxide and selectively induce cancer cell death. Cancer Lett. 2010, 298, 186–194. [Google Scholar] [CrossRef]
- Zhang, Y.; Jian, W.; He, L.; Wu, J. Metabolite alpha-ketoglutarate: A novel target of gasdermin C-dependent pyroptosis. Chin. Med. J. 2023, 136, 1630–1631. [Google Scholar] [CrossRef]
- Feng, H.; Moriyama, T.; Ohuchida, K.; Sheng, N.; Iwamoto, C.; Shindo, K.; Shirahane, K.; Ikenaga, N.; Nagai, S.; Nakata, K.; et al. N-acetyl cysteine induces quiescent-like pancreatic stellate cells from an active state and attenuates cancer-stroma interactions. J. Exp. Clin. Cancer Res. 2021, 40, 133. [Google Scholar] [CrossRef]
- Pillai, K.; Mekkawy, A.H.; Akhter, J.; Badar, S.; Dong, L.; Liu, A.I.; Morris, D.L. Enhancing the potency of chemotherapeutic agents by combination with bromelain and N-acetylcysteine—An in vitro study with pancreatic and hepatic cancer cells. Am. J. Transl. Res. 2020, 12, 7404–7419. [Google Scholar]
- Auf der Maur, P.; Trefny, M.P.; Baumann, Z.; Vulin, M.; Correia, A.L.; Diepenbruck, M.; Kramer, N.; Volkmann, K.; Preca, B.-T.; Ramos, P.; et al. N-acetylcysteine overcomes NF1 loss-driven resistance to PI3Kα inhibition in breast cancer. Cell Rep. Med. 2023, 4, 101002. [Google Scholar] [CrossRef]
- Amini, A.; Masoumi-Moghaddam, S.; Ehteda, A.; Morris, D.L. Bromelain and N-acetylcysteine inhibit proliferation and survival of gastrointestinal cancer cells in vitro: Significance of combination therapy. J. Exp. Clin. Cancer Res. 2014, 33, 92. [Google Scholar] [CrossRef]
- Rzeski, W.; Walczak, K.; Juszczak, M.; Langner, E.; PoŻarowski, P.; Kandefer-Szerszeń, M.; Pierzynowski, S.G. Alpha-ketoglutarate (AKG) inhibits proliferation of colon adenocarcinoma cells in normoxic conditions. Scand. J. Gastroenterol. 2012, 47, 565–571. [Google Scholar] [CrossRef]
- Wu, F.; Xie, X.; Li, G.; Bao, D.; Li, H.; Wu, G.; Lai, Y.; Xing, Y.; Ouyang, P.; Chen, G.; et al. AKG induces cell apoptosis by inducing reactive oxygen species-mediated endoplasmic reticulum stress and by suppressing PI3K/AKT/mTOR-mediated autophagy in renal cell carcinoma. Environ. Toxicol. 2023, 38, 17–27. [Google Scholar] [CrossRef]
- Bradbury, A.; O’Donnell, R.; Drew, Y.; Curtin, N.J.; Sharma Saha, S. Characterisation of Ovarian Cancer Cell Line NIH-OVCAR3 and Implications of Genomic, Transcriptomic, Proteomic and Functional DNA Damage Response Biomarkers for Therapeutic Targeting. Cancers 2020, 12, 1939. [Google Scholar] [CrossRef] [PubMed]
- Parasassi, T.; Brunelli, R.; Bracci-Laudiero, L.; Greco, G.; Gustafsson, A.; Krasnowska, E.; Lundeberg, J.; Lundeberg, T.; Pittaluga, E.; Romano, M.C.; et al. Differentiation of normal and cancer cells induced by sulfhydryl reduction: Biochemical and molecular mechanisms. Cell Death Differ. 2005, 12, 1285–1296. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-L.; Yang, K.-H.; Yang, C.-W.; Lee, M.-Y.; Chuang, Y.-T.; Chen, Y.-N.; Chang, F.-R.; Chen, C.-Y.; Chang, H.-W. Burmannic acid inhibits proliferation and induces oxidative stress response of oral cancer cells. Antioxidants 2021, 10, 1588. [Google Scholar] [CrossRef] [PubMed]
