Aging and Corneal Nerve Health: Mechanisms of Degeneration and Emerging Therapies for the Cornea
Abstract
1. Introduction
2. Pathophysiological Changes Associated with Aging
2.1. Physiology of Aging and Cellular Changes
2.2. Aging in Peripheral and Central Nervous Systems
3. Impact of Aging on Corneal Nerves
3.1. Structural and Functional Changes in Corneal Nerves with Age
3.2. Methodological Considerations in Corneal Nerve Aging Studies
4. Risk Factors That Accelerate Age-Related Corneal Nerve Dysfunction
4.1. Refractive Surgery Differentially Affects Corneal Nerves and Ageing Slows Their Recovery
4.2. Systemic Metabolic Disorders Accelerate the Age-Related Loss of Corneal Nerves
4.3. Corneal Infections and Chronic Inflammatory Disorders Accelerate Age-Related Corneal Neurodegeneration
4.4. Medication-Associated Neurotoxicity Compounds Age-Related Corneal Nerve Loss
4.5. Corneal Nerve Loss as a Biomarker in Age-Related Neurodegenerative Diseases
4.6. Biological, Reproductive, and Nutritional Factors Modulate Age-Related Corneal Neurodegeneration
4.7. Ocular Surface Hypoxia and Environmental Stressors Exacerbate Age-Related Corneal Neurodegeneration
5. Molecular Mechanisms of Corneal Nerve Aging
5.1. Free Radical Oxidative Stress and ROS Accumulation
5.1.1. NGF/TrkA Signaling Impairment
5.1.2. Substance P and Inflammatory Regulation
5.1.3. Oxysterol Accumulation and Lipid Oxidation in Corneal and Neural Aging
5.2. Cellular Energy Metabolism
5.2.1. Insulin/IGF-1 Signaling (IIS) Pathway
5.2.2. mTOR Signaling Pathway
5.2.3. AMPK and Bioenergetic Homeostasis
5.3. Immunity and Corneal Nerve Aging
5.3.1. Calcitonin Gene-Related Peptide (CGRP)
5.3.2. Tau Protein and Corneal Nerve Dysfunction
5.3.3. Chronic Inflammation and Uric Acid
5.3.4. Immunosenescence and Corneal Nerve Vulnerability
6. Therapeutic Approaches for Age-Related Corneal Nerve Degeneration
6.1. Stem-Cell-Based Therapies
6.1.1. Corneal Stromal Stem Cells (CSSCs)
6.1.2. Bone Marrow Mesenchymal Stem Cells (BM-MSCs)
6.1.3. Adipose Tissue-Derived MSCs (ADSCs)
6.1.4. Fetal Tissue-Derived MSCs
6.1.5. Dental Pulp-Derived MSCs
6.2. Cell-Free Therapies: Exosomes and Neurotrophic Factors
6.2.1. Neurotrophic Growth Factors
6.2.2. Extracellular Vesicles (Exosomes)
6.3. Neuroprotective Strategies
6.4. Biomaterial Scaffolds
6.5. Proteoglycans and Inflammation Modulation
6.6. Preventive Strategies to Slow Corneal Nerve Aging
6.6.1. Avoiding Neurotoxic Preservatives (e.g., BAK)
6.6.2. Preservative-Free Lubrication
6.6.3. Topical Neuroprotective Vitamins (B12 and D)
7. Conclusions
8. Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arai, H.; Ouchi, Y.; Yokode, M.; Ito, H.; Uematsu, H.; Eto, F.; Oshima, S.; Ota, K.; Saito, Y.; Sasaki, H.; et al. Toward the Realization of a Better Aged Society: Messages from Gerontology and Geriatrics. Geriatr. Gerontol. Int. 2012, 12, 16–22. [Google Scholar] [CrossRef]
- Verdu, E.; Ceballos, D.; Vilches, J.J.; Navarro, X. Influence of Aging on Peripheral Nerve Function and Regeneration. J. Peripher. Nerv. Syst. 2000, 5, 191–208. [Google Scholar] [CrossRef]
- Rózsa, A.J.; Beuerman, R.W. Density and Organization of Free Nerve Endings in the Corneal Epithelium of the Rabbit. Pain 1982, 14, 105–120. [Google Scholar] [CrossRef]
- Marfurt, C.F.; Cox, J.; Deek, S.; Dvorscak, L. Anatomy of the Human Corneal Innervation. Exp. Eye Res. 2010, 90, 478–492. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Pham, T.L.; Bazan, H.E.P. Neuroanatomy and Neurochemistry of Rat Cornea: Changes with Age. Ocul. Surf. 2021, 20, 86–94. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Bazan, N.G.; Bazan, H.E.P. Mapping the Entire Human Corneal Nerve Architecture. Exp. Eye Res. 2010, 91, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Al-Aqaba, M.A.; Dhillon, V.K.; Mohammed, I.; Said, D.G.; Dua, H.S. Corneal Nerves in Health and Disease. Prog. Retin. Eye Res. 2019, 73, 100762. [Google Scholar] [CrossRef]
- Gurnani, B.; Feroze, K.B.; Patel, B.C. Neurotrophic Keratitis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Lafosse, E.; Wolffsohn, J.; Talens-Estarelles, C.; García-Lázaro, S. Presbyopia and the Aging Eye: Existing Refractive Approaches and Their Potential Impact on Dry Eye Signs and Symptoms. Contact Lens Anterior Eye 2020, 43, 103–114. [Google Scholar] [CrossRef]
- Gipson, I.K. Age-Related Changes and Diseases of the Ocular Surface and Cornea. Investig. Ophthalmol. Vis. Sci. 2013, 54, ORSF48–ORSF53. [Google Scholar] [CrossRef]
- Baratz, K.H.; Nau, C.B.; Winter, E.J.; McLaren, J.W.; Hodge, D.O.; Herman, D.C.; Bourne, W.M. Effects of Glaucoma Medications on Corneal Endothelium, Keratocytes, and Subbasal Nerves Among Participants in the Ocular Hypertension Treatment Study. Cornea 2006, 25, 1046–1052. [Google Scholar] [CrossRef]
- Martone, G.; Frezzotti, P.; Tosi, G.M.; Traversi, C.; Mittica, V.; Malandrini, A.; Pichierri, P.; Balestrazzi, A.; Motolese, P.A.; Motolese, I.; et al. An In Vivo Confocal Microscopy Analysis of Effects of Topical Antiglaucoma Therapy with Preservative on Corneal Innervation and Morphology. Am. J. Ophthalmol. 2009, 147, 725–735. [Google Scholar] [CrossRef]
- Chang, P.-Y.; Carrel, H.; Huang, J.-S.; Wang, I.-J.; Hou, Y.-C.; Chen, W.-L.; Wang, J.-Y.; Hu, F.-R. Decreased Density of Corneal Basal Epithelium and Subbasal Corneal Nerve Bundle Changes in Patients with Diabetic Retinopathy. Am. J. Ophthalmol. 2006, 142, 488–490. [Google Scholar] [CrossRef] [PubMed]
- Del Castillo, J.M.B.; Wasfy, M.A.S.; Fernandez, C.; Garcia-Sanchez, J. An In Vivo Confocal Masked Study on Corneal Epithelium and Subbasal Nerves in Patients with Dry Eye. Investig. Ophthalmol. Vis. Sci. 2004, 45, 3030. [Google Scholar] [CrossRef] [PubMed]
- Kitazawa, K.; Inomata, T.; Shih, K.; Hughes, J.-W.B.; Bozza, N.; Tomioka, Y.; Numa, K.; Yokoi, N.; Campisi, J.; Dana, R.; et al. Impact of Aging on the Pathophysiology of Dry Eye Disease: A Systematic Review and Meta-Analysis. Ocul. Surf. 2022, 25, 108–118. [Google Scholar] [CrossRef]
- Patel, D.V.; McGhee, C.N.J. In Vivo Confocal Microscopy of Human Corneal Nerves in Health, in Ocular and Systemic Disease, and Following Corneal Surgery: A Review. Br. J. Ophthalmol. 2009, 93, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Kowtharapu, B.S.; Stachs, O. Corneal Cells: Fine-Tuning Nerve Regeneration. Curr. Eye Res. 2020, 45, 291–302. [Google Scholar] [CrossRef]
