CD6 in Human Disease
Abstract
:1. CD6
2. Functions of CD6
3. Ligands of CD6
4. CD6 in Human Disease
4.1. Multiple Sclerosis
4.2. Behçet’s Disease
4.3. Psoriasis
4.4. Atopic Dermatitis
4.5. Asthma
4.6. Rheumatoid Arthritis
4.7. Uveitis
4.8. Giant Cell Arteritis
4.9. Sjogren’s Syndrome
4.10. Inflammatory Bowel Disease
4.11. Graft-Versus-Host Disease
4.12. COVID-19
4.13. Lupus Nephritis
4.14. Diabetes
4.15. Lymphoid Malignancies
4.16. Solid Tumors
5. Conclusions—The Potential of Targeting CD6 in Human Disease
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martinez, V.G.; Moestrup, S.K.; Holmskov, U.; Mollenhauer, J.; Lozano, F. The conserved scavenger receptor cysteine-rich superfamily in therapy and diagnosis. Pharmacol. Rev. 2011, 63, 967–1000. [Google Scholar] [CrossRef] [PubMed]
- Bowen, M.A.; Whitney, G.S.; Neubauer, M.; Starling, G.C.; Palmer, D.; Zhang, J.; Nowak, N.J.; Shows, T.B.; Aruffo, A. Structure and chromosomal location of the human CD6 gene: Detection of five human CD6 isoforms. J. Immunol. 1997, 158, 1149–1156. [Google Scholar] [CrossRef]
- Mayer, B.; Funke, I.; Seed, B.; Riethmuller, G.; Weiss, E. Expression of the CD6 T lymphocyte differentiation antigen in normal human brain. J. Neuroimmunol. 1990, 29, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Kamoun, M.; Kadin, M.E.; Martin, P.J.; Nettleton, J.; Hansen, J.A. A novel human T cell antigen preferentially expressed on mature T cells and shared by both well and poorly differentiated B cell leukemias and lymphomas. J. Immunol. 1981, 127, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Singer, N.G.; Fox, D.A.; Haqqi, T.M.; Beretta, L.; Endres, J.S.; Prohaska, S.; Parnes, J.R.; Bromberg, J.; Sramkoski, R.M. CD6: Expression during development, apoptosis and selection of human and mouse thymocytes. Int. Immunol. 2002, 14, 585–597. [Google Scholar] [CrossRef]
- Garcia Santana, C.A.; Tung, J.W.; Gulnik, S. Human treg cells are characterized by low/negative CD6 expression. Cytom. A 2014, 85, 901–908. [Google Scholar] [CrossRef]
- Enyindah-Asonye, G.; Li, Y.; Ruth, J.H.; Spassov, D.S.; Hebron, K.E.; Zijlstra, A.; Moasser, M.M.; Wang, B.; Singer, N.G.; Cui, H.; et al. CD318 is a ligand for CD6. Proc. Natl. Acad. Sci. USA 2017, 114, E6912–E6921. [Google Scholar] [CrossRef]
- Chappell, P.E.; Garner, L.I.; Yan, J.; Metcalfe, C.; Hatherley, D.; Johnson, S.; Robinson, C.V.; Lea, S.M.; Brown, M.H. Structures of CD6 and Its Ligand CD166 Give Insight into Their Interaction. Structure 2015, 23, 1426–1436. [Google Scholar] [CrossRef]
- Borjini, N.; Lun, Y.; Jang, G.F.; Crabb, J.; Chen, Y.; Crabb, J.; Fox, D.A.; Ivanov, A.I.; Lin, F. CD6 triggers actomyosin cytoskeleton remodeling after binding to its receptor complex. J. Leukoc. Biol. 2024, 115, 450–462. [Google Scholar] [CrossRef]
- Gurrea-Rubio, M.; Fox, D.A. The dual role of CD6 as a therapeutic target in cancer and autoimmune disease. Front. Med. 2022, 9, 1026521. [Google Scholar] [CrossRef]
- Fox, D.A. The role of CD6 in autoimmune diseases. Cell Mol. Immunol. 2018, 15, 1001–1002. [Google Scholar] [CrossRef]
- Escoda-Ferran, C.; Carrasco, E.; Caballero-Banos, M.; Miro-Julia, C.; Martinez-Florensa, M.; Consuegra-Fernandez, M.; Martinez, V.G.; Liu, F.T.; Lozano, F. Modulation of CD6 function through interaction with Galectin-1 and -3. FEBS Lett. 2014, 588, 2805–2813. [Google Scholar] [CrossRef]
- Gangemi, R.M.; Swack, J.A.; Gaviria, D.M.; Romain, P.L. Anti-T12, an anti-CD6 monoclonal antibody, can activate human T lymphocytes. J. Immunol. 1989, 143, 2439–2447. [Google Scholar] [CrossRef]
