Ketones in Cardiovascular Health and Disease: An Updated Review
Highlights
- Ketones function as alternative energy sources and signaling molecules that regulate cardiovascular health and diseases.
- The post-translational modification mediated by β-hydroxybutyrylation controls the fate and function of target proteins and their biological roles.
- Ketone intervention may serve as a promising therapeutic approach for cardiovascular diseases, such as heart failure, acute cardiac injury, and vascular dysfunction.
- Future ketone therapies should take into account the side effects of the ketogenic diet, as well as gender- and age-specific variations in the effectiveness of ketone treatments.
Abstract
1. Introduction
2. Overview of Ketone Metabolism in the Cardiovascular System
2.1. Ketone Levels—Potential Biomarkers for Heart Disease
2.2. Ketone Supplementation and Ketogenic Diet
3. Updated Research Findings
3.1. Ketones as an Energy Source in the Failing Heart
3.2. Ketones in Acute Cardiac Injury—Myocardial Infarction and Ischemia–Reperfusion
3.3. Ketones and Vascular Complication
3.4. Anti-Inflammatory and Antioxidant Effects
3.5. Updated Molecular Mechanism with β-Hydroxybutyrylation
3.6. Clinical Trials of Ketone Treatment
4. Challenges of Ketone Therapies and Safety Considerations
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaluba, F.C.; Rogers, T.J.; Jeong, Y.J.; House, R.J.; Waldhart, A.; Sokol, K.H.; Daniels, S.R.; Lee, C.J.; Longo, J.; Johnson, A.; et al. An alternative route for beta-hydroxybutyrate metabolism supports cytosolic acetyl-CoA synthesis in cancer cells. Nat. Metab. 2025, 7, 2033–2044. [Google Scholar] [PubMed]
- Puchalska, P.; Crawford, P.A. Metabolic and Signaling Roles of Ketone Bodies in Health and Disease. Annu. Rev. Nutr. 2021, 41, 49–77. [Google Scholar] [CrossRef] [PubMed]
- Challa, A.A.; Hill, B.G.; Nystoriak, M.A.; Gouwens, K.R.; Kalra, D.K. Ketone Bodies in Cardiovascular Disease. JACC Basic Transl. Sci. 2025, 10, 101328. [Google Scholar]
- Ciafardini, A.; Vena, W.; Betella, N.; Pigni, S.; Mirani, M.; Altieri, V.M.; Mazziotti, G.; Lania, A.G.; Bossi, A.C. Diabetic Ketoacidosis: Considerations and Residual Controversies in Management After the 2024 ADA, EASD, JBDS, AACE, and DST Joint Consensus. Endocr. Metab. Immune Disord. Drug Targets, 2025; in press. [Google Scholar]
- Yurista, S.R.; Chong, C.-R.; Badimon, J.J.; Kelly, D.P.; Boer, R.A.d.; Westenbrink, B.D. Therapeutic Potential of Ketone Bodies for Patients with Cardiovascular Disease. JACC 2021, 77, 1660–1669. [Google Scholar] [CrossRef]
- Evans, M.; Cogan, K.E.; Egan, B. Metabolism of ketone bodies during exercise and training: Physiological basis for exogenous supplementation. J. Physiol. 2017, 595, 2857–2871. [Google Scholar]
- Soni, S.; Tabatabaei Dakhili, S.A.; Ussher, J.R.; Dyck, J.R.B. The therapeutic potential of ketones in cardiometabolic disease: Impact on heart and skeletal muscle. Am. J. Physiol.-Cell Physiol. 2024, 326, C551–C566. [Google Scholar] [CrossRef]
- Nelson, A.B.; Queathem, E.D.; Puchalska, P.; Crawford, P.A. Metabolic Messengers: Ketone bodies. Nat. Metab. 2023, 5, 2062–2074. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, D.; Chung, D.; Tang, Z.; Huang, H.; Dai, L.; Qi, S.; Li, J.; Colak, G.; Chen, Y.; et al. Metabolic Regulation of Gene Expression by Histone Lysine beta-Hydroxybutyrylation. Mol. Cell 2016, 62, 194–206. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, D.; Weng, Y.; Delaney, K.; Tang, Z.; Yan, C.; Qi, S.; Peng, C.; Cole, P.A.; Roeder, R.G.; et al. The regulatory enzymes and protein substrates for the lysine beta-hydroxybutyrylation pathway. Sci. Adv. 2021, 7, eabe2771. [Google Scholar] [CrossRef] [PubMed]
- García-Velázquez, L.; Massieu, L. The proteomic effects of ketone bodies: Implications for proteostasis and brain proteinopathies. Front. Mol. Neurosci. 2023, 16, 1214092. [Google Scholar] [CrossRef]
- Robberechts, R.; Poffé, C. Defining ketone supplementation: The evolving evidence for postexercise ketone supplementation to improve recovery and adaptation to exercise. Am. J. Physiol.-Cell Physiol. 2024, 326, C143–C160. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, M.; Wang, J.; Hao, Q.; Li, Y.; Liu, L.; Zhou, T.; Song, W.; Liu, J.; Liu, M.; et al. β-Hydroxybutyrate promotes cancer metastasis through β-hydroxybutyrylation-dependent stabilization of Snail. Nat. Commun. 2025, 16, 6592. [Google Scholar] [PubMed]
- Li, Y.; Liu, Q.; Jia, Z.; Guo, B. Ketone bodies in exercise, health and disease: Metabolic mechanisms, pathophysiology, and therapeutic implications. Adv. Exerc. Health Sci. 2025, 2, 83–93. [Google Scholar] [CrossRef]
- Hirschberger, S.; Gellert, L.; Effinger, D.; Muenchhoff, M.; Herrmann, M.; Briegel, J.M.; Zwißler, B.; Kreth, S. Ketone Bodies Improve Human CD8+ Cytotoxic T-Cell Immune Response During COVID-19 Infection. Front. Med. 2022, 9, 923502. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Zhang, M.; Xia, S. Beyond Energy Fuel: Ketone Bodies as Multifaceted Modulators of T Cell and Anti-Tumour Immunity. Scand. J. Immunol. 2025, 102, e70067. [Google Scholar] [CrossRef]
- Dyńka, D.; Kowalcze, K.; Charuta, A.; Paziewska, A. The Ketogenic Diet and Cardiovascular Diseases. Nutrients 2023, 15, 3368. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, T.R.; Puchalska, P.; Crawford, P.A.; Kelly, D.P. Ketones and the Heart: Metabolic Principles and Therapeutic Implications. Circ. Res. 2023, 132, 882–898. [Google Scholar] [CrossRef] [PubMed]
- Lopaschuk, G.D.; Dyck, J.R.B. Ketones and the cardiovascular system. Nat. Cardiovasc. Res. 2023, 2, 425–437. [Google Scholar] [CrossRef]
