Candidate Interaction Partners of Calpain-5 Suggest Clues to Its Involvement in Neovascular Inflammatory Vitreoretinopathy
Highlights
- Fifty-one candidate interaction partners of calpain-5/CAPN5 were identified in neuroblastoma cells.
- Many candidate CAPN5 interactors are associated with the chaperome and protein quality control complexes.
- The findings provide hints regarding both the physiological and pathological roles of CAPN5.
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and the Generation of Stable Cell Lines
2.2. Plasmid Construction
2.2.1. CAPN5-3×FLAG Expression Constructs
2.2.2. HA-Tagged Protein Expression Constructs
2.3. Co-Immunoprecipitation
2.4. Affinity Capture
2.5. SWATH-MS Analysis
2.6. Confirmatory co-IPs and the In Vitro CAPN5 Assay
2.7. Denaturing Protein Gel Electrophoresis and Immunoblotting
2.8. Gene Ontology and Databases
3. Results
4. Discussion
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 3×FLAG tag | Peptide with the sequence Asp-Tyr-Lys-Asp-His-Asp-Gly-Asp-Tyr-Lys-Asp-His-Asp-Ile-Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys |
| Aa | Amino acid residue |
| AEBSF | 4-(2-Aminoethyl)-benzenesulfonylfluoride hydrochloride |
| AP-MS | Affinity purification-mass spectrometry |
| CNS | Central nervous system |
| EDTA | Ethylenediaminetetraacetic acid |
| EGTA | Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid |
| ERAD | Endoplasmic reticulum-associated degradation |
| HA tag | Peptide with the sequence Tyr-Pro-Tyr-Asp-Val-Pro-Asp-Tyr-Ala |
| IP | Immunoprecipitation |
| LC/MS | Liquid chromatography and tandem mass spectrometry |
| MBP | Maltose binding protein |
| MBP-CAPN5-C81A-CC | MBP-tagged C81A mutant calpain-5 catalytic domain (Phe2-Leu348) |
| MOPS | 3-(N-Morpholino)propanesulfonic acid |
| NIV | Neovascular inflammatory vitreoretinopathy |
| PBS | Phosphate-buffered saline |
| PMSF | Phenylmethanesulfonyl fluoride |
| SDS-PAGE | Denaturing protein gel electrophoresis |
| SWATH | Sequential Window Acquisition of All Theoretical Mass Spectra |
| TAILS | Terminal amine isotopic labeling of substrates |
| Tris | 2-Amino-2-(hydroxymethyl)-1,3-propanediol |
| WT | Wild type |
References
- Croall, D.E.; DeMartino, G.N. Calcium-activated neutral protease (calpain) system: Structure, function, and regulation. Physiol. Rev. 1991, 71, 813–847. [Google Scholar] [CrossRef] [PubMed]
- Goll, D.E.; Thompson, V.F.; Li, H.; Wei, W.; Cong, J. The calpain system. Physiol. Rev. 2003, 83, 731–801. [Google Scholar] [CrossRef] [PubMed]
- Ono, Y.; Sorimachi, H. Calpains: An elaborate proteolytic system. Biochim. Biophys. Acta 2012, 1824, 224–236. [Google Scholar] [CrossRef]
- Croall, D.E.; Ersfeld, K. The calpains: Modular designs and functional diversity. Genome Biol. 2007, 8, 218. [Google Scholar] [CrossRef] [PubMed]
- Spinozzi, S.; Albini, S.; Best, H.; Richard, I. Calpains for dummies: What you need to know about the calpain family. Biochim. Biophys. Acta Proteins Proteom. 2021, 1869, 140616. [Google Scholar] [CrossRef]
- Dear, N.; Matena, K.; Vingron, M.; Boehm, T. A new subfamily of vertebrate calpains lacking a calmodulin-like domain: Implications for calpain regulation and evolution. Genomics 1997, 45, 175–184. [Google Scholar] [CrossRef]
- Bondada, V.; Gal, J.; Mashburn, C.; Rodgers, D.W.; Larochelle, K.E.; Croall, D.E.; Geddes, J.W. The C2 domain of calpain 5 contributes to enzyme activation and membrane localization. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 119019. [Google Scholar] [CrossRef]
- Waghray, A.; Wang, D.S.; McKinsey, D.; Hayes, R.L.; Wang, K.K. Molecular cloning and characterization of rat and human calpain-5. Biochem. Biophys. Res. Commun. 2004, 324, 46–51. [Google Scholar] [CrossRef]
- Singh, R.; Brewer, M.K.; Mashburn, C.B.; Lou, D.; Bondada, V.; Graham, B.; Geddes, J.W. Calpain 5 is highly expressed in the central nervous system (CNS), carries dual nuclear localization signals, and is associated with nuclear promyelocytic leukemia protein bodies. J. Biol. Chem. 2014, 289, 19383–19394. [Google Scholar] [CrossRef]
- Schaefer, K.A.; Toral, M.A.; Velez, G.; Cox, A.J.; Baker, S.A.; Borcherding, N.C.; Colgan, D.F.; Bondada, V.; Mashburn, C.B.; Yu, C.G.; et al. Calpain-5 Expression in the Retina Localizes to Photoreceptor Synapses. Investig. Ophthalmol. Vis. Sci. 2016, 57, 2509–2521. [Google Scholar] [CrossRef]
- Mahajan, V.B.; Skeie, J.M.; Bassuk, A.G.; Fingert, J.H.; Braun, T.A.; Daggett, H.T.; Folk, J.C.; Sheffield, V.C.; Stone, E.M. Calpain-5 mutations cause autoimmune uveitis, retinal neovascularization, and photoreceptor degeneration. PLoS Genet. 2012, 8, e1003001. [Google Scholar] [CrossRef] [PubMed]
- Chukai, Y.; Iwamoto, T.; Itoh, K.; Tomita, H.; Ozaki, T. Characterization of mitochondrial calpain-5. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 118989. [Google Scholar] [CrossRef]
- Chukai, Y.; Ito, G.; Konno, M.; Sakata, Y.; Ozaki, T. Mitochondrial calpain-5 truncates caspase-4 during endoplasmic reticulum stress. Biochem. Biophys. Res. Commun. 2022, 608, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Gal, J.; Bondada, V.; Mashburn, C.B.; Rodgers, D.W.; Croall, D.E.; Geddes, J.W. S-acylation regulates the membrane association and activity of Calpain-5. Biochim. Biophys. Acta Mol. Cell Res. 2022, 1869, 119298. [Google Scholar] [CrossRef]
- Geddes, J.W.; Bondada, V.; Croall, D.E.; Rodgers, D.W.; Gal, J. Impaired activity and membrane association of most calpain-5 mutants causal for neovascular inflammatory vitreoretinopathy. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166747. [Google Scholar] [CrossRef]
- Tompa, P.; Buzder-Lantos, P.; Tantos, A.; Farkas, A.; Szilagyi, A.; Banoczi, Z.; Hudecz, F.; Friedrich, P. On the sequential determinants of calpain cleavage. J. Biol. Chem. 2004, 279, 20775–20785. [Google Scholar] [CrossRef] [PubMed]
- Sorimachi, H.; Mamitsuka, H.; Ono, Y. Understanding the substrate specificity of conventional calpains. Biol. Chem. 2012, 393, 853–871. [Google Scholar] [CrossRef]
- Shinkai-Ouchi, F.; Koyama, S.; Ono, Y.; Hata, S.; Ojima, K.; Shindo, M.; duVerle, D.; Ueno, M.; Kitamura, F.; Doi, N.; et al. Predictions of Cleavability of Calpain Proteolysis by Quantitative Structure-Activity Relationship Analysis Using Newly Determined Cleavage Sites and Catalytic Efficiencies of an Oligopeptide Array. Mol. Cell. Proteom. 2016, 15, 1262–1280. [Google Scholar] [CrossRef]
- duVerle, D.A.; Mamitsuka, H. CalCleaveMKL: A Tool for Calpain Cleavage Prediction. Methods Mol. Biol. 2019, 1915, 121–147. [Google Scholar] [CrossRef]