- Swack, J.A.; Gangemi, R.M.; Rudd, C.E.; Morimoto, C.; Schlossman, S.F.; Romain, P.L. Structural characterization of CD6: Properties of two distinct epitopes involved in T cell activation. Mol. Immunol. 1989, 26, 1037–1049. [Google Scholar] [CrossRef] [PubMed]
- Bott, C.M.; Doshi, J.B.; Morimoto, C.; Romain, P.L.; Fox, D.A. Activation of human T cells through CD6: Functional effects of a novel anti-CD6 monoclonal antibody and definition of four epitopes of the CD6 glycoprotein. Int. Immunol. 1993, 5, 783–792. [Google Scholar] [CrossRef]
- Ibanez, A.; Sarrias, M.R.; Farnos, M.; Gimferrer, I.; Serra-Pages, C.; Vives, J.; Lozano, F. Mitogen-activated protein kinase pathway activation by the CD6 lymphocyte surface receptor. J. Immunol. 2006, 177, 1152–1159. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.I.; Goncalves, C.M.; Pinto, M.; Fabre, S.; Santos, A.M.; Lee, S.F.; Castro, M.A.; Nunes, R.J.; Barbosa, R.R.; Parnes, J.R.; et al. CD6 attenuates early and late signaling events, setting thresholds for T-cell activation. Eur. J. Immunol. 2012, 42, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Henriques, S.N.; Oliveira, L.; Santos, R.F.; Carmo, A.M. CD6-mediated inhibition of T cell activation via modulation of Ras. Cell Commun. Signal 2022, 20, 184. [Google Scholar] [CrossRef]
- Orta-Mascaro, M.; Consuegra-Fernandez, M.; Carreras, E.; Roncagalli, R.; Carreras-Sureda, A.; Alvarez, P.; Girard, L.; Simoes, I.; Martinez-Florensa, M.; Aranda, F.; et al. CD6 modulates thymocyte selection and peripheral T cell homeostasis. J. Exp. Med. 2016, 213, 1387–1397. [Google Scholar] [CrossRef]
- Cayrol, R.; Wosik, K.; Berard, J.L.; Dodelet-Devillers, A.; Ifergan, I.; Kebir, H.; Haqqani, A.S.; Kreymborg, K.; Krug, S.; Moumdjian, R.; et al. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat. Immunol. 2008, 9, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, A.W.; Joosten, B.; Torensma, R.; Parnes, J.R.; van Leeuwen, F.N.; Figdor, C.G. Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells. Blood 2006, 107, 3212–3220. [Google Scholar] [CrossRef] [PubMed]
- Singer, N.G.; Mitra, R.; Lialios, F.; Richardson, B.C.; Marks, R.M.; Pesando, J.M.; Fox, D.A.; Nickoloff, B.J. CD6 dependent interactions of T cells and keratinocytes: Functional evidence for a second CD6 ligand on gamma-interferon activated keratinocytes. Immunol. Lett. 1997, 58, 9–14. [Google Scholar] [CrossRef]
- Joo, Y.S.; Singer, N.G.; Endres, J.L.; Sarkar, S.; Kinne, R.W.; Marks, R.M.; Fox, D.A. Evidence for the expression of a second CD6 ligand by synovial fibroblasts. Arthritis Rheum. 2000, 43, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Enyindah-Asonye, G.; Li, Y.; Xin, W.; Singer, N.G.; Gupta, N.; Fung, J.; Lin, F. CD6 Receptor Regulates Intestinal Ischemia/Reperfusion-induced Injury by Modulating Natural IgM-producing B1a Cell Self-renewal. J. Biol. Chem. 2017, 292, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Catala, C.; Velasco-de Andres, M.; Leyton-Pereira, A.; Casado-Llombart, S.; Saez Moya, M.; Gutierrez-Cozar, R.; Garcia-Luna, J.; Consuegra-Fernandez, M.; Isamat, M.; Aranda, F.; et al. CD6 deficiency impairs early immune response to bacterial sepsis. iScience 2022, 25, 105078. [Google Scholar] [CrossRef]
- Gimferrer, I.; Farnos, M.; Calvo, M.; Mittelbrunn, M.; Enrich, C.; Sanchez-Madrid, F.; Vives, J.; Lozano, F. The accessory molecules CD5 and CD6 associate on the membrane of lymphoid T cells. J. Biol. Chem. 2003, 278, 8564–8571. [Google Scholar] [CrossRef] [PubMed]