- Ogrodnik, M.; Salmonowicz, H.; Gladyshev, V.N. Integrating Cellular Senescence with the Concept of Damage Accumulation in Aging: Relevance for Clearance of Senescent Cells. Aging Cell 2019, 18, e12841. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of Aging: An Expanding Universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef]
- Baechle, J.J.; Chen, N.; Makhijani, P.; Winer, S.; Furman, D.; Winer, D.A. Chronic Inflammation and the Hallmarks of Aging. Mol. Metab. 2023, 74, 101755. [Google Scholar] [CrossRef]
- Ogrodnik, M. Cellular Aging beyond Cellular Senescence: Markers of Senescence Prior to Cell Cycle Arrest in Vitro and in Vivo. Aging Cell 2021, 20, e13338. [Google Scholar] [CrossRef]
- Ferrucci, L.; Gonzalez-Freire, M.; Fabbri, E.; Simonsick, E.; Tanaka, T.; Moore, Z.; Salimi, S.; Sierra, F.; De Cabo, R. Measuring Biological Aging in Humans: A Quest. Aging Cell 2020, 19, e13080. [Google Scholar] [CrossRef]
- Tripathi, U.; Misra, A.; Tchkonia, T.; Kirkland, J.L. Impact of Senescent Cell Subtypes on Tissue Dysfunction and Repair: Importance and Research Questions. Mech. Ageing Dev. 2021, 198, 111548. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhou, L.; Sun, H.; Yang, M. Age-Related Macular Degeneration: A Disease of Cellular Senescence and Dysregulated Immune Homeostasis. Clin. Interv. Aging 2024, 19, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, S.; Xie, B.; Zhong, Y. Aging, Cellular Senescence, and Glaucoma. Aging Dis. 2024, 15, 546. [Google Scholar] [CrossRef] [PubMed]
- Sreekumar, P.G.; Hinton, D.R.; Kannan, R. The Emerging Role of Senescence in Ocular Disease. Oxidative Med. Cell. Longev. 2020, 2020, 2583601. [Google Scholar] [CrossRef]
- Soleimani, M.; Cheraqpour, K.; Koganti, R.; Djalilian, A.R. Cellular Senescence and Ophthalmic Diseases: Narrative Review. Graefe’s Arch. Clin. Exp. Ophthalmol. 2023, 261, 3067–3082. [Google Scholar] [CrossRef]
- Ceballos, D.; Cuadras, J.; Verdú, E.; Navarro, X. Morphometric and Ultrastructural Changes with Ageing in Mouse Peripheral Nerve. J. Anat. 1999, 195, 563–576. [Google Scholar] [CrossRef]
- Knox, C.A.; Kokmen, E.; Dyck, P.J. Morphometric Alteration of Rat Myelinated Fibers with Aging. J. Neuropathol. Exp. Neurol. 1989, 48, 119–139. [Google Scholar] [CrossRef]
- Adinolfi, A.M.; Yamuy, J.; Morales, F.R.; Chase, M.H. Segmental Demyelination in Peripheral Nerves of Old Cats. Neurobiol. Aging 1991, 12, 175–179. [Google Scholar] [CrossRef]
- Thomas, P.K.; King, R.H.M.; Sharma, A.K. Changes with Age in the Peripheral Nerves of the Rat: An Ultrastructural Study. Acta Neuropathol. 1980, 52, 1–6. [Google Scholar] [CrossRef]
- Scheibel, M.E.; Lindsay, R.D.; Tomiyasu, U.; Scheibel, A.B. Progressive Dendritic Changes in Aging Human Cortex. Exp. Neurol. 1975, 47, 392–403. [Google Scholar] [CrossRef]
- López-Teros, M.; Alarcón-Aguilar, A.; López-Diazguerrero, N.E.; Luna-López, A.; Königsberg, M. Contribution of Senescent and Reactive Astrocytes on Central Nervous System Inflammaging. Biogerontology 2022, 23, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Han, Z.; Ding, L.; Wang, P.; He, X.; Lin, L. The Molecular Mechanism of Aging and the Role in Neurodegenerative Diseases. Heliyon 2024, 10, e24751. [Google Scholar] [CrossRef] [PubMed]
- Pestronk, A.; Drachman, D.B.; Griffin, J.W. Effects of Aging on Nerve Sprouting and Regeneration. Exp. Neurol. 1980, 70, 65–82. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-J.; Harii, K.; Lee, M.-J.; Furuya, F.; Ueda, K. Electrophysiological, Morphological, and Morphometric Effects of Aging on Nerve Regeneration in Rats. Scand. J. Plast. Reconstr. Surg. Hand Surg. 1995, 29, 133–140. [Google Scholar] [CrossRef]
- Fuentes-Flores, A.; Geronimo-Olvera, C.; Girardi, K.; Necuñir-Ibarra, D.; Patel, S.K.; Bons, J.; Wright, M.C.; Geschwind, D.; Hoke, A.; Gomez-Sanchez, J.A.; et al. Senescent Schwann Cells Induced by Aging and Chronic Denervation Impair Axonal Regeneration Following Peripheral Nerve Injury. EMBO Mol. Med. 2023, 15, e17907. [Google Scholar] [CrossRef]
- Hanani, M.; Spray, D.C.; Huang, T.-Y. Age-Related Changes in Neurons and Satellite Glial Cells in Mouse Dorsal Root Ganglia. Int. J. Mol. Sci. 2023, 24, 2677. [Google Scholar] [CrossRef]
- Collins, K.J.; Exton-Smith, A.N.; James, M.H.; Oliver, D.J. Functional Changes in Autonomic Nervous Responses with Ageing. Age Ageing 1980, 9, 17–24. [Google Scholar] [CrossRef]
- Budni, J.; Bellettini-Santos, T.; Mina, F.; Garcez, M.L.; Zugno, A.I. The Involvement of BDNF, NGF and GDNF in Aging and Alzheimer’s Disease. Aging Dis. 2015, 6, 331–341. [Google Scholar] [CrossRef]
- Yazdankhah, M.; Shang, P.; Ghosh, S.; Hose, S.; Liu, H.; Weiss, J.; Fitting, C.S.; Bhutto, I.A.; Zigler, J.S.; Qian, J.; et al. Role of Glia in Optic Nerve. Prog. Retin. Eye Res. 2021, 81, 100886. [Google Scholar] [CrossRef]
- Mikelberg, F.S.; Drance, S.M.; Schulzer, M.; Yidegiligne, H.M.; Weis, M.M. The Normal Human Optic Nerve. Ophthalmology 1989, 96, 1325–1328. [Google Scholar] [CrossRef]
- Jonas, J.B.; Schmidt, A.M.; Müller-Bergh, J.A.; Schlötzer-Schrehardt, U.M.; Naumann, G.O. Human Optic Nerve Fiber Count and Optic Disc Size. Investig. Ophthalmol. Vis. Sci. 1992, 33, 2012–2018. [Google Scholar]
- Patel, N.B.; Lim, M.; Gajjar, A.; Evans, K.B.; Harwerth, R.S. Age-Associated Changes in the Retinal Nerve Fiber Layer and Optic Nerve Head. Investig. Ophthalmol. Vis. Sci. 2014, 55, 5134–5143. [Google Scholar] [CrossRef] [PubMed]
- Kanamori, A.; Escano, M.F.T.; Eno, A.; Nakamura, M.; Maeda, H.; Seya, R.; Ishibashi, K.; Negi, A. Evaluation of the Effect of Aging on Retinal Nerve Fiber Layer Thickness Measured by Optical Coherence Tomography. Ophthalmologica 2003, 217, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Celebi, A.R.C.; Mirza, G.E. Age-Related Change in Retinal Nerve Fiber Layer Thickness Measured with Spectral Domain Optical Coherence Tomography. Investig. Ophthalmol. Vis. Sci. 2013, 54, 8095. [Google Scholar] [CrossRef] [PubMed]
- Budenz, D.L.; Anderson, D.R.; Varma, R.; Schuman, J.; Cantor, L.; Savell, J.; Greenfield, D.S.; Patella, V.M.; Quigley, H.A.; Tielsch, J. Determinants of Normal Retinal Nerve Fiber Layer Thickness Measured by Stratus OCT. Ophthalmology 2007, 114, 1046–1052. [Google Scholar] [CrossRef]
- Alasil, T.; Wang, K.; Keane, P.A.; Lee, H.; Baniasadi, N.; De Boer, J.F.; Chen, T.C. Analysis of Normal Retinal Nerve Fiber Layer Thickness by Age, Sex, and Race Using Spectral Domain Optical Coherence Tomography. J. Glaucoma 2013, 22, 532–541. [Google Scholar] [CrossRef]