- Hua, T.; Robitaille, M.; Roberts-Thomson, S.J.; Monteith, G.R. The intersection between cysteine proteases, Ca2+ signalling and cancer cell apoptosis. Biochim. Biophys. Acta BBA-Mol. Cell Res. 2023, 1870, 119532. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, L.; Shen, G.; He, B.; Gong, W.; Min, N.; Zhang, L.; Duan, Y.; Xie, J.; Luo, H.; et al. Cathepsin L is involved in proliferation and invasion of ovarian cancer cells. Mol. Med. Rep. 2015, 11, 468–474. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, K.; Wang, N.; Zhang, H. N-acetylcysteine induces apoptosis via the mitochondria-dependent pathway but not via endoplasmic reticulum stress in H9c2 cells. Mol. Med. Rep. 2017, 16, 6626–6633. [Google Scholar] [CrossRef]
- Ke, F.S.; Holloway, S.; Uren, R.T.; Wong, A.W.; Little, M.H.; Kluck, R.M.; Voss, A.K.; Strasser, A. The BCL -2 family member BID plays a role during embryonic development in addition to its BH3 -only protein function by acting in parallel to BAX, BAK and BOK. EMBO J. 2022, 41, e110300. [Google Scholar] [CrossRef]
- Do, B.H.; Hoang, N.S.; Nguyen, T.P.T.; Ho, N.Q.C.; Le, T.L.; Doan, C.C. Phenolic Extraction of Moringa Oleifera Leaves Induces Caspase-Dependent and Caspase-Independent Apoptosis through the Generation of Reactive Oxygen Species and the Activation of Intrinsic Mitochondrial Pathway in Human Melanoma Cells. Nutr. Cancer 2021, 73, 869–888. [Google Scholar] [CrossRef] [PubMed]
- Udumula, M.P.; Sakr, S.; Dar, S.; Alvero, A.B.; Ali-Fehmi, R.; Abdulfatah, E.; Li, J.; Jiang, J.; Tang, A.; Buekers, T.; et al. Ovarian cancer modulates the immunosuppressive function of CD11b(+)Gr1(+) myeloid cells via glutamine metabolism. Mol. Metab. 2021, 53, 101272. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, X.; Wang, Z.; Li, B.; Zhu, H. Modulation of redox homeostasis: A strategy to overcome cancer drug resistance. Front. Pharmacol. 2023, 14, 1156538. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.N.; Xie, L.Z.; Shen, Y.; Li, J.; Guo, Y.; Fu, Y.; Liu, F.Y.; Han, F.J. Insights into the Role of Oxidative Stress in Ovarian Cancer. Oxid. Med. Cell Longev. 2021, 2021, 8388258. [Google Scholar] [CrossRef]
- Park, J.B.; Lee, C.S.; Jang, J.-H.; Ghim, J.; Kim, Y.-J.; You, S.; Hwang, D.; Suh, P.G.; Ryu, S.H. Phospholipase signalling networks in cancer. Nat. Rev. Cancer 2012, 12, 782–792. [Google Scholar] [CrossRef]
- Morales, J.C.F.; Xue, Q.; Roh-Johnson, M. An evolutionary and physiological perspective on cell-substrate adhesion machinery for cell migration. Front. Cell Dev. Biol. 2022, 10, 943606. [Google Scholar] [CrossRef]
- Ju, S.; Lim, L.; Ki, Y.-J.; Choi, D.-H.; Song, H. Oxidative stress generated by polycyclic aromatic hydrocarbons from ambient particulate matter enhance vascular smooth muscle cell migration through MMP upregulation and actin reorganization. Part. Fibre Toxicol. 2022, 19, 29. [Google Scholar] [CrossRef]
- Schmidt, S.; Qiao, X.; Bergö, M.O. Effects of antioxidants on cancer progression. EMBO Mol. Med. 2025, 17, 1896–1901. [Google Scholar] [CrossRef]
- Sayin, V.I.; Ibrahim, M.X.; Larsson, E.; Nilsson, J.A.; Lindahl, P.; Bergo, M.O. Antioxidants Accelerate Lung Cancer Progression in Mice. Sci. Transl. Med. 2014, 6, 221ra15. [Google Scholar] [CrossRef]