- Mori, D.; Gregoire, C.; Voisinne, G.; Celis-Gutierrez, J.; Aussel, R.; Girard, L.; Camus, M.; Marcellin, M.; Argenty, J.; Burlet-Schiltz, O.; et al. The T cell CD6 receptor operates a multitask signalosome with opposite functions in T cell activation. J. Exp. Med. 2021, 218, e20201011. [Google Scholar] [CrossRef]
- Chalmers, S.A.; Ayilam Ramachandran, R.; Garcia, S.J.; Der, E.; Herlitz, L.; Ampudia, J.; Chu, D.; Jordan, N.; Zhang, T.; Parodis, I.; et al. The CD6/ALCAM pathway promotes lupus nephritis via T cell-mediated responses. J. Clin. Investig. 2022, 132, e147334. [Google Scholar] [CrossRef]
- Levesque, M.C.; Heinly, C.S.; Whichard, L.P.; Patel, D.D. Cytokine-regulated expression of activated leukocyte cell adhesion molecule (CD166) on monocyte-lineage cells and in rheumatoid arthritis synovium. Arthritis Rheum. 1998, 41, 2221–2229. [Google Scholar] [CrossRef] [PubMed]
- Abidi, S.M.; Saifullah, M.K.; Zafiropulos, M.D.; Kaput, C.; Bowen, M.A.; Cotton, C.; Singer, N.G. CD166 expression, characterization, and localization in salivary epithelium: Implications for function during sialoadenitis. J. Clin. Immunol. 2006, 26, 12–21. [Google Scholar] [CrossRef]
- Casado-Llombart, S.; Velasco-de Andres, M.; Catala, C.; Leyton-Pereira, A.; Gutierrez-Cozar, R.; Suarez, B.; Armiger, N.; Carreras, E.; Esteller, M.; Ricart, E.; et al. Experimental and genetic evidence for the impact of CD5 and CD6 expression and variation in inflammatory bowel disease. Front. Immunol. 2022, 13, 966184. [Google Scholar] [CrossRef]
- Lu, X.Y.; Chen, D.; Gu, X.Y.; Ding, J.; Zhao, Y.J.; Zhao, Q.; Yao, M.; Chen, Z.; He, X.H.; Cong, W.M. Predicting Value of ALCAM as a Target Gene of microRNA-483-5p in Patients with Early Recurrence in Hepatocellular Carcinoma. Front. Pharmacol. 2017, 8, 973. [Google Scholar] [CrossRef]
- Chaker, S.; Kak, I.; MacMillan, C.; Ralhan, R.; Walfish, P.G. Activated leukocyte cell adhesion molecule is a marker for thyroid carcinoma aggressiveness and disease-free survival. Thyroid. 2013, 23, 201–208. [Google Scholar] [CrossRef]
- Clauditz, T.S.; von Rheinbaben, K.; Lebok, P.; Minner, S.; Tachezy, M.; Borgmann, K.; Knecht, R.; Sauter, G.; Wilczak, W.; Blessmann, M.; et al. Activated leukocyte cell adhesion molecule (ALCAM/CD166) expression in head and neck squamous cell carcinoma (HNSSC). Pathol. Res. Pract. 2014, 210, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Hein, S.; Muller, V.; Kohler, N.; Wikman, H.; Krenkel, S.; Streichert, T.; Schweizer, M.; Riethdorf, S.; Assmann, V.; Ihnen, M.; et al. Biologic role of activated leukocyte cell adhesion molecule overexpression in breast cancer cell lines and clinical tumor tissue. Breast Cancer Res. Treat. 2011, 129, 347–360. [Google Scholar] [CrossRef]
- Burandt, E.; Bari Noubar, T.; Lebeau, A.; Minner, S.; Burdelski, C.; Janicke, F.; Muller, V.; Terracciano, L.; Simon, R.; Sauter, G.; et al. Loss of ALCAM expression is linked to adverse phenotype and poor prognosis in breast cancer: A TMA-based immunohistochemical study on 2,197 breast cancer patients. Oncol. Rep. 2014, 32, 2628–2634. [Google Scholar] [CrossRef] [PubMed]