- Harwerth, R.S.; Wheat, J.L. Modeling the Effects of Aging on Retinal Ganglion Cell Density and Nerve Fiber Layer Thickness. Graefe’s Arch. Clin. Exp. Ophthalmol. 2008, 246, 305–314. [Google Scholar] [CrossRef]
- Balazsi, A.G.; Rootman, J.; Drance, S.M.; Schulzer, M.; Douglas, G.R. The Effect of Age on the Nerve Fiber Population of the Human Optic Nerve. Am. J. Ophthalmol. 1984, 97, 760–766. [Google Scholar] [CrossRef]
- Zhi, J.-J.; Wu, S.-L.; Wu, H.-Q.; Ran, Q.; Gao, X.; Chen, J.-F.; Gu, X.-M.; Li, T.; Wang, F.; Xiao, L.; et al. Insufficient Oligodendrocyte Turnover in Optic Nerve Contributes to Age-Related Axon Loss and Visual Deficits. J. Neurosci. 2023, 43, 1859–1870. [Google Scholar] [CrossRef]
- Coleman-Belin, J.; Harris, A.; Chen, B.; Zhou, J.; Ciulla, T.; Verticchio, A.; Antman, G.; Chang, M.; Siesky, B. Aging Effects on Optic Nerve Neurodegeneration. Int. J. Mol. Sci. 2023, 24, 2573. [Google Scholar] [CrossRef]
- Pahlaviani, F.G.; Yousefshahi, F.; Niktinat, H.; Roohipourmoallai, R.; Davoudi, S.; Iyer, S.S.R.; Bourbour, S.; Ebrahimiadib, N. Local Anesthesia in 23-Gauge Vitreoretinal Surgery: A Comparison of Efficacy between Retrobulbar and Sub-Tenon’s Injection. Glob. Transl. Med. 2024, 3, 3900. [Google Scholar] [CrossRef]
- Niktinat, H.; Yousefshahi, F.; Fadakar, K.; Latifi, G.; Kalantaritarari, F.; Imani Fooladi, M.; Ghahari, P.; Goudarzi, M.; Ebrahimiadib, N. Assessment of Ocular Neuropathic Pain Following Vitreoretinal Surgery Using 23-Gauge Sclerotomy. Glob. Transl. Med. 2024, 3, 1770. [Google Scholar] [CrossRef]
- Repka, M.X.; Quigley, H.A. The Effect of Age on Normal Human Optic Nerve Fiver Number and Diameter. Ophthalmology 1989, 96, 26–32. [Google Scholar] [CrossRef]
- Moya, F.J.; Brigatti, L.; Caprioli, J. Effect of Aging on Optic Nerve Appearance: A Longitudinal Study. Br. J. Ophthalmol. 1999, 83, 567–572. [Google Scholar] [CrossRef]
- Wang, C.; Fu, T.; Xia, C.; Li, Z. Changes in Mouse Corneal Epithelial Innervation with Age. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5077. [Google Scholar] [CrossRef] [PubMed]
- De Silva, M.E.H.; Hill, L.J.; Downie, L.E.; Chinnery, H.R. The Effects of Aging on Corneal and Ocular Surface Homeostasis in Mice. Investig. Ophthalmol. Vis. Sci. 2019, 60, 2705. [Google Scholar] [CrossRef]
- Stepp, M.A.; Pal-Ghosh, S.; Tadvalkar, G.; Williams, A.; Pflugfelder, S.C.; De Paiva, C.S. Reduced Intraepithelial Corneal Nerve Density and Sensitivity Accompany Desiccating Stress and Aging in C57BL/6 Mice. Exp. Eye Res. 2018, 169, 91–98. [Google Scholar] [CrossRef]
- Taurone, S.; Miglietta, S.; Spoletini, M.; Feher, J.; Artico, M.; Papa, V.; Matassa, R.; Familiari, G.; Gobbi, P.; Micera, A. Age Related Changes Seen in Human Cornea in Formalin Fixed Sections and on Biomicroscopy in Living Subjects: A Comparison. Clin. Anat. 2020, 33, 245–256. [Google Scholar] [CrossRef]
- Parissi, M.; Karanis, G.; Randjelovic, S.; Germundsson, J.; Poletti, E.; Ruggeri, A.; Utheim, T.P.; Lagali, N. Standardized Baseline Human Corneal Subbasal Nerve Density for Clinical Investigations with Laser-Scanning in Vivo Confocal Microscopy. Investig. Ophthalmol. Vis. Sci. 2013, 54, 7091. [Google Scholar] [CrossRef]
- Roszkowska, A.M.; Wylęgała, A.; Gargano, R.; Spinella, R.; Inferrera, L.; Orzechowska-Wylęgała, B.; Aragona, P. Impact of Corneal Parameters, Refractive Error and Age on Density and Morphology of the Subbasal Nerve Plexus Fibers in Healthy Adults. Sci. Rep. 2021, 11, 6076. [Google Scholar] [CrossRef]
- Zhao, K.; Yu, H.; Zheng, X.; Yang, J.; Wang, X.; Han, Y.; Jia, L.; Zhao, J. Use of the Inferior Whorl for Detecting Age-Related Changes in Human Corneal Subbasal Nerve Plexus with Laser Scanning Confocal Microscopy. Ophthalmic Res. 2021, 64, 769–774. [Google Scholar] [CrossRef]
- Chin, J.Y.; Liu, C.; Lee, I.X.Y.; Lin, M.T.Y.; Cheng, C.-Y.; Wong, J.H.F.; Teo, C.L.; Mehta, J.S.; Liu, Y.-C. Impact of Age on the Characteristics of Corneal Nerves and Corneal Epithelial Cells in Healthy Adults. Cornea 2024, 43, 409–418. [Google Scholar] [CrossRef]
- Niederer, R.L.; Perumal, D.; Sherwin, T.; McGhee, C.N.J. Age-Related Differences in the Normal Human Cornea: A Laser Scanning in Vivo Confocal Microscopy Study. Br. J. Ophthalmol. 2007, 91, 1165–1169. [Google Scholar] [CrossRef] [PubMed]
- Grupcheva, C.N.; Wong, T.; Riley, A.F.; McGhee, C.N. Assessing the Sub-basal Nerve Plexus of the Living Healthy Human Cornea by in Vivo Confocal Microscopy. Clin. Exp. Ophthalmol. 2002, 30, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Batawi, H.; Shalabi, N.; Joag, M.; Koru-Sengul, T.; Rodriguez, J.; Green, P.T.; Campigotto, M.; Karp, C.L.; Galor, A. Sub-Basal Corneal Nerve Plexus Analysis Using a New Software Technology. Eye Contact Lens Sci. Clin. Pract. 2018, 44, S199–S205. [Google Scholar] [CrossRef] [PubMed]
- Erie, J.C.; McLaren, J.W.; Hodge, D.O.; Bourne, W.M. The Effect of Age on the Corneal Subbasal Nerve Plexus. Cornea 2005, 24, 705–709. [Google Scholar] [CrossRef]
- Chao, C.; Wang, R.; Jones, M.; Karson, N.; Jussel, A.; Smith, J.; Richdale, K.; Harrison, W. The Relationship Between Corneal Nerve Density and Hemoglobin A1c in Patients with Prediabetes and Type 2 Diabetes. Investig. Ophthalmol. Vis. Sci. 2020, 61, 26. [Google Scholar] [CrossRef]
- Li, M.; Liu, L.; Shi, Y.; Sun, L.; Ma, X.; Zou, J. Age-Related Differences in Corneal Nerve Regeneration after SMILE and the Mechanism Revealed by Metabolomics. Exp. Eye Res. 2021, 209, 108665. [Google Scholar] [CrossRef]
- Tavakoli, M.; Ferdousi, M.; Petropoulos, I.N.; Morris, J.; Pritchard, N.; Zhivov, A.; Ziegler, D.; Pacaud, D.; Romanchuk, K.; Perkins, B.A.; et al. Normative Values for Corneal Nerve Morphology Assessed Using Corneal Confocal Microscopy: A Multinational Normative Data Set. Diabetes Care 2015, 38, 838–843. [Google Scholar] [CrossRef]
- Roszkowska, A.M.; Colosi, P.; Ferreri, F.M.B.; Galasso, S. Age-Related Modifications of Corneal Sensitivity. Ophthalmologica 2004, 218, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Alcalde, I.; Íñigo-Portugués, A.; González-González, O.; Almaraz, L.; Artime, E.; Morenilla-Palao, C.; Gallar, J.; Viana, F.; Merayo-Lloves, J.; Belmonte, C. Morphological and Functional Changes in TRPM8-expressing Corneal Cold Thermoreceptor Neurons during Aging and Their Impact on Tearing in Mice. J. Comp. Neurol. 2018, 526, 1859–1874. [Google Scholar] [CrossRef] [PubMed]