- Noguchi, A.; Tsuchiya, H.; Shitara, H.; Saeki, Y.; Ono, Y.; Hata, S. CAPN15 is a non-proteasomal, ubiquitin-directed calpain protease that regulates cell adhesion by cleaving E-cadherin. J. Biol. Chem. 2025, 302, 111034. [Google Scholar] [CrossRef]
- Moldoveanu, T.; Campbell, R.L.; Cuerrier, D.; Davies, P.L. Crystal structures of calpain-E64 and -leupeptin inhibitor complexes reveal mobile loops gating the active site. J. Mol. Biol. 2004, 343, 1313–1326. [Google Scholar] [CrossRef]
- Velez, G.; Sun, Y.J.; Khan, S.; Yang, J.; Herrmann, J.; Chemudupati, T.; MacLaren, R.E.; Gakhar, L.; Wakatsuki, S.; Bassuk, A.G.; et al. Structural Insights into the Unique Activation Mechanisms of a Non-classical Calpain and Its Disease-Causing Variants. Cell Rep. 2020, 30, 881–892 e885. [Google Scholar] [CrossRef]
- Wert, K.J.; Bassuk, A.G.; Wu, W.H.; Gakhar, L.; Coglan, D.; Mahajan, M.; Wu, S.; Yang, J.; Lin, C.S.; Tsang, S.H.; et al. CAPN5 mutation in hereditary uveitis: The R243L mutation increases calpain catalytic activity and triggers intraocular inflammation in a mouse model. Hum. Mol. Genet. 2015, 24, 4584–4598. [Google Scholar] [CrossRef] [PubMed]
- Velez, G.; Bassuk, A.G.; Schaefer, K.A.; Brooks, B.; Gakhar, L.; Mahajan, M.; Kahn, P.; Tsang, S.H.; Ferguson, P.J.; Mahajan, V.B. A novel de novo CAPN5 mutation in a patient with inflammatory vitreoretinopathy, hearing loss, and developmental delay. Cold Spring Harb. Mol. Case Stud. 2018, 4, a002519. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, H.; Zang, S.; Li, F.; Chen, Y.; Zhang, X.; Song, Z.; Peng, Q.; Gu, F. Photoreceptor Cell-Derived CAPN5 Regulates Retinal Pigment Epithelium Cell Proliferation Through Direct Regulation of SLIT2 Cleavage. Investig. Ophthalmol. Vis. Sci. 2018, 59, 1810–1821. [Google Scholar] [CrossRef]
- Gal, J.; Dufour, A.; Young, D.; Yang, E.S.; Geddes, J.W. The Identification of Proteolytic Substrates of Calpain-5 with N-Terminomics. Int. J. Mol. Sci. 2025, 26, 6459. [Google Scholar] [CrossRef] [PubMed]
- Huttlin, E.L.; Bruckner, R.J.; Paulo, J.A.; Cannon, J.R.; Ting, L.; Baltier, K.; Colby, G.; Gebreab, F.; Gygi, M.P.; Parzen, H.; et al. Architecture of the human interactome defines protein communities and disease networks. Nature 2017, 545, 505–509. [Google Scholar] [CrossRef]
- Huttlin, E.L.; Bruckner, R.J.; Navarrete-Perea, J.; Cannon, J.R.; Baltier, K.; Gebreab, F.; Gygi, M.P.; Thornock, A.; Zarraga, G.; Tam, S.; et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell 2021, 184, 3022–3040 e3028. [Google Scholar] [CrossRef]
- Oughtred, R.; Rust, J.; Chang, C.; Breitkreutz, B.J.; Stark, C.; Willems, A.; Boucher, L.; Leung, G.; Kolas, N.; Zhang, F.; et al. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021, 30, 187–200. [Google Scholar] [CrossRef]
- Stark, C.; Breitkreutz, B.J.; Reguly, T.; Boucher, L.; Breitkreutz, A.; Tyers, M. BioGRID: A general repository for interaction datasets. Nucleic Acids Res. 2006, 34, D535–D539. [Google Scholar] [CrossRef]
- Gillet, L.C.; Navarro, P.; Tate, S.; Rost, H.; Selevsek, N.; Reiter, L.; Bonner, R.; Aebersold, R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Mol. Cell. Proteom. 2012, 11, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Burton, L.; Lau, A.; Tate, S. SWATH-ID: An instrument method which combines identification and quantification in a single analysis. Proteomics 2017, 17, 1500522. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.; Ryzhov, S.; Sawyer, D.B.; Gartner, C.; Vary, C.P.H. ALK1 Signaling in Human Cardiac Progenitor Cells Promotes a Pro-angiogenic Secretome. J. Cell. Signal 2024, 5, 122–142. [Google Scholar] [CrossRef] [PubMed]
- Biedler, J.L.; Roffler-Tarlov, S.; Schachner, M.; Freedman, L.S. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res. 1978, 38, 3751–3757. [Google Scholar]
- Fiordalisi, J.J.; Johnson, R.L., 2nd; Ulku, A.S.; Der, C.J.; Cox, A.D. Mammalian expression vectors for Ras family proteins: Generation and use of expression constructs to analyze Ras family function. Methods Enzymol. 2001, 332, 3–36. [Google Scholar] [CrossRef]
- Cormier, C.Y.; Mohr, S.E.; Zuo, D.; Hu, Y.; Rolfs, A.; Kramer, J.; Taycher, E.; Kelley, F.; Fiacco, M.; Turnbull, G.; et al. Protein Structure Initiative Material Repository: An open shared public resource of structural genomics plasmids for the biological community. Nucleic Acids Res. 2010, 38, D743–D749. [Google Scholar] [CrossRef]
- Cormier, C.Y.; Park, J.G.; Fiacco, M.; Steel, J.; Hunter, P.; Kramer, J.; Singla, R.; LaBaer, J. PSI:Biology-materials repository: A biologist’s resource for protein expression plasmids. J. Struct. Funct. Genom. 2011, 12, 55–62. [Google Scholar] [CrossRef][Green Version]
- Seiler, C.Y.; Park, J.G.; Sharma, A.; Hunter, P.; Surapaneni, P.; Sedillo, C.; Field, J.; Algar, R.; Price, A.; Steel, J.; et al. DNASU plasmid and PSI:Biology-Materials repositories: Resources to accelerate biological research. Nucleic Acids Res. 2014, 42, D1253–D1260. [Google Scholar] [CrossRef]
- Wang, H.Y.; Li, Y.; Xue, T.; Cheng, N.; Du, H.N. Construction of a series of pCS2+ backbone-based Gateway vectors for overexpressing various tagged proteins in vertebrates. Acta Biochim. Biophys. Sin. 2016, 48, 1128–1134. [Google Scholar] [CrossRef]
- Gal, J.; Vary, C.; Gartner, C.A.; Jicha, G.A.; Abner, E.L.; Ortega, Y.S.; Choucair, I.; Wilcock, D.M.; Nelson, R.S.; Nelson, P.T. Exploratory Mass Spectrometry of Cerebrospinal Fluid from Persons with Autopsy-Confirmed LATE-NC. J. Mol. Neurosci. 2024, 74, 65. [Google Scholar] [CrossRef]
- Beauchemin, M.; Geguchadze, R.; Guntur, A.R.; Nevola, K.; Le, P.T.; Barlow, D.; Rue, M.; Vary, C.P.H.; Lary, C.W.; Motyl, K.J.; et al. Exploring mechanisms of increased cardiovascular disease risk with antipsychotic medications: Risperidone alters the cardiac proteomic signature in mice. Pharmacol. Res. 2020, 152, 104589. [Google Scholar] [CrossRef] [PubMed]
- Ivosev, G.; Burton, L.; Bonner, R. Dimensionality reduction and visualization in principal component analysis. Anal. Chem. 2008, 80, 4933–4944. [Google Scholar] [CrossRef] [PubMed]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; Garcia-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.J.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022, 50, D543–D552. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Gene Ontology, C.; Aleksander, S.A.; Balhoff, J.; Carbon, S.; Cherry, J.M.; Drabkin, H.J.; Ebert, D.; Feuermann, M.; Gaudet, P.; Harris, N.L.; et al. The Gene Ontology knowledgebase in 2023. Genetics 2023, 224, iyad031. [Google Scholar] [CrossRef]
- Boyle, E.I.; Weng, S.; Gollub, J.; Jin, H.; Botstein, D.; Cherry, J.M.; Sherlock, G. GO: TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 2004, 20, 3710–3715. [Google Scholar] [CrossRef]