- Ihnen, M.; Wirtz, R.M.; Kalogeras, K.T.; Milde-Langosch, K.; Schmidt, M.; Witzel, I.; Eleftheraki, A.G.; Papadimitriou, C.; Janicke, F.; Briassoulis, E.; et al. Combination of osteopontin and activated leukocyte cell adhesion molecule as potent prognostic discriminators in HER2- and ER-negative breast cancer. Br. J. Cancer 2010, 103, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ma, Y.; Gao, H.; Peng, T.; Shi, H.; Tang, Y.; Li, H.; Chen, L.; Hu, K.; Han, A. A novel HDGF-ALCAM axis promotes the metastasis of Ewing sarcoma via regulating the GTPases signaling pathway. Oncogene 2021, 40, 731–745. [Google Scholar] [CrossRef] [PubMed]
- Ruth, J.H.; Gurrea-Rubio, M.; Athukorala, K.S.; Rasmussen, S.M.; Weber, D.P.; Randon, P.M.; Gedert, R.J.; Lind, M.E.; Amin, M.A.; Campbell, P.L.; et al. CD6 is a target for cancer immunotherapy. JCI Insight 2021, 6, e145662. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Zeng, J.J.; Yang, Y.; Ruge, F.; Lane, J.; Hargest, R.; Jiang, W.G. Expression of ALCAM in Clinical Colon Cancer and Relationship With Patients’ Treatment Responses. In Vivo 2023, 37, 1117–1128. [Google Scholar] [CrossRef] [PubMed]
- Wright, H.J.; Arulmoli, J.; Motazedi, M.; Nelson, L.J.; Heinemann, F.S.; Flanagan, L.A.; Razorenova, O.V. CDCP1 cleavage is necessary for homodimerization-induced migration of triple-negative breast cancer. Oncogene 2016, 35, 4762–4772. [Google Scholar] [CrossRef]
- Nam, Y.; Choi, C.M.; Park, Y.S.; Jung, H.; Hwang, H.S.; Lee, J.C.; Lee, J.W.; Lee, J.E.; Kang, J.H.; Jung, B.H.; et al. CDCP1 Expression Is a Potential Biomarker of Poor Prognosis in Resected Stage I Non-Small-Cell Lung Cancer. J. Clin. Med. 2022, 11, 341. [Google Scholar] [CrossRef]
- He, Y.; Davies, C.M.; Harrington, B.S.; Hellmers, L.; Sheng, Y.; Broomfield, A.; McGann, T.; Bastick, K.; Zhong, L.; Wu, A.; et al. CDCP1 enhances Wnt signaling in colorectal cancer promoting nuclear localization of beta-catenin and E-cadherin. Oncogene 2020, 39, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Harrington, B.S.; He, Y.; Davies, C.M.; Wallace, S.J.; Adams, M.N.; Beaven, E.A.; Roche, D.K.; Kennedy, C.; Chetty, N.P.; Crandon, A.J.; et al. Cell line and patient-derived xenograft models reveal elevated CDCP1 as a target in high-grade serous ovarian cancer. Br. J. Cancer 2016, 114, 417–426. [Google Scholar] [CrossRef]
- Emerling, B.M.; Benes, C.H.; Poulogiannis, G.; Bell, E.L.; Courtney, K.; Liu, H.; Choo-Wing, R.; Bellinger, G.; Tsukazawa, K.S.; Brown, V.; et al. Identification of CDCP1 as a hypoxia-inducible factor 2alpha (HIF-2alpha) target gene that is associated with survival in clear cell renal cell carcinoma patients. Proc. Natl. Acad. Sci. USA 2013, 110, 3483–3488. [Google Scholar] [CrossRef]
- Alajati, A.; Chen, J.; Alimonti, A. CDCP1 initiates tumorigenesis and cooperates with PTEN loss to promote senescence evasion and prostate cancer progression. Ann. Oncol. 2017, 28, v1. [Google Scholar] [CrossRef]
- Moroz, A.; Wang, Y.H.; Sharib, J.M.; Wei, J.; Zhao, N.; Huang, Y.; Chen, Z.; Martinko, A.J.; Zhuo, J.; Lim, S.A.; et al. Theranostic Targeting of CUB Domain Containing Protein 1 (CDCP1) in Pancreatic Cancer. Clin. Cancer Res. 2020, 26, 3608–3615. [Google Scholar] [CrossRef]
- Sawada, G.; Takahashi, Y.; Niida, A.; Shimamura, T.; Kurashige, J.; Matsumura, T.; Ueo, H.; Uchi, R.; Takano, Y.; Ueda, M.; et al. Loss of CDCP1 expression promotes invasiveness and poor prognosis in esophageal squamous cell carcinoma. Ann. Surg. Oncol. 2014, 21 (Suppl. S4), S640–S647. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Y.; Qiu, W.; Bell, B.A.; Dvorina, N.; Baldwin, W.M., 3rd; Singer, N.; Kern, T.; Caspi, R.R.; Fox, D.A.; et al. Targeting CD6 for the treatment of experimental autoimmune uveitis. J. Autoimmun. 