- Courson, J.A.; Rumbaut, R.E.; Burns, A.R. Impact of Obesity and Age on Mouse Corneal Innervation at the Epithelial-Stromal Interface. Investig. Ophthalmol. Vis. Sci. 2024, 65, 11. [Google Scholar] [CrossRef]
- Hillenaar, T.; Van Cleynenbreugel, H.; Remeijer, L. How Normal Is the Transparent Cornea? Effects of Aging on Corneal Morphology. Ophthalmology 2012, 119, 241–248. [Google Scholar] [CrossRef]
- Badian, R.A.; Andréasson, M.; Svenningsson, P.; Utheim, T.P.; Lagali, N. The Pattern of the Inferocentral Whorl Region of the Corneal Subbasal Nerve Plexus Is Altered with Age. Ocul. Surf. 2021, 22, 204–212. [Google Scholar] [CrossRef]
- Chirapapaisan, C.; Thongsuwan, S.; Chirapapaisan, N.; Chonpimai, P.; Veeraburinon, A. Characteristics of Corneal Subbasal Nerves in Different Age Groups: An in Vivo Confocal Microscopic Analysis. Clin. Ophthalmol. 2021, 15, 3563–3572. [Google Scholar] [CrossRef]
- Patel, D.V.; Tavakoli, M.; Craig, J.P.; Efron, N.; McGhee, C.N.J. Corneal Sensitivity and Slit Scanning In Vivo Confocal Microscopy of the Subbasal Nerve Plexus of the Normal Central and Peripheral Human Cornea. Cornea 2009, 28, 735–740. [Google Scholar] [CrossRef]
- Gambato, C.; Longhin, E.; Catania, A.G.; Lazzarini, D.; Parrozzani, R.; Midena, E. Aging and Corneal Layers: An in Vivo Corneal Confocal Microscopy Study. Graefe’s Arch. Clin. Exp. Ophthalmol. 2015, 253, 267–275. [Google Scholar] [CrossRef]
- Yang, A.Y.; Chow, J.; Liu, J. Corneal Innervation and Sensation: The Eye and Beyond. Yale J. Biol. Med. 2018, 91, 13–21. [Google Scholar]
- Shaheen, B.S.; Bakir, M.; Jain, S. Corneal Nerves in Health and Disease. Surv. Ophthalmol. 2014, 59, 263–285. [Google Scholar] [CrossRef]
- Erie, J.C.; McLaren, J.W.; Hodge, D.O.; Bourne, W.M. Recovery of Corneal Subbasal Nerve Density After PRK and LASIK. Am. J. Ophthalmol. 2005, 140, 1059–1064. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, M.; Cañadas, P.; Gros-Otero, J.; Rodriguez-Perez, I.; Cañones-Zafra, R.; Kozobolis, V.; Teus, M.A. Long-Term Corneal Subbasal Nerve Plexus Regeneration after Laser in Situ Keratomileusis. J. Cataract. Refract. Surg. 2019, 45, 966–971. [Google Scholar] [CrossRef]
- Denoyer, A.; Landman, E.; Trinh, L.; Faure, J.-F.; Auclin, F.; Baudouin, C. Dry Eye Disease after Refractive Surgery. Ophthalmology 2015, 122, 669–676. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Jung, A.S.J.; Chin, J.Y.; Yang, L.W.Y.; Mehta, J.S. Cross-Sectional Study on Corneal Denervation in Contralateral Eyes Following SMILE Versus LASIK. J. Refract. Surg. 2020, 36, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Alam, U.; Jeziorska, M.; Petropoulos, I.N.; Asghar, O.; Fadavi, H.; Ponirakis, G.; Marshall, A.; Tavakoli, M.; Boulton, A.J.M.; Efron, N.; et al. Diagnostic Utility of Corneal Confocal Microscopy and Intra-Epidermal Nerve Fibre Density in Diabetic Neuropathy. PLoS ONE 2017, 12, e0180175. [Google Scholar] [CrossRef] [PubMed]
- Kallinikos, P.; Berhanu, M.; O’Donnell, C.; Boulton, A.J.M.; Efron, N.; Malik, R.A. Corneal Nerve Tortuosity in Diabetic Patients with Neuropathy. Investig. Ophthalmol. Vis. Sci. 2004, 45, 418. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, L.; Ferdousi, M.; Kalteniece, A.; Iqbal, Z.; Petropoulos, I.N.; Ponirakis, G.; Buzzetti, R.; Malik, R.A.; Soran, H. Corneal Confocal Microscopy Identifies Small Nerve Fibre Damage in Patients with Hypertriglyceridemia. J. Clin. Lipidol. 2022, 16, 463–471. [Google Scholar] [CrossRef]
- Teo, C.H.Y.; Liu, C.; Yu, M.; Lee, I.X.Y.; Anam, A.; Cheng, C.-Y.; Htunwai, Y.; Koh, J.S.; Chandran, S.R.; Liu, Y.-C. Obesity Negatively Impacts Corneal Nerves in Patients with Diabetes Mellitus. Eye Vis. 2025, 12, 17. [Google Scholar] [CrossRef]
- Mok, E.; Kam, K.W.; Young, A.L. Corneal Nerve Changes in Herpes Zoster Ophthalmicus: A Prospective Longitudinal in Vivo Confocal Microscopy Study. Eye 2023, 37, 3033–3040. [Google Scholar] [CrossRef]
- Hamrah, P.; Cruzat, A.; Dastjerdi, M.H.; Prüss, H.; Zheng, L.; Shahatit, B.M.; Bayhan, H.A.; Dana, R.; Pavan-Langston, D. Unilateral Herpes Zoster Ophthalmicus Results in Bilateral Corneal Nerve Alteration. Ophthalmology 2013, 120, 40–47. [Google Scholar] [CrossRef]
- Moein, H.-R.; Kheirkhah, A.; Muller, R.T.; Cruzat, A.C.; Pavan-Langston, D.; Hamrah, P. Corneal Nerve Regeneration after Herpes Simplex Keratitis: A Longitudinal in Vivo Confocal Microscopy Study. Ocul. Surf. 2018, 16, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Luzu, J.; Labbé, A.; Réaux-Le Goazigo, A.; Rabut, G.; Liang, H.; Dupas, B.; Blautain, B.; Sène, D.; Baudouin, C. In Vivo Confocal Microscopic Study of Corneal Innervation in Sjögren’s Syndrome with or without Small Fiber Neuropathy. Ocul. Surf. 2022, 25, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Bitirgen, G.; Kucuk, A.; Ergun, M.C.; Satirtav, G.; Malik, R.A. Corneal Nerve Loss and Increased Langerhans Cells Are Associated with Disease Severity in Patients with Rheumatoid Arthritis. Eye 2023, 37, 2950–2955. [Google Scholar] [CrossRef] [PubMed]
- Bitirgen, G.; Kucuk, A.; Ergun, M.C.; Baloglu, R.; Gharib, M.H.; Al Emadi, S.; Ponirakis, G.; Malik, R.A. Subclinical Corneal Nerve Fiber Damage and Immune Cell Activation in Systemic Lupus Erythematosus: A Corneal Confocal Microscopy Study. Transl. Vis. Sci. Technol. 2021, 10, 10. [Google Scholar] [CrossRef]
- Sarkar, J.; Chaudhary, S.; Namavari, A.; Ozturk, O.; Chang, J.-H.; Yco, L.; Sonawane, S.; Khanolkar, V.; Hallak, J.; Jain, S. Corneal Neurotoxicity Due to Topical Benzalkonium Chloride. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1792. [Google Scholar] [CrossRef]
- Zhu, X.-Y.; Ge, Q.-S.; Li, Z.-Y.; Zhou, L.-F.; Bu, Q.-W.; Su, Y.; Wang, X.-J.; Zhou, Q.-J.; Pan, X.-J.; Hu, D. Corneal Nerve Changes by Anti-Glaucoma Medications Examined by in Vivo Confocal Microscopy. Int. J. Ophthalmol. 2024, 17, 1645–1653. [Google Scholar] [CrossRef]
- Tyler, E.F.; McGhee, C.N.J.; Lawrence, B.; Braatvedt, G.D.; Mankowski, J.L.; Oakley, J.D.; Sethi, S.; Misra, S.L. Corneal Nerve Changes Observed by In Vivo Confocal Microscopy in Patients Receiving Oxaliplatin for Colorectal Cancer: The COCO Study. J. Clin. Med. 2022, 11, 4770. [Google Scholar] [CrossRef]
- Ferdousi, M.; Azmi, S.; Petropoulos, I.N.; Fadavi, H.; Ponirakis, G.; Marshall, A.; Tavakoli, M.; Malik, I.; Mansoor, W.; Malik, R.A. Corneal Confocal Microscopy Detects Small Fibre Neuropathy in Patients with Upper Gastrointestinal Cancer and Nerve Regeneration in Chemotherapy Induced Peripheral Neuropathy. PLoS ONE 2015, 10, e0139394. [Google Scholar] [CrossRef]
