Characterisation of Cytotoxicity-Related Receptors on γδ T Cells in Chronic Lymphocytic Leukaemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Flow Cytometry
2.3. Bioinformatics
2.4. Statistics
3. Results
3.1. The γδ T Cells in CLL Patients Had Higher LAG-3 and Lower CD16 Expression
3.2. CLL Patients Without Negative Prognostic Factors Had Higher Expression of CD69 and CD16
3.3. CD16 Expression Inversely Correlated with Serum LDH
3.4. Patients with Unmutated IGVH Had Higher Expression of LAG-3 Ligands
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yee, K.W.L.; Keating, M.J.; O’Brien, S.M. Treatment of Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia. In Chronic Lymphocytic Leukemia; CRC Press: Boca Raton, FL, USA, 2008; pp. 141–164. [Google Scholar]
- Strati, P.; Ferrajoli, A. Treating Older Patients with Chronic Lymphocytic Leukemia: A Personalized Approach. Drugs Aging 2019, 36, 841–851. [Google Scholar] [CrossRef]
- Pang, D.J.; Neves, J.F.; Sumaria, N.; Pennington, D.J. Understanding the Complexity of Γδ T-Cell Subsets in Mouse and Human. Immunology 2012, 136, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Clark, B.L.; Thomas, P.G. A Cell for the Ages: Human Γδ t Cells across the Lifespan. Int. J. Mol. Sci. 2020, 21, 8903. [Google Scholar] [CrossRef] [PubMed]
- Colonna-Romano, G.; Aquino, A.; Bulati, M.; Lio, D.; Candore, G.; Oddo, G.; Scialabba, G.; Vitello, S.; Caruso, C. Impairment of Gamma/Delta T Lymphocytes in Elderly: Implications for Immunosenescence. Exp. Gerontol. 2004, 39, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Vantourout, P.; Hayday, A. Six-of-the-Best: Unique Contributions of Γδ T Cells to Immunology. Nat. Rev. Immunol. 2013, 13, 88–100. [Google Scholar] [CrossRef]
- Castro, C.D.; Boughter, C.T.; Broughton, A.E.; Ramesh, A.; Adams, E.J. Diversity in Recognition and Function of Human Γδ T Cells. Immunol. Rev. 2020, 298, 134–152. [Google Scholar] [CrossRef]
- Uldrich, A.P.; Rigau, M.; Godfrey, D.I. Immune Recognition of Phosphoantigen-Butyrophilin Molecular Complexes by Γδ T Cells. Immunol. Rev. 2020, 298, 74–83. [Google Scholar] [CrossRef]
- Alexander, A.A.Z.; Maniar, A.; Cummings, J.-S.; Hebbeler, A.M.; Schulze, D.H.; Gastman, B.R.; Pauza, C.D.; Strome, S.E.; Chapoval, A.I. Isopentenyl Pyrophosphate-Activated CD56+ Γδ T Lymphocytes Display Potent Antitumor Activity toward Human Squamous Cell Carcinoma. Clin. Cancer Res. 2008, 14, 4232–4240. [Google Scholar] [CrossRef]
- Nörenberg, J.; Jaksó, P.; Barakonyi, A. Gamma/Delta T Cells in the Course of Healthy Human Pregnancy: Cytotoxic Potential and the Tendency of CD8 Expression Make CD56+ γδT Cells a Unique Lymphocyte Subset. Front. Immunol. 2021, 11, 596489. [Google Scholar] [CrossRef]
- Siegers, G.M.; Felizardo, T.C.; Mark Mathieson, A.; Kosaka, Y.; Wang, X.-H.; Medin, J.A.; Keating, A. Anti-Leukemia Activity of in Vitro-Expanded Human Gamma Delta T Cells in a Xenogeneic Ph+ Leukemia Model. PLoS ONE 2011, 6, e16700. [Google Scholar] [CrossRef]
- Tuengel, J.; Ranchal, S.; Maslova, A.; Aulakh, G.; Papadopoulou, M.; Drissler, S.; Cai, B.; Mohsenzadeh-Green, C.; Soudeyns, H.; Mostafavi, S.; et al. Characterization of Adaptive-like Γδ t Cells in Ugandan Infants during Primary Cytomegalovirus Infection. Viruses 2021, 13, 1987. [Google Scholar] [CrossRef]
- Gao, Z.; Bai, Y.; Lin, A.; Jiang, A.; Zhou, C.; Cheng, Q.; Liu, Z.; Chen, X.; Zhang, J.; Luo, P. Gamma Delta T-Cell-Based Immune Checkpoint Therapy: Attractive Candidate for Antitumor Treatment. Mol. Cancer 2023, 22, 31. [Google Scholar] [CrossRef]
