MMP3 as a Molecular Link: Unraveling the Connection Between Ankylosing Spondylitis and Acute Coronary Syndrome
Abstract
:1. Introduction
2. Clinical Evidence That Ankylosing Spondylitis Predisposes to Acute Coronary Syndrome
3. Molecular Implications
3.1. MMP-3 in AS and ACS: Clinical and Pathological Aspects
3.2. MMP-3 and Its Role in Extracellular Matrix Degradation
3.3. Molecular Pathways Linking AS and ACS
3.4. Therapeutic Potential of Targeting MMP-3
4. Future Perspectives: MMP-3 Modulation
5. Challenges in MMP-3 Modulation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhagavathula, A.S.; Bentley, B.L.; Woolf, B.; Dissanayaka, T.D.; Rahmani, J. Increased risk of stroke among patients with ankylosing spondylitis: A systematic review and meta-analysis. Reum. Clin. 2023, 19, 136–142. [Google Scholar] [CrossRef]
- Navarini, L.; Caso, F.; Costa, L.; Currado, D.; Stola, L.; Perrotta, F.; Delfino, L.; Sperti, M.; Deriu, M.A.; Ruscitti, P.; et al. Cardiovascular risk prediction in ankylosing spondylitis: From traditional scores to machine learning assessment. Rheumatol. Ther. 2020, 7, 867–882. [Google Scholar] [CrossRef]
- Toussirot, E. The Risk of Cardiovascular Diseases in Axial Spondyloarthritis. Current Insights. Front. Med. 2021, 8, 782150. [Google Scholar] [CrossRef] [PubMed]
- Bhattad, P.B.; Kulkarni, M.; Patel, P.D.; Roumia, M. Cardiovascular morbidity in ankylosing spondylitis: A focus on inflammatory cardiac disease. Cureus 2022, 14, e25633. [Google Scholar] [CrossRef]
- Ungprasert, P.; Srivali, N.; Kittanamongkolchai, W. Risk of coronary artery disease in patients with ankylosing spondylitis: A systematic review and meta-analysis. Ann. Transl. Med. 2015, 3, 7–51. [Google Scholar] [CrossRef]
- Soares, M.R.M.P.; Pinheiro, M.d.M. Doença cardiovascular e espondilite anquilosante. Rev. Paul. Reum. 2015, 14, 20–27. [Google Scholar] [CrossRef]
- Ozdowska, P.; Wardziak, Ł.; Kruk, M.; Kępka, C.; Kowalik, I.; Szwed, H.; Głuszko, P.; Rupiński, R.; Kwiatkowska, B.; Sikorska-Siudek, K.; et al. Increased prevalence of subclinical coronary atherosclerosis in young patients with ankylosing spondylitis. Pol. Arch. Intern. Med. 2018, 128, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Slouma, M.; Bouzid, S.; Kharrat, L.; Tezeghdenti, A.; Ghazouani, E.; Metoui, L.; Dhahri, R.; Gharsallah, I.; Louzir, B. Assessment of matrix metalloproteinase-3 in spondyloarthritis: Correlation with disease activity. Ann. Rheum. Dis. 2023, 82, 1718–1719. [Google Scholar] [CrossRef]
- Moz, S.; Aita, A.; Basso, D.; Ramonda, R.; Plebani, M.; Punzi, L. Spondyloarthritis: Matrix metalloproteinasesas biomarkers of pathogenesis and response to Tumor Necrosis Factor (TNF) inhibitors. Int. J. Mol. Sci. 2017, 18, 830. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, K.; Lu, J.; Su, T. Serum matrix metalloproteinases-3 levels in patients with ankylosing spondylitis. Genet. Mol. Res. 2015, 14, 17068–17078. [Google Scholar] [CrossRef]
- Johnson, J.L. Metalloproteinases in atherosclerosis. Eur. J. Pharmacol. 2017, 816, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Olejarz, W.; Łacheta, D.; Kubiak-Tomaszewska, G. Matrix metalloproteinases as biomarkers of atherosclerotic plaque instability. Int. J. Mol. Sci. 2020, 21, 3946. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Wei, R.; Wang, L.; Lu, J.; Liu, H.; Zhang, W. Correlations of MMP-1, MMP-3, and MMP-12 with the degree of atherosclerosis, plaque stability and cardiovascular and cerebrovascular events. Exp. Ther. Med. 2017, 15, 1994–1998. [Google Scholar] [CrossRef]
- Hwang, M.C.; Ridley, L.; Reveille, J.D. Ankylosing spondylitis risk factors: A systematic literature review. Clin. Rheumatol. 2021, 40, 3079–3093. [Google Scholar] [CrossRef] [PubMed]
- Crossfield, S.S.R.; Marzo-Ortega, H.; Kingsbury, S.R.; Pujades-Rodriguez, M.; Conaghan, P.G. Changes in ankylosing spondylitis incidence, prevalence and time to diagnosis over two decades. RMD Open 2021, 7, e001888. [Google Scholar] [CrossRef]
- Zhu, W.; He, X.; Cheng, K.; Zhang, L.; Chen, D.; Wang, X.; Qiu, G.; Cao, X.; Weng, X. Ankylosing spondylitis: Etiology, pathogenesis, and treatments. Bone Res. 2019, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Wenker, K.J.; Quint, J.M. Ankylosing Spondylitis; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470173/ (accessed on 12 September 2024).