- Jones, M.R.; Urits, I.; Wolf, J.; Corrigan, D.; Colburn, L.; Peterson, E.; Williamson, A.; Viswanath, O. Drug-Induced Peripheral Neuropathy: A Narrative Review. Curr. Clin. Pharmacol. 2020, 15, 38–48. [Google Scholar] [CrossRef]
- Petropoulos, I.N.; Bitirgen, G.; Ferdousi, M.; Kalteniece, A.; Azmi, S.; D’Onofrio, L.; Lim, S.H.; Ponirakis, G.; Khan, A.; Gad, H.; et al. Corneal Confocal Microscopy to Image Small Nerve Fiber Degeneration: Ophthalmology Meets Neurology. Front. Pain Res. 2021, 2, 725363. [Google Scholar] [CrossRef]
- Dehghani, C.; Frost, S.; Jayasena, R.; Masters, C.L.; Kanagasingam, Y. Ocular Biomarkers of Alzheimer’s Disease: The Role of Anterior Eye and Potential Future Directions. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3554–3563. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, G.; Grisan, E.; Scarpa, F.; Fazio, R.; Comola, M.; Quattrini, A.; Comi, G.; Rama, P.; Riva, N. Corneal Confocal Microscopy Reveals Trigeminal Small Sensory Fiber Neuropathy in Amyotrophic Lateral Sclerosis. Front. Aging Neurosci. 2014, 6, 278. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.; Palandra, J.; Goihberg, E.; Deng, S.; Hurst, S.; Neubert, H. Analysis of β-Nerve Growth Factor and Its Precursor during Human Pregnancy by Immunoaffinity-Liquid Chromatography Tandem Mass Spectrometry. Sci. Rep. 2023, 13, 9180. [Google Scholar] [CrossRef] [PubMed]
- Dinn, R.B.; Harris, A.; Marcus, P.S. Ocular Changes in Pregnancy. Obstet. Gynecol. Surv. 2003, 58, 137–144. [Google Scholar] [CrossRef]
- Ren, X.; Chou, Y.; Wang, Y.; Jing, D.; Chen, Y.; Li, X. The Utility of Oral Vitamin B1 and Mecobalamin to Improve Corneal Nerves in Dry Eye Disease: An In Vivo Confocal Microscopy Study. Nutrients 2022, 14, 3750. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, D.; Zhang, Y.; Zhang, S.; Wang, H.; Liu, Z.; Wang, H. Using Corneal Confocal Microscopy to Compare Mecobalamin Intramuscular Injections vs Oral Tablets in Treating Diabetic Peripheral Neuropathy: A RCT. Sci. Rep. 2021, 11, 14697. [Google Scholar] [CrossRef]
- Fogagnolo, P.; Melardi, E.; Tranchina, L.; Rossetti, L. Topical Citicoline and Vitamin B12 versus Placebo in the Treatment of Diabetes-Related Corneal Nerve Damage: A Randomized Double-Blind Controlled Trial. BMC Ophthalmol. 2020, 20, 315. [Google Scholar] [CrossRef]
- Lu, X.; Vick, S.; Chen, Z.; Chen, J.; Watsky, M.A. Effects of Vitamin D Receptor Knockout and Vitamin D Deficiency on Corneal Epithelial Wound Healing and Nerve Density in Diabetic Mice. Diabetes 2020, 69, 1042–1051. [Google Scholar] [CrossRef]
- Britten-Jones, A.C.; Craig, J.P.; Downie, L.E. Omega-3 Polyunsaturated Fatty Acids and Corneal Nerve Health: Current Evidence and Future Directions. Ocul. Surf. 2023, 27, 1–12. [Google Scholar] [CrossRef]
- Pang, K.; Lennikov, A.; Yang, M. Hypoxia Adaptation in the Cornea: Current Animal Models and Underlying Mechanisms. Anim. Models Exp. Med. 2021, 4, 300–310. [Google Scholar] [CrossRef]
- Chiang, J.C.B.; Tajbakhsh, Z.; Wolffsohn, J.S. The Clinical Impact of Contact Lens Wear on Neural Structure and Function of the Cornea. Clin. Exp. Optom. 2025, 108, 408–418. [Google Scholar] [CrossRef]
- Dikmetas, O.; Kocabeyoglu, S.; Mocan, M.C. The Association between Meibomian Gland Atrophy and Corneal Subbasal Nerve Loss in Patients with Chronic Ocular Graft-versus-Host Disease. Curr. Eye Res. 2021, 46, 796–801. [Google Scholar] [CrossRef]
- Kheirkhah, A.; Dohlman, T.H.; Amparo, F.; Arnoldner, M.A.; Jamali, A.; Hamrah, P.; Dana, R. Effects of Corneal Nerve Density on the Response to Treatment in Dry Eye Disease. Ophthalmology 2015, 122, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.L.; Yamaguchi, T.; Hamrah, P. A Novel Murine Model of Radiation Keratopathy. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3889–3896. [Google Scholar] [CrossRef] [PubMed]
- Abedi, F.; Hamrah, P. Corneal Subbasal Nerve Recovery in an Acute Case of Ultraviolet Keratitis Treated with Autologous Serum Eye Drops. J. Ophthalmol. 2018, 2018, 4905487. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, M.; Baharnoori, S.M.; Massoumi, H.; Cheraqpour, K.; Asadigandomani, H.; Mirzaei, A.; Ashraf, M.J.; Koganti, R.; Chaudhuri, M.; Ghassemi, M.; et al. A Deep Dive into Radiation Keratopathy; Going beyond the Current Frontierss. Exp. Eye Res. 2025, 251, 110234. [Google Scholar] [CrossRef]
- Hoeijmakers, J.H.J. DNA Damage, Aging, and Cancer. N. Engl. J. Med. 2009, 361, 1475–1485. [Google Scholar] [CrossRef]
- Böhm, E.W.; Buonfiglio, F.; Voigt, A.M.; Bachmann, P.; Safi, T.; Pfeiffer, N.; Gericke, A. Oxidative Stress in the Eye and Its Role in the Pathophysiology of Ocular Diseases. Redox Biol. 2023, 68, 102967. [Google Scholar] [CrossRef]
- Di, G.; Qi, X.; Zhao, X.; Zhang, S.; Danielson, P.; Zhou, Q. Corneal Epithelium-Derived Neurotrophic Factors Promote Nerve Regeneration. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4695–4702. [Google Scholar] [CrossRef]
- Kropf, E.; Fahnestock, M. Effects of Reactive Oxygen and Nitrogen Species on TrkA Expression and Signalling: Implications for proNGF in Aging and Alzheimer’s Disease. Cells 2021, 10, 1983. [Google Scholar] [CrossRef]
- Singh, R.B.; Naderi, A.; Cho, W.; Ortiz, G.; Musayeva, A.; Dohlman, T.H.; Chen, Y.; Ferrari, G.; Dana, R. Modulating the Tachykinin: Role of Substance P and Neurokinin Receptor Expression in Ocular Surface Disorders. Ocul. Surf. 2022, 25, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.T.; Lausch, R.N.; Oakes, J.E. Substance P Differentially Stimulates IL-8 Synthesis in Human Corneal Epithelial Cells. Investig. Ophthalmol. Vis. Sci. 2000, 41, 3871–3877. [Google Scholar]
- Suvas, S. Role of Substance P Neuropeptide in Inflammation, Wound Healing, and Tissue Homeostasis. J. Immunol. 2017, 199, 1543–1552. [Google Scholar] [CrossRef] [PubMed]
- Bonini, S.; Rama, P.; Olzi, D.; Lambiase, A. Neurotrophic Keratitis. Eye 2003, 17, 989–995. [Google Scholar] [CrossRef]
- Olivier, E.; Rat, P. Role of Oxysterols in Ocular Degeneration Mechanisms and Involvement of P2X7 Receptor. In Implication of Oxysterols and Phytosterols in Aging and Human Diseases; Lizard, G., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2024; Volume 1440, pp. 277–292. ISBN 978-3-031-43882-0. [Google Scholar]
- Liu, H.; Gambino, F.; Algenio, C.S.; Wu, C.; Gao, Y.; Bouchard, C.S.; Qiao, L.; Bu, P.; Zhao, S. Inflammation and Oxidative Stress Induced by Lipid Peroxidation Metabolite 4-Hydroxynonenal in Human Corneal Epithelial Cells. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 258, 1717–1725. [Google Scholar] [CrossRef]