- Gilany, K.; Van Elzen, R.; Mous, K.; Coen, E.; Van Dongen, W.; Vandamme, S.; Gevaert, K.; Timmerman, E.; Vandekerckhove, J.; Dewilde, S.; et al. The proteome of the human neuroblastoma cell line SH-SY5Y: An enlarged proteome. Biochim. Biophys. Acta 2008, 1784, 983–985. [Google Scholar] [CrossRef]
- Murillo, J.R.; Goto-Silva, L.; Sanchez, A.; Nogueira, F.C.S.; Domont, G.B.; Junqueira, M. Quantitative proteomic analysis identifies proteins and pathways related to neuronal development in differentiated SH-SY5Y neuroblastoma cells. EuPA Open Proteom. 2017, 16, 1–11. [Google Scholar] [CrossRef]
- Murillo, J.R.; Pla, I.; Goto-Silva, L.; Nogueira, F.C.S.; Domont, G.B.; Perez-Riverol, Y.; Sanchez, A.; Junqueira, M. Mass spectrometry evaluation of a neuroblastoma SH-SY5Y cell culture protocol. Anal. Biochem. 2018, 559, 51–54. [Google Scholar] [CrossRef]
- Schwaid, A.G.; Krasowka-Zoladek, A.; Chi, A.; Cornella-Taracido, I. Comparison of the Rat and Human Dorsal Root Ganglion Proteome. Sci. Rep. 2018, 8, 13469. [Google Scholar] [CrossRef]
- Barth, M.; Toto Nienguesso, A.; Navarrete Santos, A.; Schmidt, C. Quantitative proteomics and in-cell cross-linking reveal cellular reorganisation during early neuronal differentiation of SH-SY5Y cells. Commun. Biol. 2022, 5, 551. [Google Scholar] [CrossRef]
- UniProt, C. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef]
- Blanc, M.; David, F.; Abrami, L.; Migliozzi, D.; Armand, F.; Burgi, J.; van der Goot, F.G. SwissPalm: Protein Palmitoylation database. F1000Research 2015, 4, 261. [Google Scholar] [CrossRef]
- Blanc, M.; David, F.P.A.; van der Goot, F.G. SwissPalm 2: Protein S-Palmitoylation Database. Methods Mol. Biol. 2019, 2009, 203–214. [Google Scholar] [CrossRef]
- Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjostedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- Gene Ontology, C.; Blake, J.A.; Dolan, M.; Drabkin, H.; Hill, D.P.; Li, N.; Sitnikov, D.; Bridges, S.; Burgess, S.; Buza, T.; et al. Gene Ontology annotations and resources. Nucleic Acids Res. 2013, 41, D530–D535. [Google Scholar] [CrossRef] [PubMed]
- Grantham, J. The Molecular Chaperone CCT/TRiC: An Essential Component of Proteostasis and a Potential Modulator of Protein Aggregation. Front. Genet. 2020, 11, 172. [Google Scholar] [CrossRef] [PubMed]
- Leroux, M.R.; Hartl, F.U. Protein folding: Versatility of the cytosolic chaperonin TRiC/CCT. Curr. Biol. 2000, 10, R260–R264. [Google Scholar] [CrossRef][Green Version]
- Kubota, H.; Hynes, G.M.; Kerr, S.M.; Willison, K.R. Tissue-specific subunit of the mouse cytosolic chaperonin-containing TCP-1. FEBS Lett. 1997, 402, 53–56. [Google Scholar] [CrossRef]
- Kim, H.; Park, J.; Roh, S.H. The structural basis of eukaryotic chaperonin TRiC/CCT: Action and folding. Mol. Cells 2024, 47, 100012. [Google Scholar] [CrossRef]
- Thulasiraman, V.; Yang, C.F.; Frydman, J. In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J. 1999, 18, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Sternlicht, H.; Farr, G.W.; Sternlicht, M.L.; Driscoll, J.K.; Willison, K.; Yaffe, M.B. The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proc. Natl. Acad. Sci. USA 1993, 90, 9422–9426. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Vainberg, I.E.; Chow, R.L.; Cowan, N.J. Two cofactors and cytoplasmic chaperonin are required for the folding of alpha- and beta-tubulin. Mol. Cell. Biol. 1993, 13, 2478–2485. [Google Scholar] [CrossRef]
- Wang, X.; Venable, J.; LaPointe, P.; Hutt, D.M.; Koulov, A.V.; Coppinger, J.; Gurkan, C.; Kellner, W.; Matteson, J.; Plutner, H.; et al. Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 2006, 127, 803–815. [Google Scholar] [CrossRef] [PubMed]
- Finka, A.; Goloubinoff, P. Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress Chaperones 2013, 18, 591–605. [Google Scholar] [CrossRef]
- Brehme, M.; Voisine, C.; Rolland, T.; Wachi, S.; Soper, J.H.; Zhu, Y.; Orton, K.; Villella, A.; Garza, D.; Vidal, M.; et al. A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep. 2014, 9, 1135–1150. [Google Scholar] [CrossRef]
- Demirdizen, E.; Al-Ali, R.; Narayanan, A.; Sun, X.; Varga, J.P.; Steffl, B.; Brom, M.; Krunic, D.; Schmidt, C.; Schmidt, G.; et al. TRIM67 drives tumorigenesis in oligodendrogliomas through Rho GTPase-dependent membrane blebbing. Neuro-Oncology 2023, 25, 1031–1043. [Google Scholar] [CrossRef]
- Linder, M.E.; Middleton, P.; Hepler, J.R.; Taussig, R.; Gilman, A.G.; Mumby, S.M. Lipid modifications of G proteins: Alpha subunits are palmitoylated. Proc. Natl. Acad. Sci. USA 1993, 90, 3675–3679. [Google Scholar] [CrossRef]
- Hancock, J.F.; Magee, A.I.; Childs, J.E.; Marshall, C.J. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 1989, 57, 1167–1177. [Google Scholar] [CrossRef]
- Chen, B.; Zheng, B.; DeRan, M.; Jarugumilli, G.K.; Fu, J.; Brooks, Y.S.; Wu, X. ZDHHC7-mediated S-palmitoylation of Scribble regulates cell polarity. Nat. Chem. Biol. 2016, 12, 686–693. [Google Scholar] [CrossRef]
- Xiong, X.; Lee, C.F.; Li, W.; Yu, J.; Zhu, L.; Kim, Y.; Zhang, H.; Sun, H. Acid Sphingomyelinase regulates the localization and trafficking of palmitoylated proteins. Biol. Open 2019, 8, bio040311. [Google Scholar] [CrossRef]
- Li, M.Y.; Naik, T.S.; Siu, L.Y.L.; Acuto, O.; Spooner, E.; Wang, P.; Yang, X.; Lin, Y.; Bruzzone, R.; Ashour, J.; et al. Lyn kinase regulates egress of flaviviruses in autophagosome-derived organelles. Nat. Commun. 2020, 11, 5189. [Google Scholar] [CrossRef]
- Roberts, B.J.; Svoboda, R.A.; Overmiller, A.M.; Lewis, J.D.; Kowalczyk, A.P.; Mahoney, M.G.; Johnson, K.R.; Wahl, J.K., 3rd. Palmitoylation of Desmoglein 2 Is a Regulator of Assembly Dynamics and Protein Turnover. J. Biol. Chem. 2016, 291, 24857–24865. [Google Scholar] [CrossRef]
- Cai, Q.; Guo, L.; Gao, H.; Li, X.A. Caveolar fatty acids and acylation of caveolin-1. PLoS ONE 2013, 8, e60884. [Google Scholar] [CrossRef]
- UniProt, C. The Universal Protein Resource (UniProt). Nucleic Acids Res. 2007, 35, D193–D197. [Google Scholar] [CrossRef]
- Hamosh, A.; Amberger, J.S.; Bocchini, C.; Scott, A.F.; Rasmussen, S.A. Online Mendelian Inheritance in Man (OMIM(R)): Victor McKusick’s magnum opus. Am. J. Med. Genet. Part A 2021, 185, 3259–3265. [Google Scholar] [CrossRef] [PubMed]
- White, J. PubMed 2.0. Med. Ref. Serv. Q. 2020, 39, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Randazzo, N.M.; Shanks, M.E.; Clouston, P.; MacLaren, R.E. Two Novel CAPN5 Variants Associated with Mild and Severe Autosomal Dominant Neovascular Inflammatory Vitreoretinopathy Phenotypes. Ocul. Immunol. Inflamm. 2019, 27, 693–698. [Google Scholar] [CrossRef]