- Atwood, J. Management of acute coronary syndrome. Emerg. Med. Clin. N. Am. 2022, 40, 693–706. [Google Scholar] [CrossRef]
- Khan, M.A.; Yong, S.; Wei, J.C. Ankylosing spondylitis: History, epidemiology, and HLA-B27. Int. J. Rheum. Dis. 2023, 26, 413–414. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Lopes, R.D.; Harrington, R.A. Diagnosis and treatment of acute coronary syndromes: An analysis from the British cardiovascular intervention society database. JAMA 2022, 327, 662–675. [Google Scholar] [CrossRef]
- American College of Cardiology. New Study Reveals Latest Data on Global Burden of Cardiovascular Disease. American College of Cardiology. 2023. Available online: https://www.acc.org/About-ACC/Press-Releases/2023/12/11/18/48/New-Study-Reveals-Latest-Data-on-Global-Burden-of-Cardiovascular-Disease (accessed on 23 October 2024).
- Timmis, A.; Kazakiewicz, D.; Townsend, N.; Huculeci, R.; Aboyans, V.; Vardas, P. Global epidemiology of acute coronary syndromes. Nat. Rev. Cardiol. 2023, 20, 778–788. [Google Scholar] [CrossRef]
- Chou, C.-H.; Lin, M.-C.; Peng, C.-L.; Wu, Y.-C.; Sung, F.-C.; Kao, C.-H.; Liu, S.-H. A nationwide population-based retrospective cohort study: Increased risk of acute coronary syndrome in patients with ankylosing spondylitis. Scand. J. Rheumatol. 2014, 43, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.M.; Chien, W.-C.; Chen, Y.-H.; Sun, C.-A.; Chung, C.-H.; Chen, J.-T.; Chen, C.-L. Increased risk of acute coronary syndrome in ankylosing spondylitis patients with uveitis: A population-based cohort study. Front. Immunol. 2022, 13, 890543. [Google Scholar] [CrossRef]
- Essers, I.; Stolwijk, C.; Boonen, A.; De Bruin, M.L.; Bazelier, M.T.; de Vries, F.; van Tubergen, A. Ankylosing spondylitis and risk of ischaemic heart disease: A population-based cohort study. Ann. Rheum. Dis. 2016, 75, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.M.; Chang, W.P.; Wei, J.C.C.; Chou, P.; Wang, P.Y.P. Midlife Ankylosing Spondylitis Increases the Risk of Cardiovascular Diseases in Males 5 Years Later: A National Population-Based Study. Medicine 2016, 95, e3596. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, K.; Forsblad-D’elia, H.; Lie, E.; Klingberg, E.; Dehlin, M.; Exarchou, S.; Lindström, U.; Askling, J.; Jacobsson, L.T.H. Are ankylosing spondylitis, psoriatic arthritis and undifferentiated spondyloarthritis associated with an increased risk of cardiovascular events? A prospective nationwide population-based cohort study. Arthritis Res. Ther. 2017, 19, 102. [Google Scholar] [CrossRef]
- Södergren, A.; Askling, J.; Bengtsson, K.; Forsblad-D’elia, H.; Jernberg, T.; Lindström, U.; Ljung, L.; Mantel, Ä.; Jacobsson, L.T.H. Characteristics and outcome of a first acute myocardial infarction in patients with ankylosing spondylitis. Clin. Rheumatol. 2021, 40, 1321–1329. [Google Scholar] [CrossRef]