- Zhang, V.X.; Sze, K.M.-F.; Chan, L.-K.; Ho, D.W.-H.; Tsui, Y.-M.; Chiu, Y.-T.; Lee, E.; Husain, A.; Huang, H.; Tian, L.; et al. Antioxidant supplements promote tumor formation and growth and confer drug resistance in hepatocellular carcinoma by reducing intracellular ROS and induction of TMBIM1. Cell Biosci. 2021, 11, 217. [Google Scholar] [CrossRef]
- Rahimi, F.; Karimi, J.; Goodarzi, M.T.; Saidijam, M.; Khodadadi, I.; Razavi, A.N.E.; Nankali, M. Overexpression of receptor for advanced glycation end products (RAGE) in ovarian cancer. Cancer Biomark. 2017, 18, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Qin, W.; Shen, T.; Dou, L.; Man, Y.; Wang, S.; Xiao, C.; Li, J. The antioxidant N-acetylcysteine promotes atherosclerotic plaque stabilization through suppression of RAGE, MMPs and NF-κB in ApoE-deficient mice. J. Atheroscler. Thromb. 2011, 18, 998–1008. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cao, Y. (Eds.) The impact of VEGF on cancer metastasis and systemic disease. In Seminars in Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Albini, A.; D’Agostini, F.; Giunciuglio, D.; Paglieri, I.; Balansky, R.; De Flora, S. Inhibition of invasion, gelatinase activity, tumor take and metastasis of malignant cells by N-acetylcysteine. Int. J. Cancer 1995, 61, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, S.; Kageyama, Y.; Fujii, Y.; Kihara, K.; Oshima, H. Inhibitory effect of N-acetylcysteine on invasion and MMP-9 production of T24 human bladder cancer cells. Anticancer Res. 2001, 21, 213–219. [Google Scholar]
- Agarwal, A.; Muñoz-Nájar, U.; Klueh, U.; Shih, S.-C.; Claffey, K.P. N-acetyl-cysteine promotes angiostatin production and vascular collapse in an orthotopic model of breast cancer. Am. J. Pathol. 2004, 164, 1683–1696. [Google Scholar] [CrossRef]
- Iwahashi, N.; Ikezaki, M.; Fujimoto, M.; Komohara, Y.; Fujiwara, Y.; Yamamoto, M.; Mizoguchi, M.; Matsubara, K.; Watanabe, Y.; Matsuzaki, I.; et al. Lipid Droplet Accumulation Independently Predicts Poor Clinical Prognosis in High-Grade Serous Ovarian Carcinoma. Cancers 2021, 13, 5251. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Cui, W.; Silverstein, R.L. CD36, a signaling receptor and fatty acid transporter that regulates immune cell metabolism and fate. J. Exp. Med. 2022, 219, e20211314. [Google Scholar] [CrossRef]
- Bae, G.; Berezhnoy, G.; Koch, A.; Cannet, C.; Schäfer, H.; Kommoss, S.; Brucker, S.; Beziere, N.; Trautwein, C. Stratification of ovarian cancer borderline from high-grade serous carcinoma patients by quantitative serum NMR spectroscopy of metabolites, lipoproteins, and inflammatory markers. Front. Mol. Biosci. 2023, 10, 1158330. [Google Scholar] [CrossRef]
- Atlante, S.; Visintin, A.; Marini, E.; Savoia, M.; Dianzani, C.; Giorgis, M.; Sürün, D.; Maione, F.; Schnütgen, F.; Farsetti, A.; et al. α-ketoglutarate dehydrogenase inhibition counteracts breast cancer-associated lung metastasis. Cell Death Dis. 2018, 9, 756. [Google Scholar] [CrossRef]
- Shrimali, N.M.; Agarwal, S.; Kaur, S.; Bhattacharya, S.; Bhattacharyya, S.; Prchal, J.T.; Guchhait, P. α-Ketoglutarate Inhibits Thrombosis and Inflammation by Prolyl Hydroxylase-2 Mediated Inactivation of Phospho-Akt. eBioMedicine 2021, 73, 103672. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, L.; Zhao, J.; Jiao, Y.; Zhang, M.; Xu, G.; Jiang, Y. PI3K/AKT1 signaling pathway mediates sinomenine-induced hepatocellular carcinoma cells apoptosis: An in vitro and in vivo study. Biol. Pharm. Bull. 2022, 45, 614–624. [Google Scholar] [CrossRef]