- Linsenbardt, A.J.; Taylor, A.; Emnett, C.M.; Doherty, J.J.; Krishnan, K.; Covey, D.F.; Paul, S.M.; Zorumski, C.F.; Mennerick, S. Different Oxysterols Have Opposing Actions at N-Methyl-d-Aspartate Receptors. Neuropharmacology 2014, 85, 232–242. [Google Scholar] [CrossRef]
- Sun, Q.; Li, J.; Gao, F. New Insights into Insulin: The Anti-Inflammatory Effect and Its Clinical Relevance. World J. Diabetes 2014, 5, 89. [Google Scholar] [CrossRef]
- Johnson, S.C.; Rabinovitch, P.S.; Kaeberlein, M. mTOR Is a Key Modulator of Ageing and Age-Related Disease. Nature 2013, 493, 338–345. [Google Scholar] [CrossRef]
- Bartke, A.; Sun, L.Y.; Longo, V. Somatotropic Signaling: Trade-Offs Between Growth, Reproductive Development, and Longevity. Physiol. Rev. 2013, 93, 571–598. [Google Scholar] [CrossRef]
- Liu, G.Y.; Sabatini, D.M. mTOR at the Nexus of Nutrition, Growth, Ageing and Disease. Nat. Rev. Mol. Cell Biol. 2020, 21, 183–203. [Google Scholar] [CrossRef]
- Porstmann, T.; Santos, C.R.; Griffiths, B.; Cully, M.; Wu, M.; Leevers, S.; Griffiths, J.R.; Chung, Y.-L.; Schulze, A. SREBP Activity Is Regulated by mTORC1 and Contributes to Akt-Dependent Cell Growth. Cell Metab. 2008, 8, 224–236. [Google Scholar] [CrossRef]
- Stallone, G.; Infante, B.; Prisciandaro, C.; Grandaliano, G. mTOR and Aging: An Old Fashioned Dress. Int. J. Mol. Sci. 2019, 20, 2774. [Google Scholar] [CrossRef] [PubMed]
- Salminen, A.; Kaarniranta, K.; Kauppinen, A. Age-Related Changes in AMPK Activation: Role for AMPK Phosphatases and Inhibitory Phosphorylation by Upstream Signaling Pathways. Ageing Res. Rev. 2016, 28, 15–26. [Google Scholar] [CrossRef]
- Hardie, D.G.; Ross, F.A.; Hawley, S.A. AMPK: A Nutrient and Energy Sensor That Maintains Energy Homeostasis. Nat. Rev. Mol. Cell Biol. 2012, 13, 251–262. [Google Scholar] [CrossRef]
- Salminen, A.; Hyttinen, J.M.T.; Kaarniranta, K. AMP-Activated Protein Kinase Inhibits NF-κB Signaling and Inflammation: Impact on Healthspan and Lifespan. J. Mol. Med. 2011, 89, 667–676. [Google Scholar] [CrossRef]
- Sharma, C.; Kim, S.; Nam, Y.; Jung, U.J.; Kim, S.R. Mitochondrial Dysfunction as a Driver of Cognitive Impairment in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 4850. [Google Scholar] [CrossRef]
- Shukal, D.K.; Malaviya, P.B.; Sharma, T. Role of the AMPK Signalling Pathway in the Aetiopathogenesis of Ocular Diseases. Hum. Exp. Toxicol. 2022, 41, 9603271211063165. [Google Scholar] [CrossRef]
- Hong, X.; Ding, F.; Xiong, J.; Wu, Y.; Chen, W. Calcitonin Gene-Related Peptide and Persistent Corneal Pain: A Trigeminal Nerve Sensitization Perspective. Brain-X 2023, 1, e48. [Google Scholar] [CrossRef]
- Tummanapalli, S.S.; Willcox, M.D.P.; Issar, T.; Kwai, N.; Poynten, A.M.; Krishnan, A.V.; Pisarcikova, J.; Markoulli, M. The Effect of Age, Gender and Body Mass Index on Tear Film Neuromediators and Corneal Nerves. Curr. Eye Res. 2020, 45, 411–418. [Google Scholar] [CrossRef]
- Golebiowski, B.; Chao, C.; Stapleton, F.; Jalbert, I. Corneal Nerve Morphology, Sensitivity, and Tear Neuropeptides in Contact Lens Wear. Optom. Vis. Sci. 2017, 94, 534–542. [Google Scholar] [CrossRef]
- Vasic, V.; Barth, K.; Schmidt, M.H.H. Neurodegeneration and Neuro-Regeneration—Alzheimer’s Disease and Stem Cell Therapy. Int. J. Mol. Sci. 2019, 20, 4272. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Shi, S.; Luo, B.; Xia, F.; Ha, Y.; Merkley, K.H.; Motamedi, M.; Zhang, W.; Liu, H. Tauopathy Induces Degeneration and Impairs Regeneration of Sensory Nerves in the Cornea. Exp. Eye Res. 2022, 215, 108900. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.L.; Kersten, H.M.; Roxburgh, R.H.; Danesh-Meyer, H.V.; McGhee, C.N.J. Corneal Nerve Microstructure in Parkinson’s Disease. J. Clin. Neurosci. 2017, 39, 53–58. [Google Scholar] [CrossRef]
- Jiao, H.; Downie, L.E.; Huang, X.; Wu, M.; Oberrauch, S.; Keenan, R.J.; Jacobson, L.H.; Chinnery, H.R. Novel Alterations in Corneal Neuroimmune Phenotypes in Mice with Central Nervous System Tauopathy. J. Neuroinflamm. 2020, 17, 136. [Google Scholar] [CrossRef]
- Khan, A.; Parray, A.; Akhtar, N.; Agouni, A.; Kamran, S.; Pananchikkal, S.V.; Priyanka, R.; Gad, H.; Ponirakis, G.; Petropoulos, I.N.; et al. Corneal Nerve Loss in Patients with TIA and Acute Ischemic Stroke in Relation to Circulating Markers of Inflammation and Vascular Integrity. Sci. Rep. 2022, 12, 3332. [Google Scholar] [CrossRef]
- Galletti, J.G.; de Paiva, C.S. The Ocular Surface Immune System through the Eyes of Aging. Ocul. Surf. 2021, 20, 139–162. [Google Scholar] [CrossRef]
- Bian, F.; Xiao, Y.; Zaheer, M.; Volpe, E.A.; Pflugfelder, S.C.; Li, D.-Q.; de Paiva, C.S. Inhibition of NLRP3 Inflammasome Pathway by Butyrate Improves Corneal Wound Healing in Corneal Alkali Burn. Int. J. Mol. Sci. 2017, 18, 562. [Google Scholar] [CrossRef]
- Kumar, A.; Xu, Y.; Yang, E.; Du, Y. Stemness and Regenerative Potential of Corneal Stromal Stem Cells and Their Secretome After Long-Term Storage: Implications for Ocular Regeneration. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3728–3738. [Google Scholar] [CrossRef]
- Kumar, A.; Yun, H.; Funderburgh, M.L.; Du, Y. Regenerative Therapy for the Cornea. Prog. Retin. Eye Res. 2022, 87, 101011. [Google Scholar] [CrossRef]
- Nurković, J.S.; Vojinović, R.; Dolićanin, Z. Corneal Stem Cells as a Source of Regenerative Cell-Based Therapy. Stem Cells Int. 2020, 2020, 8813447. [Google Scholar] [CrossRef]
- Lavorato, A.; Raimondo, S.; Boido, M.; Muratori, L.; Durante, G.; Cofano, F.; Vincitorio, F.; Petrone, S.; Titolo, P.; Tartara, F.; et al. Mesenchymal Stem Cell Treatment Perspectives in Peripheral Nerve Regeneration: Systematic Review. Int. J. Mol. Sci. 2021, 22, 572. [Google Scholar] [CrossRef]
- Jones, S.; Eisenberg, H.M.; Jia, X. Advances and Future Applications of Augmented Peripheral Nerve Regeneration. Int. J. Mol. Sci. 2016, 17, 1494. [Google Scholar] [CrossRef]
- Karaca, E.E.; Soleimani, M.; Baharnoori, M.; Arabpour, Z.; Ashraf, M.J.; Jalilian, E.; Djalilian, A.R. Protective Effects of Intracameral Mesenchymal Stem/Stromal Cells on Corneal Endothelial Injury: Exploring New Avenues in Regenerative Medicine. Investig. Ophthalmol. Vis. Sci. 2024, 65, 2145. [Google Scholar]