2018, 90, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Gurrea-Rubio, M.; Wu, Q.; Amin, M.A.; Tsou, P.S.; Campbell, P.L.; Amarista, C.I.; Ikari, Y.; Brodie, W.D.; Mattichak, M.N.; Muraoka, S.; et al. Activation of cytotoxic lymphocytes through CD6 enhances killing of cancer cells. Cancer Immunol. Immunother. 2024, 73, 34. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhao, S.; Karnad, A.; Freeman, J.W. The biology and role of CD44 in cancer progression: Therapeutic implications. J. Hematol. Oncol. 2018, 11, 64. [Google Scholar] [CrossRef]
- Li, W.; Ma, H.; Zhang, J.; Zhu, L.; Wang, C.; Yang, Y. Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci. Rep. 2017, 7, 13856. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, C.; Grazioli, P.; Fontanella, R.A.; De Cesaris, P.; D’Amore, A.; Regno, M.; Starace, D.; Padula, F.; Fiori, M.E.; Canipari, R.; et al. Stem-like and highly invasive prostate cancer cells expressing CD44v8-10 marker originate from CD44-negative cells. Oncotarget 2018, 9, 30905–30918. [Google Scholar] [CrossRef] [PubMed]
- Verkerke, H.; Dias-Baruffi, M.; Cummings, R.D.; Arthur, C.M.; Stowell, S.R. Galectins: An Ancient Family of Carbohydrate Binding Proteins with Modern Functions. Methods Mol. Biol. 2022, 2442, 1–40. [Google Scholar] [PubMed]
- Rabinovich, G.A. Galectin-1 as a potential cancer target. Br. J. Cancer 2005, 92, 1188–1192. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.T.; Rabinovich, G.A. Galectins as modulators of tumour progression. Nat. Rev. Cancer 2005, 5, 29–41. [Google Scholar] [CrossRef]
- Kofler, D.M.; Severson, C.A.; Mousissian, N.; De Jager, P.L.; Hafler, D.A. The CD6 multiple sclerosis susceptibility allele is associated with alterations in CD4+ T cell proliferation. J. Immunol. 2011, 187, 3286–3291. [Google Scholar] [CrossRef]
- Li, Y.; Singer, N.G.; Whitbred, J.; Bowen, M.A.; Fox, D.A.; Lin, F. CD6 as a potential target for treating multiple sclerosis. Proc. Natl. Acad. Sci. USA 2017, 114, 2687–2692. [Google Scholar] [CrossRef] [PubMed]
- Hafler, D.A.; Fallis, R.J.; Dawson, D.M.; Schlossman, S.F.; Reinherz, E.L.; Weiner, H.L. Immunologic responses of progressive multiple sclerosis patients treated with an anti-T-cell monoclonal antibody, anti-T12. Neurology 1986, 36, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Zhang, L.; Yu, H.; Hu, J.; Cao, Q.; Huang, G.; Huang, Y.; Yuan, G.; Kijlstra, A.; Yang, P. Genetic polymorphisms of cell adhesion molecules in Behcet’s disease in a Chinese Han population. Sci. Rep. 2016, 6, 24974. [Google Scholar] [CrossRef]
- Li, B.; Huang, L.; Lv, P.; Li, X.; Liu, G.; Chen, Y.; Wang, Z.; Qian, X.; Shen, Y.; Li, Y.; et al. The role of Th17 cells in psoriasis. Immunol. Res. 2020, 68, 296–309. [Google Scholar] [CrossRef] [PubMed]
- Consuegra-Fernandez, M.; Julia, M.; Martinez-Florensa, M.; Aranda, F.; Catala, C.; Armiger-Borras, N.; Arias, M.T.; Santiago, F.; Guilabert, A.; Esteve, A.; et al. Genetic and experimental evidence for the involvement of the CD6 lymphocyte receptor in psoriasis. Cell Mol. Immunol. 2018, 15, 898–906. [Google Scholar] [CrossRef]
- Bughani, U.; Saha, A.; Kuriakose, A.; Nair, R.; Sadashivarao, R.B.; Venkataraman, R.; Patel, S.; Tushar Deshchougule, A.; Satish, K.S.; Montero, E.; et al. Correction: T cell activation and differentiation is modulated by a CD6 domain 1 antibody Itolizumab. PLoS ONE 2018, 13, e0192335. [Google Scholar] [CrossRef] [PubMed]
- Parthasaradhi, A. Safety and Efficacy of Itolizumab in the Treatment of Psoriasis: A Case Series of 20 Patients. J. Clin. Diagn. Res. 2016, 10, WD01–WD03. [Google Scholar] [CrossRef] [PubMed]