- Lai, Y.-F.; Lin, T.-Y.; Chien, W.-C.; Sun, C.-A.; Chung, C.-H.; Chen, Y.-H.; Chen, J.-T.; Chen, C.-L. Uveitis as a risk factor for developing acute myocardial infarction in ankylosing spondylitis: A national population-based longitudinal cohort study. Front. Immunol. 2022, 12, 811664. [Google Scholar] [CrossRef]
- Karmacharya, P.; Shahukhal, R.; Crowson, C.S.; Murad, M.H.; Davis, J.M.; Shrestha, P.; Bekele, D.; Wright, K.; Chakradhar, R.; Dubreuil, M. Effects of therapies on cardiovascular events in ankylosing spondylitis: A systematic review and meta-analysis. Rheumatol. Ther. 2020, 7, 993–1009. [Google Scholar] [CrossRef]
- Fitzgerald, G.; Gallagher, P.; O’shea, F.D. Multimorbidity in axial spondyloarthropathy and its association with disease outcomes: Results from the Ankylosing Spondylitis Registry of Ireland Cohort. J. Rheumatol. 2020, 47, 218–226. [Google Scholar] [CrossRef]
- Wan, Z.-H.; Wang, J.; Zhao, Q. Acute myocardial infarction in a young man with ankylosing spondylitis: A case report. World J. Clin. Cases 2021, 9, 11392–11399. [Google Scholar] [CrossRef]
- Agrawal, P.; Tote, S.; Sapkale, B. Diagnosis and treatment of ankylosing spondylitis. Cureus 2024, 16, e52559. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Liang, W.; Xu, T.; Xun, C.; Cao, R.; Deng, Q.; Zhang, J.; Sheng, W. Associations of tumor necrosis factor alpha gene polymorphisms and ankylosing spondylitis susceptibility: A meta-analysis based on 35 case-control studies. Immunol. Investig. 2022, 51, 859–882. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019, 28, 1947–1951. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, S.; Huang, Z.; Xing, W.; Li, F.; Da, Y.; Xue, J.; Li, M.; Sun, K.; Jia, H.; et al. Association study between matrix metalloproteinase-3 gene (MMP3) polymorphisms and ankylosing spondylitis susceptibility. Mol. Genet. Genom. Med. 2019, 7, e00752. [Google Scholar] [CrossRef]
- Sun, S.; Bay-Jensen, A.-C.; A Karsdal, M.; Siebuhr, A.S.; Zheng, Q.; Maksymowych, W.P.; Christiansen, T.G.; Henriksen, K. The active form of MMP-3 is a marker of synovial inflammation and cartilage turnover in inflammatory joint diseases. BMC Musculoskelet. Disord. 2014, 15, 93. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Zhang, G.; Li, X.; Qiu, X.; Ouyang, J.; Dai, J.; Min, S. Matrix metalloproteinase 3: A promoting and destabilizing factor in the pathogenesis of disease and cell differentiation. Front. Physiol. 2021, 12, 663978. [Google Scholar] [CrossRef]
- Xie, Y.; Lin, T.; Jin, Y.; Berezowitz, A.G.; Wang, X.-L.; Lu, J.; Cai, Y.; Guzman, R.J. Smooth muscle cell-specific matrix metalloproteinase 3 deletion reduces osteogenic transformation and medial artery calcification. Cardiovasc. Res. 2024, 120, 658–670. [Google Scholar] [CrossRef]
- GeneCard. Available online: http://10.1093/nar/gkw1012 (accessed on 6 October 2024).
- UniProt. Uniprot.org. Available online: https://www.uniprot.org/help/uniprotkb_man (accessed on 6 October 2024).