- Lerea, C.L.; Somers, D.E.; Hurley, J.B.; Klock, I.B.; Bunt-Milam, A.H. Identification of specific transducin alpha subunits in retinal rod and cone photoreceptors. Science 1986, 234, 77–80. [Google Scholar] [CrossRef]
- Hargrave, P.A.; Hamm, H.E.; Hofmann, K.P. Interaction of rhodopsin with the G-protein, transducin. BioEssays News Rev. Mol. Cell. Dev. Biol. 1993, 15, 43–50. [Google Scholar] [CrossRef]
- Downs, M.A.; Arimoto, R.; Marshall, G.R.; Kisselev, O.G. G-protein alpha and beta-gamma subunits interact with conformationally distinct signaling states of rhodopsin. Vis. Res. 2006, 46, 4442–4448. [Google Scholar] [CrossRef] [PubMed]
- Filipek, S.; Stenkamp, R.E.; Teller, D.C.; Palczewski, K. G protein-coupled receptor rhodopsin: A prospectus. Annu. Rev. Physiol. 2003, 65, 851–879. [Google Scholar] [CrossRef] [PubMed]
- Dryja, T.P.; McGee, T.L.; Hahn, L.B.; Cowley, G.S.; Olsson, J.E.; Reichel, E.; Sandberg, M.A.; Berson, E.L. Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. N. Engl. J. Med. 1990, 323, 1302–1307. [Google Scholar] [CrossRef] [PubMed]
- Mendes, H.F.; van der Spuy, J.; Chapple, J.P.; Cheetham, M.E. Mechanisms of cell death in rhodopsin retinitis pigmentosa: Implications for therapy. Trends Mol. Med. 2005, 11, 177–185. [Google Scholar] [CrossRef]
- Sung, C.H.; Davenport, C.M.; Hennessey, J.C.; Maumenee, I.H.; Jacobson, S.G.; Heckenlively, J.R.; Nowakowski, R.; Fishman, G.; Gouras, P.; Nathans, J. Rhodopsin mutations in autosomal dominant retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 1991, 88, 6481–6485. [Google Scholar] [CrossRef]
- Bennett, S.R.; Folk, J.C.; Kimura, A.E.; Russell, S.R.; Stone, E.M.; Raphtis, E.M. Autosomal dominant neovascular inflammatory vitreoretinopathy. Ophthalmology 1990, 97, 1125–1135; discussion 1126–1135. [Google Scholar] [CrossRef]
- Evans, R.J.; Hardcastle, A.J.; Cheetham, M.E. Focus on molecules: X-linked Retinitis Pigmentosa 2 protein, RP2. Exp. Eye Res. 2006, 82, 543–544. [Google Scholar] [CrossRef]
- Veltel, S.; Gasper, R.; Eisenacher, E.; Wittinghofer, A. The retinitis pigmentosa 2 gene product is a GTPase-activating protein for Arf-like 3. Nat. Struct. Mol. Biol. 2008, 15, 373–380. [Google Scholar] [CrossRef]
- Parker, R.O.; Crouch, R.K. Retinol dehydrogenases (RDHs) in the visual cycle. Exp. Eye Res. 2010, 91, 788–792. [Google Scholar] [CrossRef]
- Xie, Y.A.; Lee, W.; Cai, C.; Gambin, T.; Noupuu, K.; Sujirakul, T.; Ayuso, C.; Jhangiani, S.; Muzny, D.; Boerwinkle, E.; et al. New syndrome with retinitis pigmentosa is caused by nonsense mutations in retinol dehydrogenase RDH11. Hum. Mol. Genet. 2014, 23, 5774–5780. [Google Scholar] [CrossRef]
- Xie, H.R.; Hu, L.S.; Li, G.Y. SH-SY5Y human neuroblastoma cell line: In vitro cell model of dopaminergic neurons in Parkinson’s disease. Chin. Med. J. 2010, 123, 1086–1092. [Google Scholar]
- Kovalevich, J.; Langford, D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol. Biol. 2013, 1078, 9–21. [Google Scholar] [CrossRef]
- O’Keefe, G.; Hanif, A.M.; Mahajan, V.B.; Jain, N. Early Onset Neovascular Inflammatory Vitreoretinopathy Due to a De Novo CAPN5 Mutation: Report of a Case. Ocul. Immunol. Inflamm. 2019, 27, 706–708. [Google Scholar] [CrossRef] [PubMed]
- Rowell, H.A.; Bassuk, A.G.; Mahajan, V.B. Monozygotic twins with CAPN5 autosomal dominant neovascular inflammatory vitreoretinopathy. Clin. Ophthalmol. 2012, 6, 2037–2044. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.H.; Chemudupati, T.; Wert, K.J.; Folk, J.C.; Mahajan, M.; Tsang, S.H.; Bassuk, A.G.; Mahajan, V.B. Phenotypic variance in Calpain-5 retinal degeneration. Am. J. Ophthalmol. Case Rep. 2020, 18, 100627. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, Y.; Hunt, D.M.; Carvalho, L.S. The origins of the full-field flash electroretinogram b-wave. Front. Mol. Neurosci. 2023, 16, 1153934. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Rejdak, R. Autosomal dominant neovascular inflammatory vitreoretinopathy—A review. Opthalmol. J. 2019, 4, 15–21. [Google Scholar] [CrossRef]
- Abu-Farha, M.; Elisma, F.; Figeys, D. Identification of protein-protein interactions by mass spectrometry coupled techniques. Adv. Biochem. Eng. Biotechnol. 2008, 110, 67–80. [Google Scholar] [CrossRef]
- Chang, I.F. Mass spectrometry-based proteomic analysis of the epitope-tag affinity purified protein complexes in eukaryotes. Proteomics 2006, 6, 6158–6166. [Google Scholar] [CrossRef]
- Morris, J.H.; Knudsen, G.M.; Verschueren, E.; Johnson, J.R.; Cimermancic, P.; Greninger, A.L.; Pico, A.R. Affinity purification-mass spectrometry and network analysis to understand protein-protein interactions. Nat. Protoc. 2014, 9, 2539–2554. [Google Scholar] [CrossRef]
- Gingras, A.C.; Gstaiger, M.; Raught, B.; Aebersold, R. Analysis of protein complexes using mass spectrometry. Nat. Rev. Mol. Cell Biol. 2007, 8, 645–654. [Google Scholar] [CrossRef]
- Gnanasekaran, P.; Pappu, H.R. Affinity Purification-Mass Spectroscopy (AP-MS) and Co-Immunoprecipitation (Co-IP) Technique to Study Protein-Protein Interactions. Methods Mol. Biol. 2023, 2690, 81–85. [Google Scholar] [CrossRef]
- Dobson, C.M. Protein folding and misfolding. Nature 2003, 426, 884–890. [Google Scholar] [CrossRef]
- McClellan, A.J.; Tam, S.; Kaganovich, D.; Frydman, J. Protein quality control: Chaperones culling corrupt conformations. Nat. Cell Biol. 2005, 7, 736–741. [Google Scholar] [CrossRef]
- Saibil, H. Chaperone machines for protein folding, unfolding and disaggregation. Nat. Rev. Mol. Cell Biol. 2013, 14, 630–642. [Google Scholar] [CrossRef]
- Jin, M.; Liu, C.; Han, W.; Cong, Y. TRiC/CCT Chaperonin: Structure and Function. Subcell. Biochem. 2019, 93, 625–654. [Google Scholar] [CrossRef]
- Pohl, C.; Dikic, I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science 2019, 366, 818–822. [Google Scholar] [CrossRef]
- Dubnikov, T.; Ben-Gedalya, T.; Cohen, E. Protein Quality Control in Health and Disease. Cold Spring Harb. Perspect. Biol. 2017, 9, a023523. [Google Scholar] [CrossRef]
- Odunuga, O.O.; Longshaw, V.M.; Blatch, G.L. Hop: More than an Hsp70/Hsp90 adaptor protein. BioEssays News Rev. Mol. Cell. Dev. Biol. 2004, 26, 1058–1068. [Google Scholar] [CrossRef]
- Tonami, K.; Kurihara, Y.; Aburatani, H.; Uchijima, Y.; Asano, T.; Kurihara, H. Calpain 6 is involved in microtubule stabilization and cytoskeletal organization. Mol. Cell. Biol. 2007, 27, 2548–2561. [Google Scholar] [CrossRef]
- Tonami, K.; Kurihara, Y.; Arima, S.; Nishiyama, K.; Uchijima, Y.; Asano, T.; Sorimachi, H.; Kurihara, H. Calpain-6, a microtubule-stabilizing protein, regulates Rac1 activity and cell motility through interaction with GEF-H1. J. Cell Sci. 2011, 124, 1214–1223. [Google Scholar] [CrossRef] [PubMed]