- Ho, K.L.; Zhang, L.; Wagg, C.; Al Batran, R.; Gopal, K.; Levasseur, J.; Leone, T.; Dyck, J.R.B.; Ussher, J.R.; Muoio, D.M.; et al. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency. Cardiovasc. Res. 2019, 115, 1606–1616. [Google Scholar] [CrossRef]
- Kodur, N.; Nguyen, C.; Tang, W.H.W. Therapeutic Ketosis for Heart Failure: A State-of-the-Art Review. J. Card. Fail. 2025, 31, 1051–1061. [Google Scholar]
- Yurista, S.R.; Nguyen, C.T.; Rosenzweig, A.; de Boer, R.A.; Westenbrink, B.D. Ketone bodies for the failing heart: Fuels that can fix the engine? Trends Endocrinol. Metab. 2021, 32, 814–826. [Google Scholar] [CrossRef]
- Jóhannsson, E.; Lunde, P.K.; Heddle, C.; Sjaastad, I.; Thomas, M.J.; Bergersen, L.; Halestrap, A.P.; Blackstad, T.W.; Ottersen, O.P.; Sejersted, O.M. Upregulation of the cardiac monocarboxylate transporter MCT1 in a rat model of congestive heart failure. Circulation 2001, 104, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Peng, H.; Yu, J.; Luo, P.; Xiong, C.; Chen, H.; Fan, H.; Ma, Y.; Ou, W.; Zhang, S.; et al. Impaired ketogenesis in Leydig Cells drives testicular aging. Nat. Commun. 2025, 16, 4224. [Google Scholar] [CrossRef]
- Jiang, C.L.; Lai, P.H.; Yang, P.C.; Lien, C.J.; Chu, H.C.; Lin, J.D.; Lin, S.J.; Yu, I.S.; Lin, F.J. Early-life ketone body signalling promotes beige fat biogenesis through changes in histone acetylome and β-hydroxybutyrylome. Nat. Metab. 2025, 7, 2045–2066. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Karwi, Q.G.; Wong, N.; Lopaschuk, G.D. Advances in myocardial energy metabolism: Metabolic remodelling in heart failure and beyond. Cardiovasc. Res. 2024, 120, 1996–2016. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.L.; Karwi, Q.G.; Wagg, C.; Zhang, L.; Vo, K.; Altamimi, T.; Uddin, G.M.; Ussher, J.R.; Lopaschuk, G.D. Ketones can become the major fuel source for the heart but do not increase cardiac efficiency. Cardiovasc. Res. 2021, 117, 1178–1187. [Google Scholar] [CrossRef]
- Berg-Hansen, K.; Bangshaab, M.; Gopalasingam, N.; Nielsen, R.; Svart, M.; Rittig, N.; Møller, N.; Wiggers, H. The Cardiac and Hemodynamic Effects of Ketone Bodies Are Abnormal in Patients with Type 1 Diabetes: A Randomized Controlled Trial. Diabetes 2025, 74, 1643–1651. [Google Scholar] [CrossRef]
- Chevli, P.A.; Selvaraj, S.; Jaeger, B.C.; Hammoud, A.; Connelly, M.A.; deFilippi, C.; Lima, J.A.C.; Khan, S.S.; Herrington, D.M.; Shapiro, M.D.; et al. Integrating Ketone Bodies in Multi-Marker Risk Prediction of Incident Heart Failure in the Multi-Ethnic Study of Atherosclerosis (MESA). Eur. J. Prev. Cardiol. 2025, zwaf168. [Google Scholar] [CrossRef]
- Kansakar, U.; Nieves Garcia, C.; Santulli, G.; Gambardella, J.; Mone, P.; Jankauskas, S.S.; Lombardi, A. Exogenous Ketones in Cardiovascular Disease and Diabetes: From Bench to Bedside. J. Clin. Med. 2024, 13, 7391. [Google Scholar] [CrossRef]
- Gershuni, V.M.; Yan, S.L.; Medici, V. Correction to: Nutritional Ketosis for Weight Management and Reversal of Metabolic Syndrome. Curr. Nutr. Rep. 2025, 14, 40. [Google Scholar] [CrossRef]
- Puchalska, P.; Crawford, P.A. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 2017, 25, 262–284. [Google Scholar] [CrossRef]
- Rodriguez Alvarez, P.; San Martin, V.T.; Morey-Vargas, O.L. Hyperglycemic crises in adults: A look at the 2024 consensus report. Clevel. Clin. J. Med. 2025, 92, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Zhang, C.; Xie, M. Beta-Hydroxybutyrate, Friend or Foe for Stressed Hearts. Front. Aging 2021, 2, 681513. [Google Scholar] [CrossRef] [PubMed]
- Voorrips, S.N.; Westenbrink, B.D. Ketone Treatment in Heart Failure with Preserved Ejection Fraction: Recharging the Heart or Reducing Filling Pressures? Circulation 2024, 150, 1584–1587. [Google Scholar] [CrossRef]
- Hahn, V.S.; Petucci, C.; Kim, M.S.; Bedi, K.C., Jr.; Wang, H.; Mishra, S.; Koleini, N.; Yoo, E.J.; Margulies, K.B.; Arany, Z.; et al. Myocardial Metabolomics of Human Heart Failure with Preserved Ejection Fraction. Circulation 2023, 147, 1147–1161. [Google Scholar] [CrossRef]
- Riecan, M.; Kasperova, B.J.; Vondrackova, M.; Janovska, P.; Haasova, E.; Adamcova, K.; Ivak, P.; Hlavacek, D.; Kroupova, K.; Cajka, T.; et al. Epicardial adipose tissue produces L-3-hydroxybutyrate in advanced heart failure: Direct analysis of fat metabolic remodeling. Metabolism 2026, 175, 156465. [Google Scholar]
- Capone, F.; Sotomayor-Flores, C.; Bode, D.; Wang, R.; Rodolico, D.; Strocchi, S.; Schiattarella, G.G. Cardiac metabolism in HFpEF: From fuel to signalling. Cardiovasc. Res. 2023, 118, 3556–3575. [Google Scholar] [CrossRef]
- Koay, Y.C.; McIntosh, B.; Ng, Y.H.; Cao, Y.; Wang, X.S.; Han, Y.; Tomita, S.; Bai, A.Y.; Hunter, B.; Misra, A.; et al. The Heart Has Intrinsic Ketogenic Capacity that Mediates NAD+ Therapy in HFpEF. Circ. Res. 2025, 136, 1113–1130. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Wagg, C.S.; Wong, N.; Wei, K.; Ketema, E.B.; Zhang, L.; Fang, L.; Seubert, J.M.; Lopaschuk, G.D. Alterations of myocardial ketone metabolism in heart failure with preserved ejection fraction (HFpEF). ESC Heart Fail. 2025, 12, 3179–3182. [Google Scholar]
- Foster, M.W.; Riley, J.M.; Kaki, P.C.; Al Soueidy, A.; Aligholiazadeh, E.; Rame, J.E. Metabolic Adaptation in Heart Failure and the Role of Ketone Bodies as Biomarkers. Curr. Heart Fail. Rep. 2024, 21, 498–503. [Google Scholar]
- Yokokawa, T.; Yoshihisa, A.; Kanno, Y.; Abe, S.; Misaka, T.; Yamada, S.; Kaneshiro, T.; Sato, T.; Oikawa, M.; Kobayashi, A.; et al. Circulating acetoacetate is associated with poor prognosis in heart failure patients. Int. J. Cardiol. Heart Vasc. 2019, 25, 100432. [Google Scholar]
- Flores-Guerrero, J.L.; Westenbrink, B.D.; Connelly, M.A.; Otvos, J.D.; Groothof, D.; Shalaurova, I.; Garcia, E.; Navis, G.; de Boer, R.A.; Bakker, S.J.L.; et al. Association of beta-hydroxybutyrate with development of heart failure: Sex differences in a Dutch population cohort. Eur. J. Clin. Investig. 2021, 51, e13468. [Google Scholar] [CrossRef]