- Bassiouni, W.; Ali, M.A.M.; Schulz, R. Multifunctional intracellular matrix metalloproteinases: Implications in disease. FEBS J. 2021, 288, 7162–7182. [Google Scholar] [CrossRef]
- Kadry, R.; Newsome, A.S.; Somanath, P.R. Pharmacological inhibition of MMP3 as a potential therapeutic option for COVID-19 associated acute respiratory distress syndrome. Infect. Disord.-Drug Targets 2021, 21, 2–5. [Google Scholar] [CrossRef]
- Webster, J.D.; Vucic, D. The balance of TNF mediated pathways regulates inflammatory cell death signaling in healthy and diseased tissues. Front. Cell Dev. Biol. 2020, 8, 365. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, B.; Aleithan, F.; Abdul-Sater, Z.; Abdul-Sater, A.A. The evolving role of TRAFs in mediating inflammatory responses. Front. Immunol. 2019, 10, 104. [Google Scholar] [CrossRef] [PubMed]
- Manohar, S.M. At the crossroads of TNF α signaling and cancer. Curr. Mol. Pharmacol. 2023, 17, 1. [Google Scholar] [CrossRef]
- Anilkumar, S.; Wright-Jin, E. NF-κB as an inducible regulator of inflammation in the central nervous system. Cells 2024, 13, 485. [Google Scholar] [CrossRef] [PubMed]
- Roozbehkia, M.; Mahmoudi, M.; Aletaha, S.; Rezaei, N.; Fattahi, M.J.; Jafarnezhad-Ansariha, F.; Barati, A.; Mirshafiey, A. The potent suppressive effect of β-d-mannuronic acid (M2000) on molecular expression of the TLR/NF-kB Signaling Pathway in ankylosing spondylitis patients. Int. Immunopharmacol. 2017, 52, 191–196. [Google Scholar] [CrossRef]
- Gai, X.; Li, L. Overexpression of long noncoding RNAs (lncRNA) NF-κβ-Interacting long noncoding RNA (NKILA) in ankylosing spondylitis is correlated with transforming growth factor β1 (TGF-β1), active disease and predicts length of treatment. Med. Sci. Monit. 2019, 25, 4244–4249. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, R.; Wu, L.; Jiang, J. Expression and function of Toll-like receptors in peripheral blood mononuclear cells in patients with ankylosing spondylitis. Mol. Med. Rep. 2019, 20, 3565–3572. [Google Scholar] [CrossRef]
- Sode, J.; Bank, S.; Vogel, U.; Andersen, P.S.; Sørensen, S.B.; Bojesen, A.B.; Andersen, M.R.; Brandslund, I.; Dessau, R.B.; Hoffmann, H.J.; et al. Genetically determined high activities of the TNF-alpha, IL23/IL17, and NFkB pathways were associated with increased risk of ankylosing spondylitis. BMC Med. Genet. 2018, 19, 165. [Google Scholar] [CrossRef]
- Ramesh, S.; Teja, K.V.; Priya, V. Regulation of matrix metalloproteinase-3 gene expression in inflammation: A molecular study. J. Conserv. Dent. 2018, 21, 592–596. [Google Scholar] [CrossRef]
- Sakurai, T.; Yoshiga, D.; Ariyoshi, W.; Okinaga, T.; Kiyomiya, H.; Furuta, J.; Yoshioka, I.; Tominaga, K.; Nishihara, T. Essential role of mitogen-activated protein kinases in IL-17A-induced MMP-3 expression in human synovial sarcoma cells. BMC Res. Notes 2016, 9, 68. [Google Scholar] [CrossRef]
- Kitanaka, N.; Nakano, R.; Sakai, M.; Kitanaka, T.; Namba, S.; Konno, T.; Nakayama, T.; Sugiya, H. ERK1/ATF-2 signaling axis contributes to interleukin-1β-induced MMP-3 expression in dermal fibroblasts. PLoS ONE 2019, 14, e0222869. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.-M.; Hou, C.-H.; Liu, J.-F. CX3CL1 promotes MMP-3 production via the CX3CR1, c-Raf, MEK, ERK, and NF-κB signaling pathway in osteoarthritis synovial fibroblasts. Arthritis Res. Ther. 2017, 19, 282. [Google Scholar] [CrossRef] [PubMed]
- Malemud, C.J. Matrix Metalloproteinases and Synovial Joint Pathology. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2017; pp. 305–325. [Google Scholar]