- Wells, C.A.; Dingus, J.; Hildebrandt, J.D. Role of the chaperonin CCT/TRiC complex in G protein betagamma-dimer assembly. J. Biol. Chem. 2006, 281, 20221–20232. [Google Scholar] [CrossRef] [PubMed]
- Willardson, B.M.; Tracy, C.M. Chaperone-mediated assembly of G protein complexes. Subcell. Biochem. 2012, 63, 131–153. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Wang, T.; Wan, H.; Han, L.; Qin, X.; Zhang, Y.; Wang, J.; Yu, C.; Berton, F.; Francesconi, W.; et al. Fmr1 deficiency promotes age-dependent alterations in the cortical synaptic proteome. Proc. Natl. Acad. Sci. USA 2015, 112, E4697–E4706. [Google Scholar] [CrossRef]
- Smith, I.J.; Dodd, S.L. Calpain activation causes a proteasome-dependent increase in protein degradation and inhibits the Akt signalling pathway in rat diaphragm muscle. Exp. Physiol. 2007, 92, 561–573. [Google Scholar] [CrossRef]
- Piatkov, K.I.; Oh, J.H.; Liu, Y.; Varshavsky, A. Calpain-generated natural protein fragments as short-lived substrates of the N-end rule pathway. Proc. Natl. Acad. Sci. USA 2014, 111, E817–E826. [Google Scholar] [CrossRef]
- Prill, K.; Dawson, J.F. Assembly and Maintenance of Sarcomere Thin Filaments and Associated Diseases. Int. J. Mol. Sci. 2020, 21, 542. [Google Scholar] [CrossRef]
- Solomon, V.; Goldberg, A.L. Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J. Biol. Chem. 1996, 271, 26690–26697. [Google Scholar] [CrossRef]
- Willis, M.S.; Schisler, J.C.; Portbury, A.L.; Patterson, C. Build it up-Tear it down: Protein quality control in the cardiac sarcomere. Cardiovasc. Res. 2009, 81, 439–448. [Google Scholar] [CrossRef]
- von Nandelstadh, P.; Soliymani, R.; Baumann, M.; Carpen, O. Analysis of myotilin turnover provides mechanistic insight into the role of myotilinopathy-causing mutations. Biochem. J. 2011, 436, 113–121. [Google Scholar] [CrossRef]
- Cohen, S. Role of calpains in promoting desmin filaments depolymerization and muscle atrophy. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118788. [Google Scholar] [CrossRef]
- Salcan, S.; Bongardt, S.; Monteiro Barbosa, D.; Efimov, I.R.; Rassaf, T.; Kruger, M.; Kotter, S. Elastic titin properties and protein quality control in the aging heart. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118532. [Google Scholar] [CrossRef]
- Kramerova, I.; Kudryashova, E.; Tidball, J.G.; Spencer, M.J. Null mutation of calpain 3 (p94) in mice causes abnormal sarcomere formation in vivo and in vitro. Hum. Mol. Genet. 2004, 13, 1373–1388. [Google Scholar] [CrossRef]
- Beckmann, J.S.; Spencer, M. Calpain 3, the “gatekeeper” of proper sarcomere assembly, turnover and maintenance. Neuromuscul. Disord. 2008, 18, 913–921. [Google Scholar] [CrossRef]
- Galvez, A.S.; Diwan, A.; Odley, A.M.; Hahn, H.S.; Osinska, H.; Melendez, J.G.; Robbins, J.; Lynch, R.A.; Marreez, Y.; Dorn, G.W., 2nd. Cardiomyocyte degeneration with calpain deficiency reveals a critical role in protein homeostasis. Circ. Res. 2007, 100, 1071–1078. [Google Scholar] [CrossRef]
- Raynaud, F.; Fernandez, E.; Coulis, G.; Aubry, L.; Vignon, X.; Bleimling, N.; Gautel, M.; Benyamin, Y.; Ouali, A. Calpain 1-titin interactions concentrate calpain 1 in the Z-band edges and in the N2-line region within the skeletal myofibril. FEBS J. 2005, 272, 2578–2590. [Google Scholar] [CrossRef]
- Teixeira, F.R.; Randle, S.J.; Patel, S.P.; Mevissen, T.E.; Zenkeviciute, G.; Koide, T.; Komander, D.; Laman, H. Gsk3beta and Tomm20 are substrates of the SCFFbxo7/PARK15 ubiquitin ligase associated with Parkinson’s disease. Biochem. J. 2016, 473, 3563–3580. [Google Scholar] [CrossRef]
- Sun, X.; Hong, Y.; Shu, Y.; Wu, C.; Ye, G.; Chen, H.; Zhou, H.; Gao, R.; Zhang, J. The involvement of Parkin-dependent mitophagy in the anti-cancer activity of Ginsenoside. J. Ginseng Res. 2022, 46, 266–274. [Google Scholar] [CrossRef]
- Sharma, J.; Mulherkar, S.; Chen, U.I.; Xiong, Y.; Bajaj, L.; Cho, B.K.; Goo, Y.A.; Leung, H.E.; Tolias, K.F.; Sardiello, M. Calpain activity is negatively regulated by a KCTD7-Cullin-3 complex via non-degradative ubiquitination. Cell Discov. 2023, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, F.S.; Abrami, L.; Linder, M.E.; Bamji, S.X.; Dickinson, B.C.; van der Goot, F.G. Mechanisms and functions of protein S-acylation. Nat. Rev. Mol. Cell Biol. 2024, 25, 488–509. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Shen, J.; Zhuang, A.; Wang, R.; Li, Q.; Rabata, A.; Zhang, Y.; Cao, D. Palmitoylation: An emerging therapeutic target bridging physiology and disease. Cell Mol. Biol. Lett. 2025, 30, 98. [Google Scholar] [CrossRef] [PubMed]
- Zaballa, M.E.; van der Goot, F.G. The molecular era of protein S-acylation: Spotlight on structure, mechanisms, and dynamics. Crit. Rev. Biochem. Mol. Biol. 2018, 53, 420–451. [Google Scholar] [CrossRef] [PubMed]
- Jensen, P.T.; Larsen, M.R. Enrichment of Cysteine S-palmitoylation using Sodium Deoxycholate Acid Precipitation—SDC-ACE. bioRxiv 2023, preprint. [Google Scholar] [CrossRef]
- Kordyukova, L.; Krabben, L.; Serebryakova, M.; Veit, M. S-Acylation of Proteins. Methods Mol. Biol. 2019, 1934, 265–291. [Google Scholar] [CrossRef]
- Mellacheruvu, D.; Wright, Z.; Couzens, A.L.; Lambert, J.P.; St-Denis, N.A.; Li, T.; Miteva, Y.V.; Hauri, S.; Sardiu, M.E.; Low, T.Y.; et al. The CRAPome: A contaminant repository for affinity purification-mass spectrometry data. Nat. Methods 2013, 10, 730–736. [Google Scholar] [CrossRef]
- Moldoveanu, T.; Hosfield, C.M.; Lim, D.; Elce, J.S.; Jia, Z.; Davies, P.L. A Ca2+ switch aligns the active site of calpain. Cell 2002, 108, 649–660. [Google Scholar] [CrossRef]
- Ojima, K.; Ono, Y.; Ottenheijm, C.; Hata, S.; Suzuki, H.; Granzier, H.; Sorimachi, H. Non-proteolytic functions of calpain-3 in sarcoplasmic reticulum in skeletal muscles. J. Mol. Biol. 2011, 407, 439–449. [Google Scholar] [CrossRef]
- Greenwood, A.F.; Jope, R.S. Brain G-protein proteolysis by calpain: Enhancement by lithium. Brain Res. 1994, 636, 320–326. [Google Scholar] [CrossRef]
- Sato-Kusubata, K.; Yajima, Y.; Kawashima, S. Persistent activation of Gsalpha through limited proteolysis by calpain. Biochem. J. 2000, 347, 733–740. [Google Scholar] [CrossRef]
- Higgins, J.B.; Casey, P.J. The role of prenylation in G-protein assembly and function. Cell. Signal. 1996, 8, 433–437. [Google Scholar] [CrossRef]
- Kubota, S.; Kubota, H.; Nagata, K. Cytosolic chaperonin protects folding intermediates of Gbeta from aggregation by recognizing hydrophobic beta-strands. Proc. Natl. Acad. Sci. USA 2006, 103, 8360–8365. [Google Scholar] [CrossRef]