- Rai, K.R.; Sawitsky, A.; Cronkite, E.P.; Chanana, A.D.; Levy, R.N.; Pasternack, B.S. Clinical Staging of Chronic Lymphocytic Leukemia. Blood 1975, 46, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Zarobkiewicz, M.K.; Lehman, N.; Kowalska, W.; Dąbrowska, I.; Bojarska-Junak, A. Expression of CD226 on Γδ T Cells Is Lower in Advanced Chronic Lymphocytic Leukemia and Correlates with IgA, IgG and LDH Levels. Adv. Clin. Exp. Med. 2024, 34, 43–52. [Google Scholar] [CrossRef]
- Landau, D.A.; Tausch, E.; Taylor-Weiner, A.N.; Stewart, C.; Reiter, J.G.; Bahlo, J.; Kluth, S.; Bozic, I.; Lawrence, M.; Böttcher, S.; et al. Mutations Driving CLL and Their Evolution in Progression and Relapse. Nature 2015, 526, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef]
- Zarobkiewicz, M.; Kowalska, W.; Chocholska, S.; Tomczak, W.; Szymańska, A.; Morawska, I.; Wojciechowska, A.; Bojarska-Junak, A. High M-MDSC Percentage as a Negative Prognostic Factor in Chronic Lymphocytic Leukaemia. Cancers 2020, 12, 2614. [Google Scholar] [CrossRef]
- Inoue, Y.; Tenshin, H.; Teramachi, J.; Sumitani, R.; Oda, A.; Maeda, Y.; Oura, M.; Sogabe, K.; Maruhashi, T.; Takahashi, M.; et al. Elotuzumab-Mediated ADCC with Th1-like Vγ9Vδ2 T Cells to Disrupt Myeloma–Osteoclast Interaction. Cancer Sci. 2024, 116, 559–563. [Google Scholar] [CrossRef]
- Jalali, S.; Stankovic, S.; Westall, G.P.; Reading, P.C.; Sullivan, L.C.; Brooks, A.G. Examining the Impact of Immunosuppressive Drugs on Antibody-Dependent Cellular Cytotoxicity (ADCC) of Human Peripheral Blood Natural Killer (NK) Cells and Gamma Delta (Γδ) T Cells. Transpl. Immunol. 2024, 82, 101962. [Google Scholar] [CrossRef]
- Mani, R.; Sudha Murthy, S.; Jamil, K. Role of Serum Lactate Dehydrogenase as a Bio-Marker in Therapy Related Hematological Malignancies. Int. J. Cancer Res. 2006, 2, 383–389. [Google Scholar] [CrossRef]
- Rossi, D.; Bodoni, C.L.; Zucchetto, A.; Rasi, S.; De Paoli, L.; Fangazio, M.; Rossi, F.M.; Ladetto, M.; Gattei, V.; Gaidano, G. Low CD49d Expression and Long Telomere Identify a Chronic Lymphocytic Leukemia Subset with Highly Favourable Outcome. Am. J. Hematol. 2010, 85, 619–622. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Freedman, M.S. Correlation of Specialized CD16(+) Gammadelta T Cells with Disease Course and Severity in Multiple Sclerosis. J. Neuroimmunol. 2008, 194, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, N.; Takata, H.; Yokota, S.; Takiguchi, M. Down-Regulation of CXCR4 Expression on Human CD8+ T Cells during Peripheral Differentation. Eur. J. Immunol. 2004, 34, 3370–3378. [Google Scholar] [CrossRef]
- Fisher, J.P.H.; Yan, M.; Heuijerjans, J.; Carter, L.; Abolhassani, A.; Frosch, J.; Wallace, R.; Flutter, B.; Capsomidis, A.; Hubank, M.; et al. Neuroblastoma Killing Properties of Vδ2 and Vδ2-Negative γδT Cells Following Expansion by Artificial Antigen-Presenting Cells. Clin. Cancer Res. 2014, 20, 5720–5732. [Google Scholar] [CrossRef]
- Catafal-Tardos, E.; Baglioni, M.V.; Bekiaris, V. Inhibiting the Unconventionals: Importance of Immune Checkpoint Receptors in Γδ T, MAIT, and NKT Cells. Cancers 2021, 13, 4647. [Google Scholar] [CrossRef]
- Girard, P.; Charles, J.; Cluzel, C.; Degeorges, E.; Manches, O.; Plumas, J.; De Fraipont, F.; Leccia, M.-T.; Mouret, S.; Chaperot, L.; et al. The Features of Circulating and Tumor-Infiltrating Γδ T Cells in Melanoma Patients Display Critical Perturbations with Prognostic Impact on Clinical Outcome. OncoImmunology 2019, 8, 1601483. [Google Scholar] [CrossRef]