- Jain, V.; Chevli, P.A.; Garg, P.K.; McParland, J.T.; Kizer, J.; Mukamal, K.; Schaich, C.L.; Rikhi, R.; Connelly, M.; Pandey, A.; et al. Circulating ketone bodies and risk of incident atrial fibrillation: Insights from the MESA and UK Biobank cohorts. Eur. J. Prev. Cardiol. 2025, zwaf543. [Google Scholar] [CrossRef]
- He, J.K.; Jiang, X.X.; Dai, S.Y.; Xiao, H.; Zhu, Q.Q.; Jie, Y.; Zhang, Y.L.; Yu, X.H. β-Hydroxybutyrate and Citrate Synthase as Potential Diagnostic Biomarkers in Aging-Related Atrial Fibrillation. J. Cardiovasc. Transl. Res. 2025, 18, 133–145. [Google Scholar] [CrossRef]
- Wang, J.; Zou, D.; Song, X.; Gao, L.; Chi, K.; Xu, P.; Rui, H.; Yu, H.; Liu, L.; Wu, X.; et al. A retrospective study on the relationship between plasma β-hydroxybutyric acid levels and short-term prognosis of cardiac function in patients with acute myocardial infarction combined with heart failure. Emerg. Crit. Care Med. 2025, 5, 90–96. [Google Scholar] [CrossRef]
- Song, J.P.; Chen, L.; Chen, X.; Ren, J.; Zhang, N.N.; Tirasawasdichai, T.; Hu, Z.L.; Hua, W.; Hu, Y.R.; Tang, H.R.; et al. Elevated plasma β-hydroxybutyrate predicts adverse outcomes and disease progression in patients with arrhythmogenic cardiomyopathy. Sci. Transl. Med. 2020, 12, eaay8329. [Google Scholar] [CrossRef] [PubMed]
- Crabtree, C.D.; Buga, A.; Han, Y.; Simonetti, O.P.; Volek, J.S. Salutary Effects of Nutritional Ketosis for the Diseased Human Heart. Curr. Atheroscler. Rep. 2025, 27, 85. [Google Scholar] [CrossRef] [PubMed]
- Saris, C.G.J.; Timmers, S. Ketogenic diets and Ketone suplementation: A strategy for therapeutic intervention. Front. Nutr. 2022, 9, 947567. [Google Scholar] [CrossRef] [PubMed]
- Mohib, O.; Bomans, S.; Jimenez Garcia, B.; Leemans, L.; Ligneel, C.; De Waele, E.; Beckwée, D.; Janssens, P. Clinical Benefits of Exogenous Ketosis in Adults with Disease: A Systematic Review. Nutrients 2025, 17, 3125. [Google Scholar] [CrossRef]
- Kaul, N.; Duan, J.; Cui, D.; Erlichster, M.; Chen, Z.; Anderson, D.; Chan, J.; Scheffer, I.E.; Skafidas, E.; Liao, J.; et al. Serial correlation between saliva and blood beta-hydroxybutyrate levels in children commencing the ketogenic diet for epilepsy. Epilepsia 2025, 66, 3282–3292. [Google Scholar] [CrossRef]
- Juby, A.G.; Brocks, D.R.; Jay, D.A.; Davis, C.M.J.; Mager, D.R. Assessing the Impact of Factors that Influence the Ketogenic Response to Varying Doses of Medium Chain Triglyceride (MCT) Oil. J. Prev. Alzheimer’s Dis. 2021, 8, 19–28. [Google Scholar] [CrossRef]
- Daines, S.A. The Therapeutic Potential and Limitations of Ketones in Traumatic Brain Injury. Front. Neurol. 2021, 12, 723148. [Google Scholar] [CrossRef] [PubMed]
- Ekanayake, P.; Mudaliar, S. A novel hypothesis linking low-grade ketonaemia to cardio-renal benefits with sodium-glucose cotransporter-2 inhibitors. Diabetes Obes. Metab. 2022, 24, 3–11. [Google Scholar] [CrossRef]
- Stubbs, B.J.; Cox, P.J.; Evans, R.D.; Santer, P.; Miller, J.J.; Faull, O.K.; Magor-Elliott, S.; Hiyama, S.; Stirling, M.; Clarke, K. On the Metabolism of Exogenous Ketones in Humans. Front. Physiol. 2017, 8, 848. [Google Scholar] [CrossRef]
- Cuenoud, B.; Hartweg, M.; Godin, J.P.; Croteau, E.; Maltais, M.; Castellano, C.A.; Carpentier, A.C.; Cunnane, S.C. Metabolism of Exogenous D-Beta-Hydroxybutyrate, an Energy Substrate Avidly Consumed by the Heart and Kidney. Front. Nutr. 2020, 7, 13. [Google Scholar] [CrossRef]
- Stefan, M.; Sharp, M.; Gheith, R.; Lowery, R.; Wilson, J. The Effect of Exogenous Beta-Hydroxybutyrate Salt Supplementation on Metrics of Safety and Health in Adolescents. Nutrients 2021, 13, 854. [Google Scholar] [CrossRef]
- Evans, M.; McClure, T.S.; Koutnik, A.P.; Egan, B. Exogenous Ketone Supplements in Athletic Contexts: Past, Present, and Future. Sports Med. 2022, 52, 25–67. [Google Scholar] [CrossRef] [PubMed]
- Shaw, D.M.; Merien, F.; Braakhuis, A.; Plews, D.; Laursen, P.; Dulson, D.K. The Effect of 1,3-Butanediol on Cycling Time-Trial Performance. Int. J. Sport. Nutr. Exerc. Metab. 2019, 29, 466–473. [Google Scholar] [CrossRef]
- Harvey, C.J.D.C.; Schofield, G.M.; Williden, M.; McQuillan, J.A. The Effect of Medium Chain Triglycerides on Time to Nutritional Ketosis and Symptoms of Keto-Induction in Healthy Adults: A Randomised Controlled Clinical Trial. J. Nutr. Metab. 2018, 2018, 2630565. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Ye, Z.; Wen, J.; Lin, S.; Cao, D.; Chen, L.; Zou, D.; Zou, H.; Zhang, M.; Chen, Z.; et al. Exploring physiological beta-hydroxybutyrate level in children treated with the classical ketogenic diet for drug-resistant epilepsy. Acta Epileptol. 2025, 7, 10. [Google Scholar] [CrossRef]
- Brown, E.; Rajeev, S.P.; Cuthbertson, D.J.; Wilding, J.P.H. A review of the mechanism of action, metabolic profile and haemodynamic effects of sodium-glucose co-transporter-2 inhibitors. Diabetes Obes. Metab. 2019, 21, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Güven, B.; Wagg, C.S.; Almeida de Oliveira, A.; Silver, H.; Zhang, L.; Chen, B.; Wei, K.; Ketema, E.B.; Karwi, Q.G.; et al. Mitochondrial fatty acid oxidation is the major source of cardiac adenosine triphosphate production in heart failure with preserved ejection fraction. Cardiovasc. Res. 2024, 120, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Schulze, P.C.; Wu, J.M.F. Ketone bodies for the starving heart. Nat. Metab. 2020, 2, 1183–1185. [Google Scholar] [CrossRef] [PubMed]
- Murashige, D.; Jang, C.; Neinast, M.; Edwards, J.J.; Cowan, A.; Hyman, M.C.; Rabinowitz, J.D.; Frankel, D.S.; Arany, Z. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 2020, 370, 364–368. [Google Scholar] [CrossRef]