- Kufta, A.; Soleimani, M.; Cheraqpour, K.; Baharnoori, S.M.; Massoumi, H.; Ashraf, M.J.; Koganti, R.; Ghassemi, M.; Anwar, K.N.; Jalilian, E.; et al. The Role of Mesenchymal Stem/Stromal Cells in Corneal Wound Healing: A Comparative Study of Different Sources and Delivery Routes. Investig. Ophthalmol. Vis. Sci. 2024, 65, 398. [Google Scholar]
- Yu, Z.; Xu, N.; Zhang, N.; Xiong, Y.; Wang, Z.; Liang, S.; Zhao, D.; Huang, F.; Zhang, C. Repair of Peripheral Nerve Sensory Impairments via the Transplantation of Bone Marrow Neural Tissue-Committed Stem Cell-Derived Sensory Neurons. Cell. Mol. Neurobiol. 2019, 39, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Kubiak, C.A.; Grochmal, J.; Kung, T.A.; Cederna, P.S.; Midha, R.; Kemp, S.W.P. Stem-Cell-Based Therapies to Enhance Peripheral Nerve Regeneration. Muscle Nerve 2020, 61, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ding, F.; Gu, Y.; Liu, J.; Gu, X. Bone Marrow Mesenchymal Stem Cells Promote Cell Proliferation and Neurotrophic Function of Schwann Cells in Vitro and in Vivo. Brain Res. 2009, 1262, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.-F.; Zhang, B.-Z.; Qian, W.-W.; Cheng, F.M. Bone Marrow Mesenchymal Stem Cells in Treatment of Peripheral Nerve Injury. World J. Stem Cells 2024, 16, 799–810. [Google Scholar] [CrossRef]
- Tong, X. Transplantation of Adipose-Derived Stem Cells for Peripheral Nerve Repair. Int. J. Mol. Med. 2011, 28, 565–572. [Google Scholar] [CrossRef]
- Widgerow, A.D.; Salibian, A.A.; Lalezari, S.; Evans, G.R.D. Neuromodulatory Nerve Regeneration: Adipose Tissue-Derived Stem Cells and Neurotrophic Mediation in Peripheral Nerve Regeneration. J. Neurosci. Res. 2013, 91, 1517–1524. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Y.; Wang, D.; Liu, J.; Pan, J. Adipose Stem Cell-Based Clinical Strategy for Neural Regeneration: A Review of Current Opinion. Stem Cells Int. 2019, 2019, 8502370. [Google Scholar] [CrossRef]
- Kingham, P.J.; Kalbermatten, D.F.; Mahay, D.; Armstrong, S.J.; Wiberg, M.; Terenghi, G. Adipose-Derived Stem Cells Differentiate into a Schwann Cell Phenotype and Promote Neurite Outgrowth in Vitro. Exp. Neurol. 2007, 207, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Drela, K.; Lech, W.; Figiel-Dabrowska, A.; Zychowicz, M.; Mikula, M.; Sarnowska, A.; Domanska-Janik, K. Enhanced Neuro-Therapeutic Potential of Wharton’s Jelly–Derived Mesenchymal Stem Cells in Comparison with Bone Marrow Mesenchymal Stem Cells Culture. Cytotherapy 2016, 18, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Matsuse, D.; Kitada, M.; Kohama, M.; Nishikawa, K.; Makinoshima, H.; Wakao, S.; Fujiyoshi, Y.; Heike, T.; Nakahata, T.; Akutsu, H.; et al. Human Umbilical Cord-Derived Mesenchymal Stromal Cells Differentiate Into Functional Schwann Cells That Sustain Peripheral Nerve Regeneration. J. Neuropathol. Exp. Neurol. 2010, 69, 973–985. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, S.M.; El-Shal, A.S.; Ahmed, F.E.; Shaban, S.F.; Wahdan, R.A.; Kandel, W.A.; Senger, M.S. Combined Wharton’s Jelly Derived Mesenchymal Stem Cells and Nerve Guidance Conduit: A Potential Promising Therapy for Peripheral Nerve Injuries. Int. J. Biochem. Cell Biol. 2017, 86, 67–76. [Google Scholar] [CrossRef]
- Qiu, C.; Ge, Z.; Cui, W.; Yu, L.; Li, J. Human Amniotic Epithelial Stem Cells: A Promising Seed Cell for Clinical Applications. Int. J. Mol. Sci. 2020, 21, 7730. [Google Scholar] [CrossRef]
- Li, Y.; Guo, L.; Ahn, H.S.; Kim, M.H.; Kim, S. Amniotic Mesenchymal Stem Cells Display Neurovascular Tropism and Aid in the Recovery of Injured Peripheral Nerves. J. Cell. Mol. Med. 2014, 18, 1028–1034. [Google Scholar] [CrossRef]
- Pisciotta, A.; Bertoni, L.; Vallarola, A.; Bertani, G.; Mecugni, D.; Carnevale, G. Neural Crest Derived Stem Cells from Dental Pulp and Tooth-Associated Stem Cells for Peripheral Nerve Regeneration. Neural Regen. Res. 2020, 15, 373. [Google Scholar] [CrossRef]
- Luo, L.; He, Y.; Wang, X.; Key, B.; Lee, B.H.; Li, H.; Ye, Q. Potential Roles of Dental Pulp Stem Cells in Neural Regeneration and Repair. Stem Cells Int. 2018, 2018, 1731289. [Google Scholar] [CrossRef]
- Manni, G.; Buratta, S.; Pallotta, M.T.; Chiasserini, D.; Di Michele, A.; Emiliani, C.; Giovagnoli, S.; Pascucci, L.; Romani, R.; Bellezza, I.; et al. Extracellular Vesicles in Aging: An Emerging Hallmark? Cells 2023, 12, 527. [Google Scholar] [CrossRef]
- Park, R.; Spritz, S.; Zeng, A.Y.; Erukulla, R.; Zavala, D.; Merchant, T.; Gascon, A.; Jung, R.; Bigit, B.; Azar, D.T.; et al. Corneal Sensory Receptors and Pharmacological Therapies to Modulate Ocular Pain. Int. J. Mol. Sci. 2025, 26, 4663. [Google Scholar] [CrossRef] [PubMed]
- Deeks, E.D.; Lamb, Y.N. Cenegermin: A Review in Neurotrophic Keratitis. Drugs 2020, 80, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Sacchetti, M.; Bruscolini, A.; Lambiase, A. Cenegermin for the Treatment of Neurotrophic Keratitis. Drugs Today 2017, 53, 585–595. [Google Scholar] [CrossRef]
- Sacchetti, M.; Lambiase, A. Neurotrophic Factors and Corneal Nerve Regeneration. Neural. Regen. Res. 2017, 12, 1220. [Google Scholar] [CrossRef]
- Tewari, D.; Roy, A.; Bavi, N.; Anwar, K.N.; Krishan, A.; Massoumi, H.; Nguyen, T.; Soleimani, M.; Xiang, S.; Baharnoori, M.; et al. Corneal Trigeminal Nerve-Derived Extracellular Vesicles and Their Impact on Corneal Epithelial Homeostasis. Investig. Ophthalmol. Vis. Sci. 2024, 65, 3690. [Google Scholar]
- Massoumi, H.; Amin, S.; Soleimani, M.; Momenaei, B.; Ashraf, M.J.; Guaiquil, V.H.; Hematti, P.; Rosenblatt, M.I.; Djalilian, A.R.; Jalilian, E. Extracellular-Vesicle-Based Therapeutics in Neuro-Ophthalmic Disorders. Int. J. Mol. Sci. 2023, 24, 9006. [Google Scholar] [CrossRef]
- Jalilian, E.; Massoumi, H.; Bigit, B.; Amin, S.; Katz, E.A.; Guaiquil, V.H.; Anwar, K.N.; Hematti, P.; Rosenblatt, M.I.; Djalilian, A.R. Bone Marrow Mesenchymal Stromal Cells in a 3D System Produce Higher Concentration of Extracellular Vesicles (EVs) with Increased Complexity and Enhanced Neuronal Growth Properties. Stem Cell Res. Ther. 2022, 13, 425. [Google Scholar] [CrossRef]
- Pedersen, C.; Chen, V.T.; Herbst, P.; Zhang, R.; Elfert, A.; Krishan, A.; Azar, D.T.; Chang, J.-H.; Hu, W.-Y.; Kremsmayer, T.P.; et al. Target Specification and Therapeutic Potential of Extracellular Vesicles for Regulating Corneal Angiogenesis, Lymphangiogenesis, and Nerve Repair. Ocul. Surf. 2024, 34, 459–476. [Google Scholar] [CrossRef]
- Park, M.; Shin, H.A.; Duong, V.-A.; Lee, H.; Lew, H. The Role of Extracellular Vesicles in Optic Nerve Injury: Neuroprotection and Mitochondrial Homeostasis. Cells 2022, 11, 3720. [Google Scholar] [CrossRef]