- Petrini, I.; Pacini, S.; Galimberti, S.; Taddei, M.R.; Romanini, A.; Petrini, M. Impaired Function of Gamma–Delta Lymphocytes in Melanoma Patients. Eur. J. Clin. Investig. 2011, 41, 1186–1194. [Google Scholar] [CrossRef]
- Simone, M.D.; Corsale, A.M.; Toia, F.; Azgomi, M.S.; Stefano, A.B.D.; Presti, E.L.; Cordova, A.; Montesano, L.; Dieli, F.; Meraviglia, S. Tumor-Infiltrating Γδ T Cells as Targets of Immune Checkpoint Blockade in Melanoma. J. Leukoc. Biol. 2024, 115, 760–770. [Google Scholar] [CrossRef]
- Gogoi, D.; Biswas, D.; Borkakoty, B.; Mahanta, J. Exposure to Plasmodium Vivax Is Associated with the Increased Expression of Exhaustion Markers on Γδ T Lymphocytes. Parasite Immunol. 2018, 40, e12594. [Google Scholar] [CrossRef]
- Lin, L.; Chen, Y.; Chen, D.; Shu, J.; Hu, Y.; Yin, Z.; Wu, Y. Transient 40 °C-Shock Potentiates Cytotoxic Responses of Vδ2+ Γδ T Cell via HSP70 Upregulation. Cancer Immunol. Immunother. 2022, 71, 2391–2404. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, M.; Herishanu, Y.; Ben-Zion-katz; Dezorella, N.; Sun, C.; Kay, S.; Polliack, A.; Avivi, I.; Wiestner, A.; Perry, C. Lymphocyte Activation Gene 3: A Novel Therapeutic Target in Chronic Lymphocytic Leukemia. Haematologica 2017, 102, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Alobaidi, N.K.; Alwan, A.F.; Al-Rekabi, A.N. Assessment of LAG3 and Galnt11 Gene Expression in Patients With Chronic Lymphocytic Leukemia and Their Impact on Disease Progression. Biochem. Cell. Arch. 2021, 21, 809–818. [Google Scholar]
- Sordo-bahamonde, C.; Lorenzo-herrero, S.; González-rodríguez, A.P.; Payer, Á.R.; González-garcía, E.; López-soto, A.; Gonzalez, S. Lag-3 Blockade with Relatlimab (Bms-986016) Restores Anti-leukemic Responses in Chronic Lymphocytic Leukemia. Cancers 2021, 13, 2112. [Google Scholar] [CrossRef]
- Woś, J.; Szymańska, A.; Lehman, N.; Chocholska, S.; Zarobkiewicz, M.; Pożarowski, P.; Bojarska-Junak, A. Can Galectin-3 Be a Novel Biomarker in Chronic Lymphocytic Leukemia? Cells 2024, 13, 30. [Google Scholar] [CrossRef]
- Cibrián, D.; Sánchez-Madrid, F. CD69: From Activation Marker to Metabolic Gatekeeper. Eur. J. Immunol. 2017, 47, 946–953. [Google Scholar] [CrossRef]
- You, H.; Wang, Y.; Wang, X.; Zhu, H.; Zhao, Y.; Qin, P.; Liu, X.; Zhang, M.; Fu, X.; Xu, B.; et al. CD69+ Vδ1γδ T Cells Are Anti-Tumor Subpopulations in Hepatocellular Carcinoma. Mol. Immunol. 2024, 172, 76–84. [Google Scholar] [CrossRef]
- Zhao, X.-S.; Wang, X.-H.; Zhao, X.-Y.; Chang, Y.-J.; Xu, L.-P.; Zhang, X.-H.; Huang, X.-J. Non-Traditional CD4+CD25-CD69+ Regulatory T Cells Are Correlated to Leukemia Relapse after Allogeneic Hematopoietic Stem Cell Transplantation. J. Transl. Med. 2014, 12, 187. [Google Scholar] [CrossRef]
- Kouakanou, L.; Peters, C.; Sun, Q.; Floess, S.; Bhat, J.; Huehn, J.; Kabelitz, D. Vitamin C Supports Conversion of Human Γδ T Cells into FOXP3-Expressing Regulatory Cells by Epigenetic Regulation. Sci. Rep. 2020, 10, 6550. [Google Scholar] [CrossRef]
- Lu, H.; Shi, T.; Wang, M.; Li, X.; Gu, Y.; Zhang, X.; Zhang, G.; Chen, W. B7-H3 Inhibits the IFN-γ-Dependent Cytotoxicity of Vγ9Vδ2 T Cells against Colon Cancer Cells. OncoImmunology 2020, 9, 1748991. [Google Scholar] [CrossRef]