- Krupashankar, D.S.; Dogra, S.; Kura, M.; Saraswat, A.; Budamakuntla, L.; Sumathy, T.K.; Shah, R.; Gopal, M.G.; Narayana Rao, T.; Srinivas, C.R.; et al. Efficacy and safety of itolizumab, a novel anti-CD6 monoclonal antibody, in patients with moderate to severe chronic plaque psoriasis: Results of a double-blind, randomized, placebo-controlled, phase-III study. J. Am. Acad. Dermatol. 2014, 71, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, A.; Nomura, T.; Rerknimitr, P.; Seidel, J.A.; Honda, T.; Kabashima, K. The interplay between genetic and environmental factors in the pathogenesis of atopic dermatitis. Immunol. Rev. 2017, 278, 246–262. [Google Scholar] [CrossRef] [PubMed]
- Vandeghinste, N.; Klattig, J.; Jagerschmidt, C.; Lavazais, S.; Marsais, F.; Haas, J.D.; Auberval, M.; Lauffer, F.; Moran, T.; Ongenaert, M.; et al. Neutralization of IL-17C Reduces Skin Inflammation in Mouse Models of Psoriasis and Atopic Dermatitis. J. Investig. Dermatol. 2018, 138, 1555–1563. [Google Scholar] [CrossRef]
- Brunner, P.M.; Suarez-Farinas, M.; He, H.; Malik, K.; Wen, H.C.; Gonzalez, J.; Chan, T.C.; Estrada, Y.; Zheng, X.; Khattri, S.; et al. The atopic dermatitis blood signature is characterized by increases in inflammatory and cardiovascular risk proteins. Sci. Rep. 2017, 7, 8707. [Google Scholar] [CrossRef] [PubMed]
- Noh, G.W.; Lee, K.Y. Circulating soluble CD5 in atopic dermatitis. Mol. Cells 1998, 8, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, C.M.; Hessel, E.M. Functions of T cells in asthma: More than just T(H)2 cells. Nat. Rev. Immunol. 2010, 10, 838–848. [Google Scholar] [CrossRef] [PubMed]
- Koziol-White, C.; Cao, G.; Parikh, V. CD6 is highly expressed in fatal asthma patients and may modulate bronchomotor. Eur. Respir. J. 2020, 56. [Google Scholar] [CrossRef]
- Weyand, C.M.; Bryl, E.; Goronzy, J.J. The role of T cells in rheumatoid arthritis. Arch. Immunol. Ther. Exp. 2000, 48, 429–435. [Google Scholar]
- Weyand, C.M.; Goronzy, J.J.; Takemura, S.; Kurtin, P.J. Cell-cell interactions in synovitis. Interactions between T cells and B cells in rheumatoid arthritis. Arthritis Res. 2000, 2, 457–463. [Google Scholar] [CrossRef]
- Li, Y.; Ruth, J.H.; Rasmussen, S.M.; Athukorala, K.S.; Weber, D.P.; Amin, M.A.; Campbell, P.L.; Singer, N.G.; Fox, D.A.; Lin, F. Attenuation of Murine Collagen-Induced Arthritis by Targeting CD6. Arthritis Rheumatol. 2020, 72, 1505–1513. [Google Scholar] [CrossRef]
- Rodriguez, P.C.; Prada, D.M.; Moreno, E.; Aira, L.E.; Molinero, C.; Lopez, A.M.; Gomez, J.A.; Hernandez, I.M.; Martinez, J.P.; Reyes, Y.; et al. The anti-CD6 antibody itolizumab provides clinical benefit without lymphopenia in rheumatoid arthritis patients: Results from a 6-month, open-label Phase I clinical trial. Clin. Exp. Immunol. 2018, 191, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Greigert, H.; Genet, C.; Ramon, A.; Bonnotte, B.; Samson, M. New Insights into the Pathogenesis of Giant Cell Arteritis: Mechanisms Involved in Maintaining Vascular Inflammation. J. Clin. Med. 2022, 11, 2905. [Google Scholar] [CrossRef] [PubMed]
- Alonso, R.; Buors, C.; Le Dantec, C.; Hillion, S.; Pers, J.O.; Saraux, A.; Montero, E.; Marianowski, R.; Loisel, S.; Devauchelle, V.; et al. Aberrant expression of CD6 on B-cell subsets from patients with Sjogren’s syndrome. J. Autoimmun. 2010, 35, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Le Dantec, C.; Alonso, R.; Fali, T.; Montero, E.; Devauchelle, V.; Saraux, A.; Pers, J.O.; Renaudineau, Y. Rationale for treating primary Sjogren’s syndrome patients with an anti-CD6 monoclonal antibody (Itolizumab). Immunol. Res. 2013, 56, 341–347. [Google Scholar] [CrossRef]