- Marrari, Y.; Crouthamel, M.; Irannejad, R.; Wedegaertner, P.B. Assembly and trafficking of heterotrimeric G proteins. Biochemistry 2007, 46, 7665–7677. [Google Scholar] [CrossRef]
- Busquets-Hernandez, C.; Triola, G. Palmitoylation as a Key Regulator of Ras Localization and Function. Front. Mol. Biosci. 2021, 8, 659861. [Google Scholar] [CrossRef]
- Rocks, O.; Peyker, A.; Kahms, M.; Verveer, P.J.; Koerner, C.; Lumbierres, M.; Kuhlmann, J.; Waldmann, H.; Wittinghofer, A.; Bastiaens, P.I. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 2005, 307, 1746–1752. [Google Scholar] [CrossRef]
- Tlucek, P.S.; Folk, J.C.; Orien, J.A.; Stone, E.M.; Mahajan, V.B. Inhibition of neovascularization but not fibrosis with the fluocinolone acetonide implant in autosomal dominant neovascular inflammatory vitreoretinopathy. Arch. Ophthalmol. 2012, 130, 1395–1401. [Google Scholar] [CrossRef]
- Bassuk, A.G.; Yeh, S.; Wu, S.; Martin, D.F.; Tsang, S.H.; Gakhar, L.; Mahajan, V.B. Structural modeling of a novel CAPN5 mutation that causes uveitis and neovascular retinal detachment. PLoS ONE 2015, 10, e0122352. [Google Scholar] [CrossRef]
- Chapple, J.P.; Grayson, C.; Hardcastle, A.J.; Saliba, R.S.; van der Spuy, J.; Cheetham, M.E. Unfolding retinal dystrophies: A role for molecular chaperones? Trends Mol. Med. 2001, 7, 414–421. [Google Scholar] [CrossRef]
- Sokolov, M.; Yadav, R.P.; Brooks, C.; Artemyev, N.O. Chaperones and retinal disorders. Adv. Protein Chem. Struct. Biol. 2019, 114, 85–117. [Google Scholar] [CrossRef]
- Sjostrand, F.S. The ultrastructure of the outer segments of rods and cones of the eye as revealed by the electron microscope. J. Cell Comp. Physiol. 1953, 42, 15–44. [Google Scholar] [CrossRef]
- Seo, S.; Datta, P. Photoreceptor outer segment as a sink for membrane proteins: Hypothesis and implications in retinal ciliopathies. Hum. Mol. Genet. 2017, 26, R75–R82. [Google Scholar] [CrossRef] [PubMed]
- Kwok, M.C.; Holopainen, J.M.; Molday, L.L.; Foster, L.J.; Molday, R.S. Proteomics of photoreceptor outer segments identifies a subset of SNARE and Rab proteins implicated in membrane vesicle trafficking and fusion. Mol. Cell. Proteom. 2008, 7, 1053–1066. [Google Scholar] [CrossRef]
- Hajkova, D.; Imanishi, Y.; Palamalai, V.; Rao, K.C.; Yuan, C.; Sheng, Q.; Tang, H.; Zeng, R.; Darrow, R.M.; Organisciak, D.T.; et al. Proteomic changes in the photoreceptor outer segment upon intense light exposure. J. Proteome Res. 2010, 9, 1173–1181. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Skiba, N.P.; Lewis, T.R.; Spencer, W.J.; Castillo, C.M.; Shevchenko, A.; Arshavsky, V.Y. Absolute Quantification of Photoreceptor Outer Segment Proteins. J. Proteome Res. 2023, 22, 2703–2713. [Google Scholar] [CrossRef]
- Posokhova, E.; Song, H.; Belcastro, M.; Higgins, L.; Bigley, L.R.; Michaud, N.A.; Martemyanov, K.A.; Sokolov, M. Disruption of the chaperonin containing TCP-1 function affects protein networks essential for rod outer segment morphogenesis and survival. Mol. Cell. Proteom. 2011, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Belcastro, M.; Datta, P.; Seo, S.; Sokolov, M. Essential role of the chaperonin CCT in rod outer segment biogenesis. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3775–3785. [Google Scholar] [CrossRef]
- Kim, B.H.; Kim, D.Y.; Oh, S.; Ko, J.Y.; Rah, G.; Yoo, K.H.; Park, J.H. Deficiency of calpain-6 inhibits primary ciliogenesis. BMB Rep. 2019, 52, 619–624. [Google Scholar] [CrossRef]
- Proekt, I.; Miller, C.N.; Jeanne, M.; Fasano, K.J.; Moon, J.J.; Lowell, C.A.; Gould, D.B.; Anderson, M.S.; DeFranco, A.L. LYN- and AIRE-mediated tolerance checkpoint defects synergize to trigger organ-specific autoimmunity. J. Clin. Investig. 2016, 126, 3758–3771. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ingley, E. Functions of the Lyn tyrosine kinase in health and disease. Cell Commun. Signal. 2012, 10, 21. [Google Scholar] [CrossRef]
- Xu, Y.; Harder, K.W.; Huntington, N.D.; Hibbs, M.L.; Tarlinton, D.M. Lyn tyrosine kinase: Accentuating the positive and the negative. Immunity 2005, 22, 9–18. [Google Scholar] [CrossRef][Green Version]
- Gurley, J.M.; Elliott, M.H. The Role of Caveolin-1 in Retinal Inflammation. Adv. Exp. Med. Biol. 2019, 1185, 169–173. [Google Scholar] [CrossRef]
- Bishop, J.M. Molecular themes in oncogenesis. Cell 1991, 64, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Knudson, A.G., Jr. Mutation and cancer: Statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 1971, 68, 820–823. [Google Scholar] [CrossRef] [PubMed]
- Vogelstein, B.; Kinzler, K.W. The Path to Cancer—Three Strikes and You’re Out. N. Engl. J. Med. 2015, 373, 1895–1898. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Zhou, Q.; Wang, Y.; Chishti, A.; Li, Q.Q.; Dayal, S.; Shiehzadegan, S.; Cheng, A.; Moore, C.; Bi, X.; et al. Deletion of the Capn1 Gene Results in Alterations in Signaling Pathways Related to Alzheimer’s Disease, Protein Quality Control and Synaptic Plasticity in Mouse Brain. Front. Genet. 2020, 11, 334. [Google Scholar] [CrossRef]
- Brian, B.F.t.; Freedman, T.S. The Src-family Kinase Lyn in Immunoreceptor Signaling. Endocrinology 2021, 162, bqab152. [Google Scholar] [CrossRef]
- Louvrier, C.; El Khouri, E.; Grall Lerosey, M.; Quartier, P.; Guerrot, A.M.; Bader Meunier, B.; Chican, J.; Mohammad, M.; Assrawi, E.; Daskalopoulou, A.; et al. De Novo Gain-Of-Function Variations in LYN Associated With an Early-Onset Systemic Autoinflammatory Disorder. Arthritis Rheumatol. 2023, 75, 468–474. [Google Scholar] [CrossRef]
- Gregory-Evans, C.Y.; Joe, A.W.; Gregory-Evans, K. Mutation of beta-tubulin 4B gene (TUBB4B) causes autosomal dominant retinitis pigmentosa with sensorineural hearing loss in a multigenerational family. Mol. Vis. 2025, 31, 175–188. [Google Scholar]
- Luscan, R.; Mechaussier, S.; Paul, A.; Tian, G.; Gerard, X.; Defoort-Dellhemmes, S.; Loundon, N.; Audo, I.; Bonnin, S.; LeGargasson, J.F.; et al. Mutations in TUBB4B Cause a Distinctive Sensorineural Disease. Am. J. Hum. Genet. 2017, 101, 1006–1012. [Google Scholar] [CrossRef]
- Scarpato, M.; Testa, F.; Nesti, A.; Zeuli, R.; Boccia, R.; Auletta, G.; Banfi, S.; Simonelli, F.; Karali, M. A Novel Variant in TUBB4B Causes Progressive Cone-Rod Dystrophy and Early Onset Sensorineural Hearing Loss. Mol. Genet. Genom. Med. 2025, 13, e70068. [Google Scholar] [CrossRef]


| Gene | Protein (Human) | Template | Vector | Amplification Primers |
|---|---|---|---|---|
| TUBB4B | TBB4B | HsCD00718897 | p3×HA-Nterm | 5′-CGTCGAATTCCAGGGAAATCGTGCACTTGCA-3′ |
| 5′-CGTCTCTAGACTAGGCCACCTCCTCCTCA-3′ | ||||