- Siegers, G.M.; Dhamko, H.; Wang, X.-H.; Mathieson, A.M.; Kosaka, Y.; Felizardo, T.C.; Medin, J.A.; Tohda, S.; Schueler, J.; Fisch, P.; et al. Human Vδ1 Γδ T Cells Expanded from Peripheral Blood Exhibit Specific Cytotoxicity against B-Cell Chronic Lymphocytic Leukemia-Derived Cells. Cytotherapy 2011, 13, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Otto, M.; Barfield, R.C.; Iyengar, R.; Gatewood, J.; Müller, I.; Holladay, M.S.; Houston, J.; Leung, W.; Handgretinger, R. Human Γδ T Cells from G-CSF-Mobilized Donors Retain Strong Tumoricidal Activity and Produce Immunomodulatory Cytokines after Clinical-Scale Isolation. J. Immunother. 2005, 28, 73–78. [Google Scholar] [CrossRef]
- Simonetta, F.; Hua, S.; Lécuroux, C.; Gérard, S.; Boufassa, F.; Sáez-Cirión, A.; Pancino, G.; Goujard, C.; Lambotte, O.; Venet, A.; et al. High Eomesodermin Expression among CD57+ CD8+ T Cells Identifies a CD8+ T Cell Subset Associated with Viral Control during Chronic Human Immunodeficiency Virus Infection. J. Virol. 2014, 88, 11861–11871. [Google Scholar] [CrossRef] [PubMed]
- Kared, H.; Martelli, S.; Ng, T.P.; Pender, S.L.F.; Larbi, A. CD57 in Human Natural Killer Cells and T-Lymphocytes. Cancer Immunol. Immunother. 2016, 65, 441–452. [Google Scholar] [CrossRef]
- Le Priol, Y.; Puthier, D.; Lécureuil, C.; Combadière, C.; Debré, P.; Nguyen, C.; Combadière, B. High Cytotoxic and Specific Migratory Potencies of Senescent CD8+CD57+ Cells in HIV-Infected and Uninfected Individuals1. J. Immunol. 2006, 177, 5145–5154. [Google Scholar] [CrossRef]
- Serrano, D.; Monteiro, J.; Allen, S.L.; Kolitz, J.; Schulman, P.; Lichtman, S.M.; Buchbinder, A.; Vinciguerra, V.P.; Chiorazzi, N.; Gregersen, P.K. Clonal Expansion within the CD4+CD57+ and CD8+CD57+ T Cell Subsets in Chronic Lymphocytic Leukemia. J. Immunol. Baltim. Md 1950 1997, 158, 1482–1489. [Google Scholar] [CrossRef]
- Atayar, Ç.; Poppema, S.; Visser, L.; van den Berg, A. Cytokine Gene Expression Profile Distinguishes CD4+/CD57+ T Cells of the Nodular Lymphocyte Predominance Type of Hodgkin’s Lymphoma from Their Tonsillar Counterparts. J. Pathol. 2006, 208, 423–430. [Google Scholar] [CrossRef]
- Van den Hove, L.E.; Vandenberghe, P.; Van Gool, S.W.; Ceuppens, J.L.; Demuynck, H.; Verhoef, G.E.G.; Boogaerts, M.A. Peripheral Blood Lymphocyte Subset Shifts in Patients with Untreated Hematological Tumors: Evidence for Systemic Activation of the T Cell Compartment. Leuk. Res. 1998, 22, 175–184. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarobkiewicz, M.; Lehman, N.; Morawska-Michalska, I.; Michalski, A.; Kowalska, W.; Szymańska, A.; Tomczak, W.; Bojarska-Junak, A. Characterisation of Cytotoxicity-Related Receptors on γδ T Cells in Chronic Lymphocytic Leukaemia. Cells 2025, 14, 451. https://doi.org/10.3390/cells14060451
Zarobkiewicz M, Lehman N, Morawska-Michalska I, Michalski A, Kowalska W, Szymańska A, Tomczak W, Bojarska-Junak A. Characterisation of Cytotoxicity-Related Receptors on γδ T Cells in Chronic Lymphocytic Leukaemia. Cells. 2025; 14(6):451. https://doi.org/10.3390/cells14060451
Chicago/Turabian StyleZarobkiewicz, Michał, Natalia Lehman, Izabela Morawska-Michalska, Adam Michalski, Wioleta Kowalska, Agata Szymańska, Waldemar Tomczak, and Agnieszka Bojarska-Junak. 2025. "Characterisation of Cytotoxicity-Related Receptors on γδ T Cells in Chronic Lymphocytic Leukaemia" Cells 14, no. 6: 451. https://doi.org/10.3390/cells14060451
APA StyleZarobkiewicz, M., Lehman, N., Morawska-Michalska, I., Michalski, A., Kowalska, W., Szymańska, A., Tomczak, W., & Bojarska-Junak, A. (2025). Characterisation of Cytotoxicity-Related Receptors on γδ T Cells in Chronic Lymphocytic Leukaemia. Cells, 14(6), 451. https://doi.org/10.3390/cells14060451