- Ma, C.; Wu, W.; Lin, R.; Ge, Y.; Zhang, C.; Sun, S.; Cong, Y.; Li, X.; Liu, Z. Critical Role of CD6highCD4+ T Cells in Driving Th1/Th17 Cell Immune Responses and Mucosal Inflammation in IBD. J. Crohns Colitis 2019, 13, 510–524. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, R.A.; Counts, S.L.; Daley, J.F.; Schlossman, S.F. Isolation and characterization of CD6- T cells from peripheral blood. J. Immunol. 1994, 152, 527–536. [Google Scholar] [CrossRef]
- Soiffer, R.J.; Murray, C.; Mauch, P.; Anderson, K.C.; Freedman, A.S.; Rabinowe, S.N.; Takvorian, T.; Robertson, M.J.; Spector, N.; Gonin, R.; et al. Prevention of graft-versus-host disease by selective depletion of CD6-positive T lymphocytes from donor bone marrow. J. Clin. Oncol. 1992, 10, 1191–1200. [Google Scholar] [CrossRef]
- Schuster, F.R.; Meisel, R.; Fuhrer, M.; Reuther, S.; Hauer, J.; Tischer, J.; Feuchtinger, T.; Laws, H.J.; Kolb, H.J.; Borkhardt, A. Anti-leukaemic activity of a novel haploidentical-transplantation approach employing unmanipulated bone marrow followed by CD6-depleted peripheral blood stem cells in children with refractory/relapsed acute leukaemia. Br. J. Haematol. 2013, 162, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Rambaldi, B.; Kim, H.T.; Arihara, Y.; Asano, T.; Reynolds, C.; Manter, M.; Halpern, M.; Weber, A.; Koreth, J.; Cutler, C.; et al. Phenotypic and functional characterization of the CD6-ALCAM T cell costimulatory pathway after allogeneic cell transplantation. Haematologica 2022, 107, 2617. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, L.; Chen, J.Y.; Singh, R.; Baldwin, W.M., 3rd; Fox, D.A.; Lindner, D.J.; Martin, D.F.; Caspi, R.R.; Lin, F. A CD6-targeted antibody-drug conjugate as a potential therapy for T cell-mediated disorders. JCI Insight 2023, 8, e172914. [Google Scholar] [CrossRef]
- Kumar, S.; De Souza, R.; Nadkar, M.; Guleria, R.; Trikha, A.; Joshi, S.R.; Loganathan, S.; Vaidyanathan, S.; Marwah, A.; Athalye, S.N. A two-arm, randomized, controlled, multi-centric, open-label phase-2 study to evaluate the efficacy and safety of Itolizumab in moderate to severe ARDS patients due to COVID-19. Expert. Opin. Biol. Ther. 2021, 21, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Diaz, Y.; Ramos-Suzarte, M.; Martin, Y.; Calderon, N.A.; Santiago, W.; Vinet, O.; La, O.Y.; Oyarzabal, J.P.A.; Perez, Y.; Lorenzo, G.; et al. Use of a Humanized Anti-CD6 Monoclonal Antibody (Itolizumab) in Elderly Patients with Moderate COVID-19. Gerontology 2020, 66, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, D.; Ane-Kouri, A.L.; Sanchez, N.; Filgueira, L.M.; Betancourt, J.; Herrera, C.; Manso, L.; Chavez, E.; Caballero, A.; Hidalgo, C.; et al. An anti-CD6 monoclonal antibody (itolizumab) reduces circulating IL-6 in severe COVID-19 elderly patients. Immun. Ageing 2020, 17, 34. [Google Scholar] [CrossRef]
- Do, J.S.; Arribas-Layton, D.; Juan, J.; Garcia, I.; Saraswathy, S.; Qi, M.; Montero, E.; Reijonen, H. The CD318/CD6 axis limits type 1 diabetes islet autoantigen-specific human T cell activation. J. Autoimmun. 2024, 146, 103228. [Google Scholar] [CrossRef] [PubMed]