- Nielsen, R.; Møller, N.; Gormsen, L.C.; Tolbod, L.P.; Hansson, N.H.; Sorensen, J.; Harms, H.J.; Frøkiær, J.; Eiskjaer, H.; Jespersen, N.R.; et al. Cardiovascular Effects of Treatment with the Ketone Body 3-Hydroxybutyrate in Chronic Heart Failure Patients. Circulation 2019, 139, 2129–2141. [Google Scholar] [CrossRef]
- Neeland, I.J.; Zhu, F.; Graca, G.; Lymperopoulos, A.; Iacobellis, G.; Farzaneh, A.; Bos, D.; Ghanbari, M.; Goldberger, J.J.; Kavousi, M.; et al. Metabolomics Profiling of Epicardial Adipose Tissue: MESA and the Rotterdam Study. J. Am. Heart Assoc. 2025, 14, e039750. [Google Scholar] [CrossRef]
- Gopalasingam, N.; Moeslund, N.; Christensen, K.H.; Berg-Hansen, K.; Seefeldt, J.; Homilius, C.; Nielsen, E.N.; Dollerup, M.R.; Alstrup Olsen, A.K.; Johannsen, M.; et al. Enantiomer-Specific Cardiovascular Effects of the Ketone Body 3-Hydroxybutyrate. J. Am. Heart Assoc. 2024, 13, e033628. [Google Scholar] [CrossRef]
- Kolwicz, S.C., Jr. Ketone Body Metabolism in the Ischemic Heart. Front. Cardiovasc. Med. 2021, 8, 789458. [Google Scholar] [CrossRef]
- Aziz, F.; Tripolt, N.J.; Pferschy, P.N.; Scharnagl, H.; Abdellatif, M.; Oulhaj, A.; Benedikt, M.; Kolesnik, E.; von Lewinski, D.; Sourij, H. Ketone body levels and its associations with cardiac markers following an acute myocardial infarction: A post hoc analysis of the EMMY trial. Cardiovasc. Diabetol. 2024, 23, 145. [Google Scholar] [CrossRef]
- Koning, M.-S.L.Y.d.; Westenbrink, B.D.; Assa, S.; Garcia, E.; Connelly, M.A.; Veldhuisen, D.J.v.; Dullaart, R.P.F.; Lipsic, E.; van der Harst, P. Association of Circulating Ketone Bodies with Functional Outcomes After ST-Segment Elevation Myocardial Infarction. JACC 2021, 78, 1421–1432. [Google Scholar] [CrossRef]
- Sato, J.; Kinoshita, K.; Sakurai, A. Elevated blood acetoacetate levels reduce major adverse cardiac and cerebrovascular events risk in acute myocardial infarction. Open Med. 2023, 18, 20230793. [Google Scholar] [CrossRef] [PubMed]
- Yurista, S.R.; Eder, R.A.; Welsh, A.; Jiang, W.; Chen, S.; Foster, A.N.; Mauskapf, A.; Tang, W.H.W.; Hucker, W.J.; Coll-Font, J.; et al. Ketone ester supplementation suppresses cardiac inflammation and improves cardiac energetics in a swine model of acute myocardial infarction. Metabolism 2023, 145, 155608. [Google Scholar] [CrossRef]
- Santos-Gallego, C.G.; Requena-Ibáñez, J.A.; Picatoste, B.; Fardman, B.; Ishikawa, K.; Mazurek, R.; Pieper, M.; Sartori, S.; Rodriguez-Capitán, J.; Fuster, V.; et al. Cardioprotective Effect of Empagliflozin and Circulating Ketone Bodies During Acute Myocardial Infarction. Circ. Cardiovasc. Imaging 2023, 16, e015298. [Google Scholar] [CrossRef]
- Chu, Y.; Hua, Y.; He, L.; He, J.; Chen, Y.; Yang, J.; Mahmoud, I.; Zeng, F.; Zeng, X.; Benavides, G.A.; et al. β-hydroxybutyrate administered at reperfusion reduces infarct size and preserves cardiac function by improving mitochondrial function through autophagy in male mice. J. Mol. Cell. Cardiol. 2024, 186, 31–44. [Google Scholar] [CrossRef]
- Wang, C.; Xu, W.; Jiang, S.; Wu, Y.; Shu, J.; Gao, X.; Huang, K. beta-Hydroxybutyrate Facilitates Postinfarction Cardiac Repair via Targeting PHD2. Circ. Res. 2025, 136, 704–718. [Google Scholar] [CrossRef]
- Hørsdal, O.K.; Larsen, A.M.; Wethelund, K.L.; Dalsgaard, F.F.; Seefeldt, J.M.; Helgestad, O.K.L.; Moeslund, N.; Møller, J.E.; Ravn, H.B.; Nielsen, R.R.; et al. The ketone body 3-hydroxybutyrate increases cardiac output and cardiac contractility in a porcine model of cardiogenic shock: A randomized, blinded, crossover trial. Basic Res. Cardiol. 2025, 120, 579–596. [Google Scholar] [CrossRef] [PubMed]
- Homilius, C.; Seefeldt, J.M.; Axelsen, J.S.; Pedersen, T.M.; Sørensen, T.M.; Nielsen, R.; Wiggers, H.; Hansen, J.; Matchkov, V.V.; Bøtker, H.E.; et al. Ketone body 3-hydroxybutyrate elevates cardiac output through peripheral vasorelaxation and enhanced cardiac contractility. Basic. Res. Cardiol. 2023, 118, 37. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Luo, W.; Ning, S.; Yu, Y.; Yang, B.; Guo, Z. Beta-hydroxybutyrate ameliorates cardiac fibrosis in diabetic cardiomyopathy rats via regulating macrophage polarization. Diabetes Res. Clin. Pract. 2025, 229, 112461. [Google Scholar] [CrossRef]
- Nielsen, R.; Christensen, K.H.; Gopalasingam, N.; Berg-Hansen, K.; Seefeldt, J.; Homilius, C.; Boedtkjer, E.; Andersen, M.J.; Wiggers, H.; Møller, N.; et al. Hemodynamic Effects of Ketone Bodies in Patients With Pulmonary Hypertension. J. Am. Heart Assoc. 2023, 12, e028232. [Google Scholar] [CrossRef]
- Zhang, S.J.; Li, Z.H.; Zhang, Y.D.; Chen, J.; Li, Y.; Wu, F.Q.; Wang, W.; Cui, Z.J.; Chen, G.Q. Ketone Body 3-Hydroxybutyrate Ameliorates Atherosclerosis via Receptor Gpr109a-Mediated Calcium Influx. Adv. Sci. 2021, 8, 2003410. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, M.; Hwang, J.S.; Kim, M.; Kim, Y.J.; Seo, J.H.; Jung, J.; Ha, E. β-hydroxybutyrate Impedes the Progression of Alzheimer’s Disease and Atherosclerosis in ApoE-Deficient Mice. Nutrients 2020, 12, 471. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; You, Y.; Wang, X.; Jin, Y.; Zeng, Y.; Pan, Z.; Li, D.; Ling, W. β-Hydroxybutyrate Alleviates Atherosclerotic Calcification by Inhibiting Endoplasmic Reticulum Stress-Mediated Apoptosis via AMPK/Nrf2 Pathway. Nutrients 2025, 17, 111. [Google Scholar] [CrossRef] [PubMed]
- Lan, Z.; Chen, A.; Li, L.; Ye, Y.; Liang, Q.; Dong, Q.; Wang, S.; Fu, M.; Li, Y.; Liu, X.; et al. Downregulation of HDAC9 by the ketone metabolite beta-hydroxybutyrate suppresses vascular calcification. J. Pathol. 2022, 258, 213–226. [Google Scholar] [CrossRef]