| GNB3 | GBB3 | HsCD00044032 | p3×HA-Nterm | 5′-CGTCGAATTCCGGGGAGATGGAGCAACT-3′ |
| 5′-CGTCTCTAGATCAGTTCCAGATTTTGAGGAAG-3′ | ||||
| GNAT1 | GNAT1 | HsCD00642120 | p3×HA-Cterm | 5′-CGTCGAATTCACCATGGGGGCTGGG-3′ |
| 5′-CGTCTCTAGAGAAGAGGCCACAGTCTTTG-3′ | ||||
| GNAT2 | GNAT2 | HsCD00731264 | p3×HA-Cterm | 5′-CGTCGAATTCACCATGGGAAGTGGAGCCAGT-3′ |
| 5′-CGTCTCTAGAGAAGAGGCCGCAGTCC-3′ | ||||
| LYN | LYN | HsCD00398517 | p3×HA-Cterm | 5′-CGTCGAATTCACCATGGGATGTATAAAATCAAAAGGGAAA-3′ |
| 5′-CGTCTCTAGAAGGCTGCTGCTGGTATTG-3′ | ||||
| RDH11 | RDH11 | HsCD00287713 | p3×HA-Cterm | 5′-CGTCGAATTCACCATGGTTGAGCTCATGTTCCC-3′ |
| 5′-CGTCTCTAGAGTCTATTGGGAGGCCCAGC-3′ | ||||
| SPTLC1 | SPTC1 | HsCD00622915 | p3×HA-Cterm | 5′-CGTCGAATTCACCATGGCGACCGCCAC-3′ |
| 5′-CGTCTCTAGACACAATTGGTCCATACTGACA-3′ |
| Gene | Entry Clone | Destination Vector |
|---|---|---|
| GNB2 | HsCD00001017 | pGCS-N2 (3×HA) |
| GNAI2 | HsCD00041647 | pCSF107mT-GATEWAY-3′-3HA |
| ATP1A1 | HsCD00076086 | pCSF107mT-GATEWAY-3′-3HA |
| RHO | HsCD00082470 | pCSF107mT-GATEWAY-3′-3HA |
| SCRIB | 70590 | pCSF107mT-GATEWAY-3′-3HA |
| Protein | Company | Cat. Number | Species | Epitope/Antigen/Immunogen | Concentration |
|---|---|---|---|---|---|
| Actin (Beta) | Proteintech | 66009-1-Ig | Mouse | Unspecified fusion protein | 0.5 µg/mL |
| ATP1A1 | Abcam, Waltham, MA, USA | ab7671 | Mouse | Full-length protein | 1.0 µg/mL |
| Beta-tubulin | Abcam | ab6046 | Rabbit poly | Proprietary fragment of human TUBB5 | 0.25 µg/mL |
| CAPN5 | Genetex, Irvine, CA, USA | GTX103264 | Rabbit poly | Center region of human CAPN5 | 1.39 µg/mL |
| CCT5/TCPE | Proteintech | 11603-1-AP | Rabbit poly | 242–541 aa of human CCT5/TCPE | 0.9 µg/mL |
| ERLIN2 | Cell Signaling, Danvers, MA, USA | 2959S | Rabbit poly | Residues surrounding Gln315 of mouse ERLIN2 | 0.018 µg/mL |
| FLAG | Sigma | F3165 | Mouse | Peptide DYKDDDDK | 2.0 µg/mL |
| HA tag | Proteintech | 51064-2-AP | Rabbit poly | “Peptide” | 1.6 µg/mL |
| HSPD1/CH60 | Proteintech | 15282-1-AP | Rabbit poly | 225–573 aa of human HSPD1/CH60 | 1.3 µg/mL |
| PRKDC | Fortis/Bethyl, Montgomery, TX, USA | A300-517A | Rabbit poly | Between aa 2050 and 2100 (center region) | 0.2 µg/mL |
| SCRIB | Cell Signaling | 4475S | Rabbit poly | Residues surrounding Gly1237 of human SCRIB | 0.026 µg/mL |
| SPTLC1 | Proteintech | 15376-1-AP | Rabbit poly | 1–142 aa (N-terminus) of human SPTLC1 | 1.0 µg/mL |
| STIP1 (HOP) | Cell Signaling | 5670S | Rabbit mAb | Residues surrounding Pro391 of human STIP1 | 0.027 µg/mL |
| STUB1/CHIP | Cell Signaling | 2080S | Rabbit mAb | Residues around Leu36 of human STUB1/CHIP | 0.04 µg/mL |
| RP2/XRP2 | Proteintech | 14151-1-AP | Rabbit poly | 1–350 aa (full-length) human XRP2 | 0.7 µg/mL |
| Protein (Human) | Gene | UniProtAC | Protein Name | p-Value | Fold Change | Index |
|---|---|---|---|---|---|---|
| CAN5 | CAPN5 | O15484 | Calpain-5 | 7.40 × 10−8 | 1026.5 | 1 |
| Chaperonins | ||||||
| TCPA | TCP1 | P17987 | T-complex protein 1 subunit alpha | 1.13 × 10−5 | 14.2 | 49 |
| TCPB | CCT2 | P78371 | T-complex protein 1 subunit beta | 4.13 × 10−9 | 17.1 | 43 |
| TCPD | CCT4 | P50991 | T-complex protein 1 subunit delta | 1.32 × 10−6 | 12.9 | 68 |
| TCPE | CCT5 * | P48643 | T-complex protein 1 subunit epsilon | 3.27 × 10−6 | 7.7 | 39 |
| TCPG | CCT3 | P49368 | T-complex protein 1 subunit gamma | 6.42 × 10−8 | 14.1 | 24 |
| TCPH | CCT7 | Q99832 | T-complex protein 1 subunit eta | 5.00 × 10−7 | 14.0 | 55 |
| TCPQ | CCT8 | P50990 | T-complex protein 1 subunit theta | 3.31 × 10−6 | 12.0 | 23 |
| TCPZ | CCT6A | P40227 | T-complex protein 1 subunit zeta | 4.17 × 10−7 | 17.7 | 54 |
| Chaperones/Heat Shock Proteins | ||||||
| CDC37 | CDC37 | Q16543 | HSP90 co-chaperone Cdc37 | 2.78 × 10−5 | 32.6 | 151 |
| BAG2 | BAG2 | O95816 | BAG family molecular chaperone regulator 2 | 2.08 × 10−6 | 29.7 | 214 |
| HS90A | HSP90AA1 | P07900 | Heat shock protein HSP90-alpha | 2.14 × 10−5 | 13.9 | 6 |
| HS90B | HSP90AB1 | P08238 | Heat shock protein HSP90-beta | 2.40 × 10−4 | 13.6 | 64 |
| HSP7C | HSPA8 | P11142 | Heat shock cognate 71 kDa protein | 9.66 × 10−5 | 9.1 | 19 |
| CH60 | HSPD1 * | P10809 | 60 kDa heat shock protein, mitochondrial | 2.90 × 10−9 | 5.5 | 9 |
| HS71B | HSPA1B | P0DMV9 | Heat shock 70 kDa protein 1B | 2.90 × 10−4 | 6.5 | 12 |
| STIP1 | STIP1 * | P31948 | Stress-induced-phosphoprotein 1 | 3.30 × 10−4 | 6.0 | 37 |
| DNJC7 | DNAJC7 | Q99615 | DnaJ homolog subfamily C member 7 | 7.47 × 10−7 | 5.1 | 744 |
| DNJA1 | DNAJA1 | P31689 | DnaJ homolog subfamily A member 1 | 3.61 × 10−6 | 7.2 | 497 |
| DNJA2 | DNAJA2 | O60884 | DnaJ homolog subfamily A member 2 | 6.84 × 10−7 | 7.6 | 466 |
| DNJA3 | DNAJA3 | Q96EY1 | DnaJ homolog subfamily A member 3, mitochondrial | 8.03 × 10−7 | 4.9 | 626 |
| Tubulins | ||||||
| TBA1B | TUBA1B | P68363 | Tubulin alpha-1B chain | 1.10 × 10−4 | 12.2 | 40 |
| TBB2A | TUBB2A | Q13885 | Tubulin beta-2A chain | 5.00 × 10−10 | 4.8 | 397 |
| TBB5 | TUBB | P07437 | Tubulin beta chain | 1.81 × 10−7 | 10.0 | 18 |
| TBB4B | TUBB4B * | P68371 | Tubulin beta-4B chain | 2.17 × 10−5 | 8.6 | 505 |
| TBB6 | TUBB6 | Q9BUF5 | Tubulin beta-6 chain | 4.18 × 10−8 | 6.38 | 701 |
| Other structural/cytoskeletal proteins | ||||||
| SCRIB | SCRIB * | Q14160 | Protein scribble homolog | 1.99 × 10−3 | 6.4 | 275 |
| MIC60 | IMMT | Q16891 | MICOS complex subunit MIC60 | 2.14 × 10−7 | 4.6 | 136 |
| CAV1 | CAV1 | Q03135 | Caveolin-1 | 1.78 × 10−5 | 7.9 | 859 |
| EMD | EMD | P50402 | Emerin | 3.00 × 10−4 | 5.7 | 799 |
| DSG2 | DSG2 | Q14126 | Desmoglein-2 | 1.49 × 10−15 | 5.3 | 395 |
| Ubiquitin–proteasome system and endoplasmic reticulum-associated degradation (ERAD) | ||||||
| CHIP | STUB1 * | Q9UNE7 | E3 ubiquitin-protein ligase CHIP | 2.10 × 10−4 | 6.6 | 646 |
| PSA3 | PSMA3 | P25788 | Proteasome subunit alpha type-3 | 1.26 × 10−5 | 4.1 | 454 |
| PSA5 | PSMA5 | P28066 | Proteasome subunit alpha type-5 | 4.84 × 10−8 | 4.7 | 617 |
| ERLN2 | ERLIN2 * | O94905 | Erlin-2 | 9.99 × 10−7 | 7.5 | 318 |
| Kinases/phosphatases | ||||||
| PRKDC | PRKDC * | P78527 | DNA-dependent protein kinase catalytic subunit | 1.40 × 10−3 | 10.6 | 3 |
| LYN | LYN * | P07948 | Tyrosine-protein kinase Lyn | 1.10 × 10−6 | 6.5 | 536 |
| PPAC | ACP1 | P24666 | Low molecular weight phosphotyrosine protein phosphatase | 0.00349 | 5.3 | 622 |
| 2ABA | PPP2R2A | P63151 | Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform | 7.31 × 10−7 | 4.4 | 730 |
| G protein signaling | ||||||
| GBB2 | GNB2 * | P62879 | Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 | 5.22 × 10−3 | 7.0 | 723 |
| GNAI2 | GNAI2 * | P04899 | Guanine nucleotide-binding protein G(i) subunit alpha-2 | 3.19 × 10−13 | 5.6 | 303 |