- Liu, R.; Chen, Y.; Liu, G.; Li, C.; Song, Y.; Cao, Z.; Li, W.; Hu, J.; Lu, C.; Liu, Y. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis. 2020, 11, 797. [Google Scholar] [CrossRef]





| Gene Symbol | Gene Name | MCC Score | Function |
|---|---|---|---|
| AKT1 | RAC-alpha serine/threonine-protein kinase | 111,814 | AKT1 is one of three homologous serine/threonine protein kinases—AKT1, AKT2, and AKT3—collectively designated as the AKT kinases. It is integral to the regulation of various cellular functions, such as metabolism, proliferation, cell survival, growth, and angiogenesis [29]. In ovarian cancer/HGSOC, aberrant PI3K/AKT signaling promotes cell survival, proliferation, and therapy resistance, making AKT1 a key node in survival–apoptosis regulation [30]. |
| CASP3 | Caspase-3 | 109,702 | Thiol proteases serve as key caspase effectors, playing a pivotal role during the execution phase of apoptosis [31,32]. In ovarian cancer, caspase-3 activation is a central execution step of apoptosis and directly reflects engagement of death pathways targeted by anticancer interventions [33]. |
| HSP90AA1 | Heat shock protein HSP 90-alpha | 106,549 | A molecular chaperone that facilitates the proper folding, structural stability, and regulation of specific target proteins—such as those involved in cell cycle control and signal transduction. Its activity is linked to an ATPase cycle, which is crucial for its chaperone function. This cycle likely causes conformational changes in client proteins, leading to their activation. It also interacts dynamically with various co-chaperones that influence substrate recognition, ATPase activity, and overall chaperone function [34,35,36,37,38,39]. In ovarian cancer, HSP90 supports the stability of multiple oncogenic client proteins such as kinases in PI3K/AKT and MAPK pathways, linking it to tumor cell survival and stress adaptation [40]. |
| SRC | Proto-oncogene tyrosine-protein kinase Src | 101,893 | A non-receptor protein tyrosine kinase that becomes activated upon engagement of various cellular receptors, including immune response receptors, integrins, other adhesion receptors, receptor tyrosine kinases, G protein-coupled receptors, and cytokine receptors [41]. In ovarian cancer, SRC-family signaling contributes to adhesion, migration, and invasion through focal adhesion/FAK and downstream PI3K/AKT and MAPK cascades [42]. |
| GSK3B | Glycogen synthase kinase-3 beta | 100,128 | Negatively modulates the extrinsic apoptotic signaling pathway through death domain receptors. It facilitates the assembly of an anti-apoptotic complex comprising DDX3X, BRIC2, and GSK3B at death receptors such as TNFRSF10B. This anti-apoptotic effect is most pronounced under conditions of weak apoptotic stimuli and can be overridden by more robust activating signals [43]. In ovarian cancer, GSK3B intersects with survival and EMT-related programs and can modulate apoptosis-related signaling downstream of PI3K/AKT [44]. |