- McKernan, D.P. Pattern recognition receptors as potential drug targets in inflammatory disorders. In Advances in Protein Chemistry and Structural Biology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 65–109. [Google Scholar]
- Kato, J.; Agalave, N.M.; Svensson, C.I. Pattern recognition receptors in chronic pain: Mechanisms and therapeutic implications. Eur. J. Pharmacol. 2016, 788, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Pacheco, G.A.; Garza-Veloz, I.; la Rosa, C.C.-D.; Ramirez-Acuña, J.M.; A Perez-Romero, B.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci. 2020, 21, 9739. [Google Scholar] [CrossRef]
- Masciantonio, M.G.; Lee, C.K.S.; Arpino, V.; Mehta, S.; Gill, S.E. The Balance Between Metalloproteinases and TIMPs. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2017; pp. 101–131. [Google Scholar]
- Raeeszadeh-Sarmazdeh, M.; Do, L.D.; Hritz, B.G. Metalloproteinases and their inhibitors: Potential for the development of new therapeutics. Cells 2020, 9, 1313. [Google Scholar] [CrossRef]
- Bräuninger, H.; Krüger, S.; Bacmeister, L.; Nyström, A.; Eyerich, K.; Westermann, D.; Lindner, D. Matrix metalloproteinases in coronary artery disease and myocardial infarction. Basic Res. Cardiol. 2023, 118, 18. [Google Scholar] [CrossRef]
- Bian, Y.; Xiang, Z.; Wang, Y.; Ren, Q.; Chen, G.; Xiang, B.; Wang, J.; Zhang, C.; Pei, S.; Guo, S.; et al. Immunomodulatory roles of metalloproteinases in rheumatoid arthritis. Front. Pharmacol. 2023, 14, 1285455. [Google Scholar] [CrossRef]
- Pulik, Ł.; Łęgosz, P.; Motyl, G. Matrix metalloproteinases in rheumatoid arthritis and osteoarthritis: A state of the art review. Rheumatology 2023, 61, 191–201. [Google Scholar] [CrossRef]
- Hussein, R.; Aboukhamis, I. Serum matrix metalloproteinase-3 levels monitor the therapeutic efficacy in Syrian patients with rheumatoid arthritis. Heliyon 2023, 9, e14008. [Google Scholar] [CrossRef]
- Chen, Y.J.; Liu, S.C.; Lai, K.L.; Tang, K.T.; Lin, C.H.; Chen, Y.M.; Tseng, C.W.; Chang, Y.M.; Gotcher, D.F.; Chiou, C.C.; et al. Factors associated with risk of major adverse cardiovascular events in patients with rheumatoid arthritis: A nationwide, population-based, case-control study. Ther. Adv. Musculoskelet. Dis. 2021, 13, 1759720X211030809. [Google Scholar] [CrossRef]
- Meissner, Y.; Schäfer, M.; Albrecht, K.; Kekow, J.; Zinke, S.; Tony, H.-P.; Strangfeld, A. Risk of major adverse cardiovascular events in patients with rheumatoid arthritis treated with conventional synthetic, biologic and targeted synthetic disease-modifying antirheumatic drugs: Observational data from the German RABBIT register. RMD Open 2023, 9, e003489. [Google Scholar] [CrossRef]
- Costa, S.; Ragusa, M.A.; Buglio, G.L.; Scilabra, S.D.; Nicosia, A. The repertoire of tissue inhibitors of metalloproteases: Evolution, regulation of extracellular matrix proteolysis, engineering and therapeutic challenges. Life 2022, 12, 1145. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Khalil, R.A. Matrix metalloproteinase inhibitors as investigational and therapeutic tools in unrestrained tissue remodeling and pathological disorders. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2017; pp. 355–420. [Google Scholar]
- Gömöri, K.; Szabados, T.; Kenyeres, É.; Pipis, J.; Földesi, I.; Siska, A.; Dormán, G.; Ferdinandy, P.; Görbe, A.; Bencsik, P. Cardioprotective effect of novel matrix metalloproteinase inhibitors. Int. J. Mol. Sci. 2020, 21, 6990. [Google Scholar] [CrossRef] [PubMed]