| GNAI3 | GNAI3 | P08754 | Guanine nucleotide-binding protein G(i) subunit alpha | 2.46 × 10−9 | 4.4 | 869 |
| RASN | NRAS * | P01111 | GTPase NRas | 4.13 × 10−10 | 4.8 | 878 |
| Translation, RNA processing | ||||||
| DDX21 | DDX21 | Q9NR30 | Nucleolar RNA helicase 2 | 2.50 × 10−4 | 5.3 | 403 |
| U2AF1 | U2AF1 | Q01081 | Splicing factor U2AF 35 kDa subunit | 6.01 × 10−7 | 5.3 | 865 |
| RS27 | RPS27 | P42677 | Small ribosomal subunit protein eS27 | 8.23 × 10−6 | 5.5 | 754 |
| Mitochondrial metabolic proteins | ||||||
| GCDH | GCDH | Q92947 | Glutaryl-CoA dehydrogenase, mitochondrial | 3.23 × 10−3 | 14.5 | 694 |
| GPDM | GPD2 | P43304 | Glycerol-3-phosphate dehydrogenase, mitochondrial | 6.44 × 10−3 | 13.3 | 147 |
| MPCP | SLC25A3 | Q00325 | Phosphate carrier protein, mitochondrial | 5.30 × 10−4 | 9.5 | 366 |
| Other | ||||||
| CD59 | CD59 | P13987 | CD59 glycoprotein | 3.20 × 10−4 | 5.9 | 445 |
| SPTC1 | SPTLC1 * | O15269 | Serine palmitoyltransferase 1 | 3.30 × 10−5 | 4.7 | 467 |
| AT1A1 | ATP1A1 * | P05023 | Sodium/potassium-transporting ATPase subunit alpha-1 | 4.61 × 10−10 | 5.5 | 28 |
| GO ID | Gene Ontology Term | Corrected p-Value | CAPN5 Interactors | SH-SY5Y Proteome | Fold Enrichment | ||
|---|---|---|---|---|---|---|---|
| Number | Percent | Number | Percent | ||||
| Molecular Function | |||||||
| GO:0051082 | unfolded protein binding | 2.68 × 10−20 | 18 | 35% | 92 | 1% | 28 |
| GO:0140662 | ATP-dependent protein folding chaperone | 1.18 × 10−18 | 13 | 25% | 33 | 0% | 57 |
| GO:0044183 | protein folding chaperone | 1.49 × 10−14 | 13 | 25% | 62 | 1% | 30 |
| Biologic Process | |||||||
| GO:0006457 | protein folding | 1.13 × 10−15 | 19 | 37% | 175 | 2% | 16 |
| GO:0050821 | protein stabilization | 2.04 × 10−12 | 16 | 31% | 154 | 2% | 15 |
| GO:0061077 | chaperone-mediated protein folding | 2.37 × 10−12 | 12 | 24% | 59 | 1% | 29 |
| Cellular Component | |||||||
| GO:0101031 | protein folding chaperone complex | 5.03 × 10−20 | 14 | 27% | 36 | 0% | 56 |
| GO:0005874 | microtubule | 4.76 × 10−11 | 15 | 29% | 267 | 4% | 8 |
| GO:0099513 | polymeric cytoskeletal fiber | 6.52 × 10−11 | 16 | 31% | 399 | 5% | 6 |
| Protein (Human) | Gene | UniProtAC | Disease Association | OMIM | PMIDs |
|---|---|---|---|---|---|
| AT1A1 | ATP1A1 | P05023 | wide spectrum: axonal neuropathies, spastic paraplegia, hypomagnesemia | 618036 | 35110381, 36738336 |
| CH60 | HSPD1 | P10809 | spastic paraplegia 13, autosomal dominant (SPG13) | 605280 | 11898127 |
| CHIP | STUB1 | Q9UNE7 | spinocerebellar ataxia, multisystemic neurodegeneration | 615768 | 24312598, 28193273 |
| ERLN2 | ERLIN2 | O94905 | spastic paraplegia 18, autosomal recessive (SPG18) | 611225 | 21330303, 38427163 |
| GBB2 | GNB2 | P62879 | neurodevelopmental disorder with hypotonia and dysmorphic facies (NEDHYDF) | 619503 | 31698099, 33971351, 34183358 |
| GNAI2 | GNAI2 | P04899 | pediatric encephalopathy, immune dysfunction | 139360 | 39298586 |
| LYN | LYN | P07948 | autoimmune disease, autoinflammatory disease, systemic, with vasculitis (SAIDV) | 165120 | 27571405, 36122175 |
| PRKDC | PRKDC | P78527 | immunodeficiency 26 with or without neurologic abnormalities (IMD26) | 615966 | 19075392, 23722905 |
| RASN | NRAS | P01111 | juvenile chronic myelogenous leukemia, autoimmune lymphoproliferative syndrome | 607785 | 17332249, 17517660 |
| SCRIB | SCRIB | Q14160 | neural tube defects | 182940 | 22095531 |
| SPTC1 | SPTLC1 | O15269 | hereditary sensory and autonomic neuropathies, childhood onset ALS | 162400 | 11242114, 32470188, 34059824 |
| STIP1 | STIP1 | P31948 | neuroprotective for Parkinson’s disease | 605063 | 35626686, 36121476 |
| TBB4B | TUBB4B | P68371 | Leber congenital amaurosis, neurodegenerative disease of photoreceptor cells | 617879 | 29198720, 39876836 |
| TCPE | CCT5 | P48643 | sensory and demyelinating neuropathies, defective autophagy | 256840 | 16399879, 27929117, 33076433 |
| Gene | Protein (Human) | UniProtAC | Co-Precipitation | Calcium-Induced Proteolysis | Figure Numbers | ||
|---|---|---|---|---|---|---|---|
| Endogenous | HA-Tagged | Endogenous | HA-Tagged | ||||
| CCT5 | TCPE | P48643 | Yes | ND | Yes | ND | 2A |
| HSPD1 | CH60 | P10809 | Yes | ND | Yes | ND | 2B |
| PRKDC | PRKDC | P78527 | Yes | ND | Yes | ND | S1 |
| ATP1A1 | AT1A1 | P05023 | Yes | Yes | Yes | Yes | S2 and S9 |
| ERLIN2 | ERLN2 | O94905 | Yes | ND | Yes | ND | S3 |
| SCRIB | SCRIB | Q14160 | Yes | Yes | Yes | Yes | S4 and S10 |
| STIP1 | STIP1 | P31948 | Yes | ND | No | ND | S5 |
| STUB1 | CHIP | Q9UNE7 | Yes | ND | No | ND | S6 |
| SPTLC1 | SPTC1 | O15269 | Yes | Yes | Yes | Yes | S7 |
| NA | β-Tubulin | NA | Yes | NA | Yes | NA | S8 |
| TUBB4B | TBB4B | P68371 | ND | Yes | ND | Yes | 2C |
| LYN | LYN | P07948 | Not detected | Yes | ND | Yes | 2D |
| GNAI2 | GNAI2 | P04899 | Not detected | Yes | ND | Yes | S11 |
| GNB2 | GBB2 | P62879 | Not detected | Yes | ND | No | S12 |
| NRAS | RASN | P01111 | Not detected | Yes | ND | No | S13 |
| Gene | Protein | UniProtAC | Co-Precipitation | Calcium-Induced Proteolysis | Figure Numbers | ||
|---|---|---|---|---|---|---|---|
| (Human) | Endogenous | HA-Tagged | Endogenous | HA-Tagged | |||
| GNAT1 | GNAT1 | P11488 | ND | Yes | ND | Yes | S14 |
| GNAT2 | GNAT2 | P19087 | ND | Yes | ND | Yes | 2F |
| GNB3 | GBB3 | P16520 | ND | Yes | ND | No | S15 |
| RP2 | XRP2 | O75695 | Yes | ND | Yes | ND | 2E |
| RHO | OPSD | P08100 | ND | Yes | ND | No | S16 |
| RDH11 | RDH11 | Q8TC12 | ND | Yes | ND | Yes | S17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gal, J.; Bondada, V.; Crasta, R.; Croall, D.E.; Vary, C.P.; Geddes, J.W. Candidate Interaction Partners of Calpain-5 Suggest Clues to Its Involvement in Neovascular Inflammatory Vitreoretinopathy. Cells 2026, 15, 142. https://doi.org/10.3390/cells15020142
Gal J, Bondada V, Crasta R, Croall DE, Vary CP, Geddes JW. Candidate Interaction Partners of Calpain-5 Suggest Clues to Its Involvement in Neovascular Inflammatory Vitreoretinopathy. Cells. 2026; 15(2):142. https://doi.org/10.3390/cells15020142
Chicago/Turabian StyleGal, Jozsef, Vimala Bondada, Rachel Crasta, Dorothy E. Croall, Calvin P. Vary, and James W. Geddes. 2026. "Candidate Interaction Partners of Calpain-5 Suggest Clues to Its Involvement in Neovascular Inflammatory Vitreoretinopathy" Cells 15, no. 2: 142. https://doi.org/10.3390/cells15020142
APA StyleGal, J., Bondada, V., Crasta, R., Croall, D. E., Vary, C. P., & Geddes, J. W. (2026). Candidate Interaction Partners of Calpain-5 Suggest Clues to Its Involvement in Neovascular Inflammatory Vitreoretinopathy. Cells, 15(2), 142. https://doi.org/10.3390/cells15020142