- Schneider, D.A.; Sarikonda, G.; Montero, E.; von Herrath, M.G. Combination therapy with anti-CD6 and oral insulin immunization reverses recent onset diabetes in non obese diabetic mice but fails to induce lasting tolerance. Clin. Immunol. 2013, 149, 440–441. [Google Scholar] [PubMed]
- Tuomela, K.; Levings, M.K. Genetic engineering of regulatory T cells for treatment of autoimmune disorders including type 1 diabetes. Diabetologia 2024, 67, 611–622. [Google Scholar] [CrossRef]
- Chihara, D.; Dores, G.M.; Flowers, C.R.; Morton, L.M. The bidirectional increased risk of B-cell lymphoma and T-cell lymphoma. Blood 2021, 138, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; McCall, C.M.; Block, J.G.; Ondrejka, S.L.; Thakral, B.; Wang, S.A.; Al-Ghamdi, Y.; Tam, W.; Coffman, B.; Foucar, K.; et al. Expression of CD6 in Aggressive NK/T-cell Neoplasms and Assessment as a Potential Therapeutic Target: A Bone Marrow Pathology Group Study. Clin. Lymphoma Myeloma Leuk. 2024, 24, e808–e818. [Google Scholar] [CrossRef] [PubMed]
- Parameswaran, N.; Luo, L.; Zhang, L.; Chen, J.; DiFilippo, F.P.; Androjna, C.; Fox, D.A.; Ondrejka, S.L.; Hsi, E.D.; Jagadeesh, D.; et al. CD6-targeted antibody-drug conjugate as a new therapeutic agent for T cell lymphoma. Leukemia 2023, 37, 2050–2057. [Google Scholar] [CrossRef] [PubMed]
- Gurrea-Rubio, M.; Wu, Q.; Tsou, E.P.S.; Amin, M.A.; Campbell, P.; Randon, P.; Lind, M.; Ory, S.; Amarista, C.; Vichaikul, S.; et al. Targeting CD6-CD318 Axis with UMCD6 (anti-CD6) Enhances in Vivo Killing of Cancer Cells Through Direct Activation of NK Cells. Arthritis Rheumatol. 2022, 74, 3386–3388. [Google Scholar]
- Gurrea-Rubio, M.; Lin, F.; Wicha, M.S.; Mao-Draayer, Y.; Fox, D.A. Ligands of CD6: Roles in the pathogenesis and treatment of cancer. Front. Immunol. 2024, 15, 1528478. [Google Scholar] [CrossRef]
- He, S.; Li, S.; Guo, J.; Zeng, X.; Liang, D.; Zhu, Y.; Li, Y.; Yang, D.; Zhao, X. CD166-specific CAR-T cells potently target colorectal cancer cells. Transl. Oncol. 2023, 27, 101575. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, W.; Zhu, J.; Wang, J.; Xia, K.; Liang, C.; Tao, H. Anti-CD166/4-1BB chimeric antigen receptor T cell therapy for the treatment of osteosarcoma. J. Exp. Clin. Cancer Res. 2019, 38, 168. [Google Scholar] [CrossRef]
Clinical Trial | Treatment | Phase | Condition |
---|---|---|---|
NCT05993611 | CD6-CAR T regs | Ib | Chronic graft-versus-host disease after allogeneic hematopoietic cell transplantation |
NCT04007198 | Itolizumab (anti-CD6) | Ib | Moderate-to-severe uncontrolled asthma |
NCT04128579 | Itolizumab (anti-CD6) | Ib | Systemic lupus erythematosus with or without active proliferative nephritis |
NCT04475588 | Itolizumab (anti-CD6) | II | COVID-19 complications |
NCT03763318 | Itolizumab (anti-CD6) | I/IIb | Acute graft-versus-host disease in combination with corticosteroids |
NCT05263999 | Itolizumab (anti-CD6) | III | Acute graft-versus-host disease in combination with corticosteroids |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurrea-Rubio, M.; Fox, D.A.; Castresana, J.S. CD6 in Human Disease. Cells 2025, 14, 272. https://doi.org/10.3390/cells14040272
Gurrea-Rubio M, Fox DA, Castresana JS. CD6 in Human Disease. Cells. 2025; 14(4):272. https://doi.org/10.3390/cells14040272
Chicago/Turabian StyleGurrea-Rubio, Mikel, David A. Fox, and Javier S. Castresana. 2025. "CD6 in Human Disease" Cells 14, no. 4: 272. https://doi.org/10.3390/cells14040272
APA StyleGurrea-Rubio, M., Fox, D. A., & Castresana, J. S. (2025). CD6 in Human Disease. Cells, 14(4), 272. https://doi.org/10.3390/cells14040272