- Berg-Hansen, K.; Gopalasingam, N.; Christensen, K.H.; Ladefoged, B.; Andersen, M.J.; Poulsen, S.H.; Borlaug, B.A.; Nielsen, R.; Møller, N.; Wiggers, H. Cardiovascular Effects of Oral Ketone Ester Treatment in Patients with Heart Failure with Reduced Ejection Fraction: A Randomized, Controlled, Double-Blind Trial. Circulation 2024, 149, 1474–1489. [Google Scholar] [CrossRef]
- Gopalasingam, N.; Berg-Hansen, K.; Christensen, K.H.; Ladefoged, B.T.; Poulsen, S.H.; Andersen, M.J.; Borlaug, B.A.; Nielsen, R.; Møller, N.; Wiggers, H. Randomized Crossover Trial of 2-Week Ketone Ester Treatment in Patients with Type 2 Diabetes and Heart Failure with Preserved Ejection Fraction. Circulation 2024, 150, 1570–1583. [Google Scholar] [CrossRef]
- Xu, S.; Tao, H.; Cao, W.; Cao, L.; Lin, Y.; Zhao, S.-M.; Xu, W.; Cao, J.; Zhao, J.-Y. Ketogenic diets inhibit mitochondrial biogenesis and induce cardiac fibrosis. Signal Transduct. Target. Ther. 2021, 6, 54. [Google Scholar] [CrossRef]
- Wei, S.J.; Schell, J.R.; Chocron, E.S.; Varmazyad, M.; Xu, G.; Chen, W.H.; Martinez, G.M.; Dong, F.F.; Sreenivas, P.; Trevino, R., Jr.; et al. Ketogenic diet induces p53-dependent cellular senescence in multiple organs. Sci. Adv. 2024, 10, eado1463. [Google Scholar] [CrossRef]
- Sternberg, F.; Sternberg, C.; Dunkel, A.; Beikbaghban, T.; Gregor, A.; Szarzynski, A.; Somoza, V.; Walter, I.; Duszka, K.; Kofler, B.; et al. Ketogenic diets composed of long-chain and medium-chain fatty acids induce cardiac fibrosis in mice. Mol. Metab. 2023, 72, 101711. [Google Scholar] [CrossRef]
- Armani, A.; Marzolla, V.; Mammi, C.; Vitiello, L.; Bellucci, E.; Feraco, A.; Gorini, S.; Caprio, M. Protective effects of ketogenic diet on aldosterone-induced atherosclerosis in ApoE−/− mice. J. Endocrinol. Investig. 2025, 1–8. [Google Scholar] [CrossRef]
- Sastriques-Dunlop, S.; Elizondo-Benedetto, S.; Arif, B.; Meade, R.; Zaghloul, M.S.; Luehmann, H.; Heo, G.S.; English, S.J.; Liu, Y.; Zayed, M.A. Ketosis prevents abdominal aortic aneurysm rupture through C-C chemokine receptor type 2 downregulation and enhanced extracellular matrix balance. Sci. Rep. 2024, 14, 1438. [Google Scholar] [CrossRef] [PubMed]
- Kanikarla-Marie, P.; Jain, S.K. Hyperketonemia (acetoacetate) upregulates NADPH oxidase 4 and elevates oxidative stress, ICAM-1, and monocyte adhesivity in endothelial cells. Cell Physiol. Biochem. 2015, 35, 364–373. [Google Scholar] [CrossRef]
- Adam, C.; Paolini, L.; Gueguen, N.; Mabilleau, G.; Preisser, L.; Blanchard, S.; Pignon, P.; Manero, F.; Le Mao, M.; Morel, A.; et al. Acetoacetate protects macrophages from lactic acidosis-induced mitochondrial dysfunction by metabolic reprograming. Nat. Commun. 2021, 12, 7115. [Google Scholar] [CrossRef]
- Chakraborty, S.; Galla, S.; Cheng, X.; Yeo, J.-Y.; Mell, B.; Singh, V.; Yeoh, B.; Saha, P.; Mathew, A.V.; Vijay-Kumar, M.; et al. Salt-Responsive Metabolite, β-Hydroxybutyrate, Attenuates Hypertension. Cell Rep. 2018, 25, 677–689.e674. [Google Scholar] [CrossRef]
- Han, Y.M.; Bedarida, T.; Ding, Y.; Somba, B.K.; Lu, Q.; Wang, Q.; Song, P.; Zou, M.H. beta-Hydroxybutyrate Prevents Vascular Senescence through hnRNP A1-Mediated Upregulation of Oct4. Mol. Cell 2018, 71, 1064–1078 e1065. [Google Scholar] [CrossRef] [PubMed]
- Venturini, C.; Mancinelli, L.; Matacchione, G.; Olivieri, F.; Antonicelli, R. The Cardioprotective Effects of Nutritional Ketosis: Mechanisms and Clinical Implications. Nutrients 2024, 16, 4204. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Xie, M.; Li, Q.; Xu, X.; Ou, W.; Zhang, Y.; Xiao, H.; Yu, H.; Zheng, Y.; Liang, Y.; et al. Correction to: Targeting Mitochondria-Inflammation Circuit by β-Hydroxybutyrate Mitigates HFpEF. Circ. Res. 2022, 130, e24. [Google Scholar]
- Liao, S.; Tang, Y.; Yue, X.; Gao, R.; Yao, W.; Zhou, Y.; Zhang, H. β-Hydroxybutyrate Mitigated Heart Failure with Preserved Ejection Fraction by Increasing Treg Cells via Nox2/GSK-3β. J. Inflamm. Res. 2021, 14, 4697–4706. [Google Scholar] [CrossRef]
- He, Y.; Cheng, X.; Zhou, T.; Li, D.; Peng, J.; Xu, Y.; Huang, W. β-Hydroxybutyrate as an epigenetic modifier: Underlying mechanisms and implications. Heliyon 2023, 9, e21098. [Google Scholar] [CrossRef]
- Li, Z.; Guo, Y.; Xiong, J.; Bai, L.; Tang, H.; Wang, B.; Guo, B.; Qiu, Y.; Li, G.; Gong, M.; et al. β-Hydroxybutyrate Facilitates Homeostasis of Hypoxic Endothelial Cells After Myocardial Infarction via Histone Lysine β-Hydroxybutyrylation of CPT1A. JACC Basic Transl. Sci. 2025, 10, 588–607. [Google Scholar] [CrossRef]
- Hurk, J.J.v.d.; Schiattarella, G.G.; Westenbrink, B.D. From Fuel to Code. JACC Basic Transl. Sci. 2025, 10, 608–611. [Google Scholar] [CrossRef]
- Kuppuswamy, S.; Patel, K.; Zhi, W.; Ganta, V. The Pro-vs. Anti-Angiogenic Capacity of Short Chain Fatty Acids is Dependent on the Bioavailability of FFAR3 in Peripheral Artery Disease. bioRxiv 2025. [Google Scholar] [CrossRef]
- Carbone, A.M.; Borges, J.I.; Suster, M.S.; Sizova, A.; Cora, N.; Desimine, V.L.; Lymperopoulos, A. Regulator of G-Protein Signaling-4 Attenuates Cardiac Adverse Remodeling and Neuronal Norepinephrine Release-Promoting Free Fatty Acid Receptor FFAR3 Signaling. Int. J. Mol. Sci. 2022, 23, 5803. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Li, F.; Sun, Q.; Lin, N.; Han, H.; You, K.; Tian, F.; Mao, Z.; Li, T.; Tong, T.; et al. p53 β-hydroxybutyrylation attenuates p53 activity. Cell Death Dis. 2019, 10, 243. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; Shi, M.; Wang, Y.; Cao, R.; Li, X.; Zhong, X.; Dong, S.; Wei, C. β-Hydroxybutyrylation Links Ketone Metabolism to Mitochondrial Remodeling in Diabetic Cardiomyopathy. Diabetes 2025, 75, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Zhang, B.; Zhao, W.; Zhao, W.; He, J.; Qiu, X.; Zhang, L.; Wang, X.; Wang, Y.; Lu, H.; et al. Ketogenic β-hydroxybutyrate regulates β-hydroxybutyrylation of TCA cycle-associated enzymes and attenuates disease-associated pathologies in Alzheimer’s mice. Aging Cell 2025, 24, e14368. [Google Scholar] [CrossRef]