- Prado, A.F.D.; Bannwart, C.M.; Shinkai, V.M.T.; Lima, I.M.d.S.; Meschiari, C.A. Phyto-derived products as matrix metalloproteinases inhibitors in cardiovascular diseases. Curr. Hypertens. Rev. 2021, 17, 47–58. [Google Scholar] [CrossRef]
- Fan, D.; Kassiri, Z. Biology of tissue inhibitor of metalloproteinase 3 (TIMP3), and its therapeutic implications in cardiovascular pathology. Front. Physiol. 2020, 11, 661. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, S.; Huang, H.; Fang, J.; Wei, H.; Xi, Y. In vivo delivery of MMP3-shRNA and Sox9 lentivirus cocktail enhances matrix synthesis to prevent lumbar disc degeneration. Adv. Clin. Exp. Med. 2020, 29, 639–647. [Google Scholar] [CrossRef]
- Saxena, S.; Jain, A.; Rani, V. MicroRNA-mediated MMP regulation: Current diagnostic and therapeutic strategies for metabolic syndrome. Curr. Gene Ther. 2017, 17, 214–227. [Google Scholar] [CrossRef]
- Sarker, H.; Haimour, A.; Toor, R.; Fernandez-Patron, C. The emerging role of epigenetic mechanisms in the causation of aberrant MMP activity during human pathologies and the use of medicinal drugs. Biomolecules 2021, 11, 578. [Google Scholar] [CrossRef]
- Guarise, C.; Ceradini, D.; Tessari, M.; Pavan, M.; Moro, S.; Salmaso, V.; Barbera, C.; Beninatto, R.; Galesso, D. Amphiphilic peptide-based MMP3 inhibitors for intra-articular treatment of knee OA. Bioorganic Med. Chem. 2021, 38, 116132. [Google Scholar] [CrossRef]
Group | Examples | Key Characteristics | Applications | Reference |
---|---|---|---|---|
Broad-Spectrum Inhibitors | Actinonin, PD166793, MMP Inhibitor V | Target multiple MMPs, including MMP-3; limited specificity | Potential for general MMP inhibition in inflammation-related conditions | (Kadry et al., 2021) [45] |
Specific MMP-3 Inhibitors | MMP-3 Inhibitor VIII, MMP-3 Inhibitor V, UK 370106, UK 356618 | Target MMP-3 with varying specificity; some are highly potent | More targeted therapeutic potential for MMP-3-driven pathologies | (Kadry et al., 2021) [45] |
Peptide-Based Inhibitors | e(I), l(II) | Broad-spectrum inhibition, peptide-based, reduced cytotoxicity, enhanced bioavailability | Promising preclinical results for reversing inflammatory effects in osteoarthritis models | (Guarise et al., 2021) [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roa-Bruzón, I.Y.; Duany-Almira, L.F.; Valle-Delgadillo, Y.M.; Flores-Salinas, H.E.; Valdés-Alvarado, E.; Padilla-Gutiérrez, J.R. MMP3 as a Molecular Link: Unraveling the Connection Between Ankylosing Spondylitis and Acute Coronary Syndrome. Cells 2025, 14, 597. https://doi.org/10.3390/cells14080597
Roa-Bruzón IY, Duany-Almira LF, Valle-Delgadillo YM, Flores-Salinas HE, Valdés-Alvarado E, Padilla-Gutiérrez JR. MMP3 as a Molecular Link: Unraveling the Connection Between Ankylosing Spondylitis and Acute Coronary Syndrome. Cells. 2025; 14(8):597. https://doi.org/10.3390/cells14080597
Chicago/Turabian StyleRoa-Bruzón, Iliannis Y., Luis F. Duany-Almira, Yeminia M. Valle-Delgadillo, Héctor E. Flores-Salinas, Emmanuel Valdés-Alvarado, and Jorge R. Padilla-Gutiérrez. 2025. "MMP3 as a Molecular Link: Unraveling the Connection Between Ankylosing Spondylitis and Acute Coronary Syndrome" Cells 14, no. 8: 597. https://doi.org/10.3390/cells14080597
APA StyleRoa-Bruzón, I. Y., Duany-Almira, L. F., Valle-Delgadillo, Y. M., Flores-Salinas, H. E., Valdés-Alvarado, E., & Padilla-Gutiérrez, J. R. (2025). MMP3 as a Molecular Link: Unraveling the Connection Between Ankylosing Spondylitis and Acute Coronary Syndrome. Cells, 14(8), 597. https://doi.org/10.3390/cells14080597