| CDC42 | Cell division control protein 42 | 99,582 | It plays a role in regulating cell migration [45]. In ovarian cancer, CDC42 regulates cytoskeletal remodeling and directional migration, consistent with the migration/adhesion pathways highlighted in this study [46]. |
| HRAS | GTPase HRas | 92,244 | Plays a role in activating Ras protein-mediated signal transduction [47]. In ovarian cancer, RAS signaling feeds into MAPK/ERK and PI3K/AKT pathways, influencing proliferation and survival programs [48]. |
| MMP9 | Matrix metalloproteinase-9 | 90,776 | Matrix metalloproteinases are crucial for mediating local extracellular matrix proteolysis and facilitating leukocyte migration [49]. In ovarian cancer, MMP9 facilitates extracellular matrix remodeling and invasion, linking this hub gene to migration and metastatic potential [50]. |
| RAF1 | RAF proto-oncogene serine/threonine-protein kinase | 56,524 | This serine/threonine protein kinase serves as a regulatory intermediary linking membrane-associated Ras GTPases to the MAPK/ERK signaling cascade. It functions as a critical switch that influences cell fate decisions, including proliferation, differentiation, apoptosis, survival, and oncogenic transformation [51]. In ovarian cancer, RAF1 transduces signals through the MAPK/ERK pathway and contributes to proliferation and survival signaling cross-talk [52]. |
| LCK | Tyrosine-protein kinase Lck | 42,864 | This non-receptor tyrosine kinase is crucial for the selection and maturation of developing T-cells in the thymus and the functional activity of mature T-cells. It is a key mediator in the signal transduction pathways associated with the T-cell antigen receptor (TCR) [53]. In ovarian cancer microenvironments, LCK-related signaling can reflect immune-associated pathway activity and may intersect with kinase networks identified in the PPI analysis [54]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Khamineh, Y.; Panahi-Alanagh, S.; Zolghadri, S.; Mavaddatiyan, L.; Ryszkiel, I.; Stanek, A.; Talkhabi, M. Effects of N-Acetylcysteine and Alpha-Ketoglutarate on OVCAR3 Ovarian Cancer Cells: Insights from Integrative Bioinformatics and Experimental Validation. Cells 2026, 15, 281. https://doi.org/10.3390/cells15030281
Khamineh Y, Panahi-Alanagh S, Zolghadri S, Mavaddatiyan L, Ryszkiel I, Stanek A, Talkhabi M. Effects of N-Acetylcysteine and Alpha-Ketoglutarate on OVCAR3 Ovarian Cancer Cells: Insights from Integrative Bioinformatics and Experimental Validation. Cells. 2026; 15(3):281. https://doi.org/10.3390/cells15030281
Chicago/Turabian StyleKhamineh, Yasaman, Sanaz Panahi-Alanagh, Samaneh Zolghadri, Laleh Mavaddatiyan, Ireneusz Ryszkiel, Agata Stanek, and Mahmood Talkhabi. 2026. "Effects of N-Acetylcysteine and Alpha-Ketoglutarate on OVCAR3 Ovarian Cancer Cells: Insights from Integrative Bioinformatics and Experimental Validation" Cells 15, no. 3: 281. https://doi.org/10.3390/cells15030281
APA StyleKhamineh, Y., Panahi-Alanagh, S., Zolghadri, S., Mavaddatiyan, L., Ryszkiel, I., Stanek, A., & Talkhabi, M. (2026). Effects of N-Acetylcysteine and Alpha-Ketoglutarate on OVCAR3 Ovarian Cancer Cells: Insights from Integrative Bioinformatics and Experimental Validation. Cells, 15(3), 281. https://doi.org/10.3390/cells15030281