- Su, J.; Zhao, M.; Feng, W.; Lin, Y.; Lu, X.; Xia, Z.; Cheng, T.; Liu, Q.; Cheng, L.; Pu, C.; et al. TAF1 acetyltransferase promotes colorectal carcinoma metastasis by catalyzing β-hydroxybutyrylation of KCTD9. Oncogene 2025, 45, 87–103. [Google Scholar] [CrossRef]
- Li, H.; Chen, R.; Wang, H.; Tian, J.; Zhao, Y.; Cen, X. Hippocampal CaMKII-α β-hydroxybutyrylation induces memory deficits in mice with type 1 diabetes mellitus. Commun. Biol. 2025, 8, 1435. [Google Scholar] [CrossRef]
- Bai, Y.-P.; Zhang, Y.; Chen, Z.-Y.; Li, K.; Wang, D.-G.; Wan, S.-J.; Zhang, C.-W.; Sun, Y.; Li, Z.-C.; Lv, K.; et al. β-Hydroxybutyrate ameliorates lipopolysaccharide-induced liver injury through β-hydroxybutyrylation of the SOD2 protein in mice. Redox Biol. 2025, 88, 103949. [Google Scholar] [CrossRef]
- Fang, J.; Hu, Z.; Luo, T.; Chen, S.; Li, J.; Yang, H.; Sheng, X.; Zhang, X.; Zhang, Z.; Xie, C. β-hydroxybutyrate serves as a regulator in ketone body metabolism through lysine β-hydroxybutyrylation. J. Biol. Chem. 2025, 301, 108475. [Google Scholar] [CrossRef]
- Bai, Y.-P.; Xing, Y.-J.; Ma, T.; Li, K.; Zhang, T.; Wang, D.-G.; Wan, S.-J.; Zhang, C.-W.; Sun, Y.; Wang, M.-Y.; et al. β-Hydroxybutyrate suppresses M1 macrophage polarization through β-hydroxybutyrylation of the STAT1 protein. Cell Death Dis. 2024, 15, 874. [Google Scholar] [CrossRef] [PubMed]
- Yurista, S.R.; Matsuura, T.R.; Silljé, H.H.W.; Nijholt, K.T.; McDaid, K.S.; Shewale, S.V.; Leone, T.C.; Newman, J.C.; Verdin, E.; van Veldhuisen, D.J.; et al. Ketone Ester Treatment Improves Cardiac Function and Reduces Pathologic Remodeling in Preclinical Models of Heart Failure. Circ. Heart Fail. 2021, 14, e007684. [Google Scholar] [CrossRef]
- Berg-Hansen, K.; Gopalasingam, N.; Christensen, K.H.; Svart, M.; Rittig, N.; Nielsen, R.; Lodberg, K.; Møller, N.; Wiggers, H. Neurohormonal and Renal Effects of 14-Day Oral Ketone Ester Treatment in Patients with Heart Failure with Reduced Ejection Fraction. Circ. Heart Fail. 2025, 18, e012167. [Google Scholar] [CrossRef]
- Guldbrandsen, H.; Gopalasingam, N.; Christensen, K.H.; Horsdal, O.K.; Nielsen, R.; Wiggers, H.; Berg-Hansen, K. Cardiovascular and Metabolic Effects of Modulating Circulating Ketone Bodies with 1,3-Butanediol in Patients with Heart Failure with Reduced Ejection Fraction. J. Am. Heart Assoc. 2025, 14, e038461. [Google Scholar] [CrossRef]
- Solis-Herrera, C.; Qin, Y.; Honka, H.; Cersosimo, E.; Triplitt, C.; Neppala, S.; Rajan, J.; Acosta, F.M.; Moody, A.J.; Iozzo, P.; et al. Effect of Hyperketonemia on Myocardial Function in Patients with Heart Failure and Type 2 Diabetes. Diabetes 2025, 74, 43–52. [Google Scholar] [CrossRef]
- Qu, X.; Huang, L.; Rong, J. The ketogenic diet has the potential to decrease all-cause mortality without a concomitant increase in cardiovascular-related mortality. Sci. Rep. 2024, 14, 22805. [Google Scholar] [CrossRef]
- Maduray, K.; Zhong, J. Emerging roles of ketone bodies in cardiac fibrosis. Am. J. Physiol.-Cell Physiol. 2024, 327, C1416–C1432. [Google Scholar] [CrossRef]
- Gambardella, J.; Jankauskas, S.S.; Kansakar, U.; Varzideh, F.; Avvisato, R.; Prevete, N.; Sidoli, S.; Mone, P.; Wang, X.; Lombardi, A.; et al. Ketone Bodies Rescue Mitochondrial Dysfunction Via Epigenetic Remodeling. JACC Basic Transl. Sci. 2023, 8, 1123–1137. [Google Scholar] [CrossRef]
- Takahara, S.; Soni, S.; Phaterpekar, K.; Kim, T.T.; Maayah, Z.H.; Levasseur, J.L.; Silver, H.L.; Freed, D.H.; Ferdaoussi, M.; Dyck, J.R.B. Chronic exogenous ketone supplementation blunts the decline of cardiac function in the failing heart. ESC Heart Fail. 2021, 8, 5606–5612. [Google Scholar] [CrossRef] [PubMed]
- Blake, M.; Puchalska, P.; Kazmirczak, F.; Blake, J.; Moon, R.; Thenappan, T.; Crawford, P.A.; Prins, K.W. Ketone bodies in right ventricular failure: A unique therapeutic opportunity. Heliyon 2023, 9, e22227. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Guo, Y.; Jia, P.; Zhuang, B.; Cheng, Y.; Deng, H.; Wang, X.; Zhang, C.; Luo, S.; Huang, B. Ketogenic diet aggravates cardiac remodeling in adult spontaneously hypertensive rats. Nutr. Metab. 2020, 17, 91. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, X.; Li, T.; Zhao, J.; Yang, Y.; Yao, Y.; Wang, L.; Yang, B.; Ren, G.; Tan, Y.; et al. Alternate-Day Ketogenic Diet Feeding Protects against Heart Failure through Preservation of Ketogenesis in the Liver. Oxidative Med. Cell. Longev. 2022, 2022, 4253651. [Google Scholar] [CrossRef]
- Li, S.; Zhuge, A.; Wang, K.; Lv, L.; Bian, X.; Yang, L.; Xia, J.; Jiang, X.; Wu, W.; Wang, S.; et al. Ketogenic diet aggravates colitis, impairs intestinal barrier and alters gut microbiota and metabolism in DSS-induced mice. Food Funct. 2021, 12, 10210–10225. [Google Scholar] [CrossRef]
- Gallop, M.R.; Vieira, R.F.L.; Mower, P.D.; Matsuzaki, E.T.; Liou, W.; Smart, F.E.; Roberts, S.; Evason, K.J.; Holland, W.L.; Chaix, A. A long-term ketogenic diet causes hyperlipidemia, liver dysfunction, and glucose intolerance from impaired insulin secretion in mice. Sci. Adv. 2025, 11, eadx2752. [Google Scholar] [CrossRef]
- Sprankle, K.W.; Knappenberger, M.A.; Locke, E.J.; Thompson, J.H.; Vinovrski, M.F.; Knapsack, K.; Kolwicz, S.C., Jr. Sex- and Age-Specific Differences in Mice Fed a Ketogenic Diet. Nutrients 2024, 16, 2731. [Google Scholar] [CrossRef]
- Moss, S.E.; Poff, A.M.; Moss, A.; DeBlasi, J.M.; D’Agostino, D.P. From glucose to histone modification: Sex-specific metabolic responses to ketogenic therapy in VM/Dk mice. Front. Nutr. 2025, 12, 1554743. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cochran, J.D.; Souvenir, R.A.; Tai, W.; Xia, R.; Gladwin, B.S.; Barton, N.B.; Pereira, R.O.; Abel, E.D. Sex Differences in Ketogenic Diet Response Reveal Gonadal Hormone Interaction with FGF21 in Mice. J. Endocr. Soc. 2025, 9, bvaf131. [Google Scholar] [CrossRef] [PubMed]
- Ataran, A.; Pompian, A.; Hajirezaei, H.; Lodhi, R.; Javaheri, A. Fueling the Heart: What Are the Optimal Dietary Strategies in Heart Failure? Nutrients 2024, 16, 3157. [Google Scholar] [CrossRef]
- Zala, S.M.; Santos, R.; Strasser, E.; Schadde, A.; Kugler, S.; Strauss, V.; Kübber-Heiss, A.; Zala, D. Sex-dependent effects of a gestational ketogenic diet on offspring birth and lifespan. PLoS ONE 2025, 20, e0328455. [Google Scholar] [CrossRef]
- Wei, S.-J.; Schell, J.; Qian, W.; Silguero, M.; Baseviciene, A.; Chen, W.H.; Trevino, R.; Chocron, E.S.; Ogle, M.M.; Varmazyad, M.; et al. Divergent sex-specific effects on a ketogenic diet: Male, but not female, mice exhibit oxidative stress and cellular senescence. Cell Rep. 2025, 44, 116026. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Fu, Q.; Yang, Q.; Yang, Y.; Li, R.; Yang, X.; Yang, Q.; Li, S.; Tian, J.; Liu, H. Different types of cell death and their interactions in myocardial ischemia–reperfusion injury. Cell Death Discov. 2025, 11, 87. [Google Scholar] [CrossRef]
- Biesiekierska, M.; Strigini, M.; Śliwińska, A.; Pirola, L.; Balcerczyk, A. The Impact of Ketogenic Nutrition on Obesity and Metabolic Health: Mechanisms and Clinical Implications. Nutr. Rev. 2025, 83, 1957–1972. [Google Scholar] [CrossRef] [PubMed]
- Moya-Garzon, M.D.; Wang, M.; Li, V.L.; Lyu, X.; Wei, W.; Tung, A.S.; Raun, S.H.; Zhao, M.; Coassolo, L.; Islam, H.; et al. A β-hydroxybutyrate shunt pathway generates anti-obesity ketone metabolites. Cell 2025, 188, 175–186.e120. [Google Scholar] [CrossRef] [PubMed]
- Hirschberger, S.; Effinger, D.; Yoncheva, P.; Schmid, A.; Weis, M.N.; Holdt, L.M.; Teupser, D.; Kreth, S. The impact of a ketogenic diet on weight loss, metabolism, body composition and quality of life. iScience 2024, 27, 111291. [Google Scholar] [CrossRef] [PubMed]
| Ketone Level (mM) | Physiological/Pathological States | Interpretation | Recommended Action | Reference |
|---|---|---|---|---|
| ≤0.5 | Healthy adults with normal feeding | Baseline ketone production | None required | [25] |
| 0.6–1.5 | Early fasting/post-prolonged exercise/light ketosis | Slightly elevated; monitor if diabetic | Retest in 2 h; for diabetic individuals, consult a healthcare provider if symptoms present | [14,32] |
| 1.6–3.0 | Prolonged fasting/post-ultra endurance efforts/optimal nutritional ketosis | Moderate elevation; potential DKA risk in diabetics | For diabetic individuals, seek medical advice; monitor closely | [5,6,14] |
| 3.0–6.0 * | Nutrition-provoked ketosis/early stage of pathological ketosis | Marked elevation; high risk of DKA * when accompanied by hyperglycemia | Immediate medical attention required if symptoms of DKA are present | [2,5,33,34] |
| >6.0 | Severe DKA | Pathological and life-threatening ketoacidosis | Immediate medical emergency | [25,32] |
| Approaches | Depth of Ketosis (β-OHB Levels) | Key Characteristics | Common Applications | Reference |
|---|---|---|---|---|
| Exogenous ketone salts | Mild: 0.5–1 mM | Rapid but transient effect; less potent than esters; may cause GI discomfort or mineral load. | Performance boost and experimental therapeutic use. | [55,56,57,58] |
| Exogenous ketone esters | Moderate to high: 2–6 mM | Strong, rapid rise in ketones; more potent than salts; expensive and less palatable; short-lived effect without carb restriction. | Cognitive enhancement, therapeutic research, performance boost. | [55] |
| Ketone precursor 1,3-butanediol | Mild: 0.3–0.8 mM | Gradual, transient rise in ketones; GI discomfort, nausea, dizziness, ethanol-like side effects. | Therapeutic research. | [59] |
| Ketone precursor MCT Oil | Mild to moderate: 0.5–2 mM | Rapid ketone rise; supportive of ketogenic diet; high doses may cause GI distress. | Enhancing ketosis, athletic and cognitive support. | [52,60] |
| Ketogenic diet | Mild to moderate: 0.5–5 mM | Sustainable long-term with adherence; fat composition influences health outcomes; GI discomfort. | Weight management, metabolic syndrome, epilepsy. | [51,61] |
| SGLT2 Inhibitors (medication) | Mild: 0.3–1 mM | Pharmacological induction of low-level ketosis; sustained effect but shows multiple physiological effects; rare risk of ketoacidosis. | Management of type 2 diabetes and heart failure. | [18,54,62] |
| Ketones or Related Treatments | Targeted Organs or Cells | Outcomes | Reference |
|---|---|---|---|
| Caloric restriction or β-OHB | Heart and macrophages of mouse | Promotes neovascularization and cardiac repair following myocardial infarction in mice | [76] |
| β-OHB | Human hearts with HFrEF | β-OHB infusion increases cardiac output | [66] |
| Na-β-OHB | Rat heart and blood vessel | Increases cardiac contractility and lowers systemic vascular resistance resulting in elevated cardiac output | [78] |
| β-OHB | Heart of female pigs with cardiogenic shock | Intravenous β-OHB infusion increases cardiac contractility and reduces vascular resistance resulting in elevated cardiac output | [77] |
| β-OHB | Rat heart; cardiac fibroblasts and macrophages | Reduces cardiac fibrosis in diabetic cardiomyopathy; Encourages M1 to M2 macrophage reprogramming | [79] |
| β-OHB | Pulmonary hypertension patients and Sprague–Dawley rats (heart and pulmonary arteries) | β-OHB infusion increases cardiac output and reduces pulmonary vascular resistance | [80] |
| β-OHB | Macrophage and mouse aorta | Daily oral treatment with β-OHB decreases the M1 macrophage proportion and attenuates atherosclerosis in mice | [81] |
| β-OHB | Brain and aorta of mice | Reduces atherosclerotic plaque formation; reduces lipid deposition in the choroid plexus in the brain | [82] |
| β-OHB | Mouse aorta and rat VSMC | Daily gavage of β-OHB alleviates atherosclerotic calcification and reduces endoplasmic reticulum stress and stress-mediated apoptosis in mice aorta | [83] |
| 1,3-butanediol | Arterial tissue and VSMC | Daily gavage of 1,3-butanediol decreases HDAC9 in VSMC and restrains aortic calcification in CKD rats and VitD3-overloaded mice | [84] |
| Ketone ester | Heart of patient with HFrEF | Elevates cardiac output and decreases cardiac filling pressures at rest and during exercise | [85] |
| Ketone ester | Heart of patient with both HFpEF and T2DM | Reduces cardiac filling pressures in patients with HFpEF | [86] |
| Ketone ester | Heart of a swine model of acute myocardial infarction | Oral ketone ester enhances the myocardial consumption of β-OHB and fatty acid and inhibits cardiac inflammation | [73] |
| Prolonged ketogenic diet or β-OHB | Rat cardiomyocytes, rat heart, or human atrial fibrillation heart tissue | Decreases mitochondrial biogenesis and increases cardiomyocyte apoptosis and cardiac fibrosis | [87] |
| Ketogenic diet | Mouse heart and kidney | Induces p53-dependent cellular senescence in mouse heart and kidney | [88] |
| Ketogenic diet (with long and medium-chain fatty acids) | Mouse heart tissue | Induces cardiac fibrosis in adult male mice | [89] |
| Ketogenic diet | Mouse aorta and macrophages | Reduces plaque size in aldosterone-induced atherosclerosis in ApoE −/− mice; encourages M1 to M2 inflammatory profile switch | [90] |
| Ketogenic diet | Abdominal aorta of male Sprague–Dawley rats | Decreases CCR2 levels, inhibits ECM degradation, reduces AAA expansion and incidence of rupture | [91] |
| Target Proteins | Modified Amino Acid | Experimental Models | Biological Outcomes | Reference |
|---|---|---|---|---|
| HIF prolyl hydroxylase 2 (PHD2) | Lysine 239 and 385 | Macrophage and MI induced by ligation of the left anterior descending coronary artery | Inhibits PHD2 activity and recovers postinfarction cardiac function by enhancing neovascularization | [76] |
| Citrate synthase (CS) | Lysine 395 | H9C2, HEK293T cells, and heart of KE-treated HFpEF mouse | Increases CS activity and downregulates the acetyl-CoA pool, mitochondrial acetylation, and subsequent inflammation | [97] |
| Histone 3 | Lysine 9 | Endothelial cells and myocardial infarction | H3K9bhb-enhanced chromatin opening promotes transcription of the proangiogenic genes, accelerating hypoxic endothelial angiogenesis post-MI | [100] |
| Histone 3 | Lysine 9 and 18 | HEK293, HCT116, MEF cells, and mouse liver | Upregulates genes in starvation-responsive metabolic pathways. H3K9bhb is enriched in active gene promoters and is associated with genes upregulated in the starvation-responsive pathway | [9,10] |
| Histone 4 | Lysine 8 | HCT116, HEK293, and MEF | Mediates transcription in vitro | [10] |
| P53 | Lysine 120, 319, and 370 | U2OS, HCT116 cells, and thymus tissues of fasted mice | Attenuates p53 activity and decreases cell growth arrest and apoptosis | [104] |
| Atp5f1a | Lysine 239 | Myocardial tissues in a mouse model of Diabetic cardiomyopathy (DbCM) | Restore mitochondrial function in alleviating diabetic cardiomyopathy | [105] |
| Succinate-CoA ligase subunit alpha (SUCLG1) | Lysine 393 in CS and lysine 81 in SUCLG1 | APP/PS1 Alzheimer’s mouse model | Promotes enzymatic activities of CS and SUCLG1 and ATP production, but also attenuates β-amyloid plaque pathologies and microgliosis in APP/PS1 mice | [106] |
| Potassium channel tetramerization domain containing 9 (KCTD9) | Lysine 123 and 129 | Human colorectal cancer cell lines and nude mice | Mediates the ubiquitination and degradation of KCTD9 and enhances the progression and metastasis of colorectal carcinoma | [107] |
| Snail | Lysine 152 | Human PDAC cell lines PANC-1 and SW1990 and BALB/c nude mice | Increases Snail stability and promotes pancreatic cancer cell metastasis | [13] |
| Calcium/calmodulin-dependent kinase II-α (CaMKII-α) | Lysine 42 and 267 | Male mice with type 1 diabetes mellitus (T1DM) | Inhibits hippocampal CaMKII activity and induces memory deficits in mice with T1DM | [108] |
| Superoxide dismutase 2 (SOD2) | Lysine 68 | Mouse macrophage | β-OHB stabilizes SOD2 protein and ameliorates lipopolysaccharide-induced liver injury in mice | [109] |
| 3-oxoacid CoA-transferase 1 (OXCT1) | Lysine 421 | Cultured cells and fasted and T1D mice | Increases OXCT1 enzymatic activity and accelerates ketone body utilization | [110] |
| Signal transducer and activator of transcription 1 (STAT1) | Lysine 679 (major), 193, 286, 336, 379, 652 | Mouse bone marrow-derived macrophages and other cell lines | Inhibits M1 macrophage polarization by reducing STAT1 phosphorylation and transcriptional activity | [111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shrestha, S.; Harrison, I.; Dosunmu, A.; Song, P. Ketones in Cardiovascular Health and Disease: An Updated Review. Cells 2026, 15, 150. https://doi.org/10.3390/cells15020150
Shrestha S, Harrison I, Dosunmu A, Song P. Ketones in Cardiovascular Health and Disease: An Updated Review. Cells. 2026; 15(2):150. https://doi.org/10.3390/cells15020150
Chicago/Turabian StyleShrestha, Sanjiv, Isis Harrison, Aminat Dosunmu, and Ping Song. 2026. "Ketones in Cardiovascular Health and Disease: An Updated Review" Cells 15, no. 2: 150. https://doi.org/10.3390/cells15020150
APA StyleShrestha, S., Harrison, I., Dosunmu, A., & Song, P. (2026). Ketones in Cardiovascular Health and Disease: An Updated Review. Cells, 15(2), 150. https://doi.org/10.3390/cells15020150