- Massoumi, H.; Niktinat, H.; Alviar, M.; Guaiquil, V.H.; Rosenblatt, M.; Djalilian, A.R.; Jalilian, E. Comparative Analysis of miRNA Profiles in Corneal and Bone Marrow Mesenchymal Stem Cells (MSC)-Derived Extracellular Vesicles (EVs): Implications for Nerve Regeneration. Investig. Ophthalmol. Vis. Sci. 2025, 66, 1032. [Google Scholar]
- Arabpour, Z.; Niktinat, H.; Hatami, F.; Yaghmour, A.; Yucel, Z.J.; Ghalibafan, S.; Massoumi, H.; Bibak Bejandi, Z.; Salehi, M.; Jalilian, E.; et al. Extracellular Vesicle (EV) Proteomics in Corneal Regenerative Medicine. Proteomes 2025, 13, 49. [Google Scholar] [CrossRef]
- Massoumi, H.; Chaudhuri, M.; Tewari, D.; Singh, M.; Jazayerli, C.; Weng, S.H.S.; Huff, A.; Soleimani, M.; Mohammadrashidi, M.; Anwar, K.N.; et al. Combining Proteomics and in Vitro Approaches to Evaluate Regenerative Effect of Extracellular Vesicles from Bone Marrow and Cornea Mesenchymal Stem Cells Cultured in 2D and 3D System on Corneal Nerve Regeneration. Investig. Ophthalmol. Vis. Sci. 2024, 65, 4469. [Google Scholar]
- Massoumi, H.; Katz, E.; Nguyen, T.T.; Zhou, Q.; Jazayerli, C.; Anwar, K.; Ashraf, M.; Soleimani, M.; Guaiquil, V.H.; Rosenblatt, M.; et al. Extracellular Vesicles (EVs) from 3D Cultured Human Bone Marrow Mesenchymal Stem Cells (hBM-MSC) Demonstrated Increased Complexity and Neurite Elongation in an in-Vivo Corneal Injury Model. Investig. Ophthalmol. Vis. Sci. 2023, 64, 2350. [Google Scholar]
- Samaeekia, R.; Rabiee, B.; Putra, I.; Shen, X.; Park, Y.J.; Hematti, P.; Eslani, M.; Djalilian, A.R. Effect of Human Corneal Mesenchymal Stromal Cell-Derived Exosomes on Corneal Epithelial Wound Healing. Investig. Ophthalmol. Vis. Sci. 2018, 59, 5194. [Google Scholar] [CrossRef] [PubMed]
- Bazan, N.G.; Molina, M.F.; Gordon, W.C. Docosahexaenoic Acid Signalolipidomics in Nutrition: Significance in Aging, Neuroinflammation, Macular Degeneration, Alzheimer’s, and Other Neurodegenerative Diseases. Annu. Rev. Nutr. 2011, 31, 321–351. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.L.; Bazan, H.E.P. Docosanoid Signaling Modulates Corneal Nerve Regeneration: Effect on Tear Secretion, Wound Healing, and Neuropathic Pain. J. Lipid Res. 2021, 62, 100033. [Google Scholar] [CrossRef] [PubMed]
- Esquenazi, S.; Bazan, H.E.P.; Bui, V.; He, J.; Kim, D.B.; Bazan, N.G. Topical Combination of NGF and DHA Increases Rabbit Corneal Nerve Regeneration after Photorefractive Keratectomy. Investig. Ophthalmol. Vis. Sci. 2005, 46, 3121. [Google Scholar] [CrossRef]
- Pham, T.L.; He, J.; Kakazu, A.H.; Jun, B.; Bazan, N.G.; Bazan, H.E.P. Defining a Mechanistic Link between Pigment Epithelium–Derived Factor, Docosahexaenoic Acid, and Corneal Nerve Regeneration. J. Biol. Chem. 2017, 292, 18486–18499. [Google Scholar] [CrossRef]
- Subramanian, A.; Krishnan, U.M.; Sethuraman, S. Development of Biomaterial Scaffold for Nerve Tissue Engineering: Biomaterial Mediated Neural Regeneration. J. Biomed. Sci. 2009, 16, 108. [Google Scholar] [CrossRef]
- Mastropasqua, L.; Nubile, M.; Acerra, G.; Detta, N.; Pelusi, L.; Lanzini, M.; Mattioli, S.; Santalucia, M.; Pietrangelo, L.; Allegretti, M.; et al. Bioengineered Human Stromal Lenticule for Recombinant Human Nerve Growth Factor Release: A Potential Biocompatible Ocular Drug Delivery System. Front. Bioeng. Biotechnol. 2022, 10, 887414. [Google Scholar] [CrossRef]
- Shinta Dewi, P.A.; Sitompul, R.S.; Pawitan, J.A.; Naroeni, A.; Antarianto, R.D. Improvement of Corneal Nerve Regeneration in Diabetic Rats Using Wharton’s Jelly-Derived Mesenchymal Stem Cells and Their Conditioned Medium. Int. J. Mol. Cell. Med. 2022, 11, 180. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Wang, H.; Li, M.; Wang, X.; Liu, R.; Zhang, D.; Xu, W. Corneal Regeneration Strategies: From Stem Cell Therapy to Tissue Engineered Stem Cell Scaffolds. Biomed. Pharmacother. 2023, 165, 115206. [Google Scholar] [CrossRef]
- Liu, W.; Deng, C.; McLaughlin, C.R.; Fagerholm, P.; Lagali, N.S.; Heyne, B.; Scaiano, J.C.; Watsky, M.A.; Kato, Y.; Munger, R.; et al. Collagen–Phosphorylcholine Interpenetrating Network Hydrogels as Corneal Substitutes. Biomaterials 2009, 30, 1551–1559. [Google Scholar] [CrossRef]
- Fagerholm, P.; Lagali, N.S.; Merrett, K.; Jackson, W.B.; Munger, R.; Liu, Y.; Polarek, J.W.; Söderqvist, M.; Griffith, M. A Biosynthetic Alternative to Human Donor Tissue for Inducing Corneal Regeneration: 24-Month Follow-Up of a Phase 1 Clinical Study. Sci. Transl. Med. 2010, 2, 46ra61. [Google Scholar] [CrossRef]
- Simpson, F.C.; McTiernan, C.D.; Islam, M.M.; Buznyk, O.; Lewis, P.N.; Meek, K.M.; Haagdorens, M.; Audiger, C.; Lesage, S.; Gueriot, F.-X.; et al. Collagen Analogs with Phosphorylcholine Are Inflammation-Suppressing Scaffolds for Corneal Regeneration from Alkali Burns in Mini-Pigs. Commun. Biol. 2021, 4, 608. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Downie, L.E.; Hill, L.J.; Chinnery, H.R. The Effect of Topical Decorin on Temporal Changes to Corneal Immune Cells after Epithelial Abrasion. J. Neuroinflamm. 2022, 19, 90. [Google Scholar] [CrossRef] [PubMed]
- Kubo, E.; Shibata, S.; Shibata, T.; Sasaki, H.; Singh, D.P. Role of Decorin in the Lens and Ocular Diseases. Cells 2022, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Downie, L.E.; Grover, L.M.; Moakes, R.J.A.; Rauz, S.; Logan, A.; Jiao, H.; Hill, L.J.; Chinnery, H.R. The Neuroregenerative Effects of Topical Decorin on the Injured Mouse Cornea. J. Neuroinflamm. 2020, 17, 142. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Z.; Hu, J.; Xie, H.; Pan, J.; Dong, N.; Liu, Z. Changes in Rabbit Corneal Innervation Induced by the Topical Application of Benzalkonium Chloride. Cornea 2013, 32, 1599–1606. [Google Scholar] [CrossRef]
- Vereertbrugghen, A.; Pizzano, M.; Sabbione, F.; Del Papa, M.S.; Rodríguez, G.; Passerini, M.S.; Galletti, J.G. Hyaluronate Protects From Benzalkonium Chloride-Induced Ocular Surface Toxicity. Trans. Vis. Sci. Tech. 2024, 13, 31. [Google Scholar] [CrossRef]
- Zhou, T.; Lee, A.; Lo, A.C.Y.; Kwok, J.S.W.J. Diabetic Corneal Neuropathy: Pathogenic Mechanisms and Therapeutic Strategies. Front. Pharmacol. 2022, 13, 816062. [Google Scholar] [CrossRef]
- Lu, X.; Chen, Z.; Lu, J.; Watsky, M.A. Effects of 1,25-Vitamin D3 and 24,25-Vitamin D3 on Corneal Nerve Regeneration in Diabetic Mice. Biomolecules 2023, 13, 1754. [Google Scholar] [CrossRef]
- Lv, W.S.; Zhao, W.J.; Gong, S.L.; Fang, D.D.; Wang, B.; Fu, Z.J.; Yan, S.L.; Wang, Y.G. Serum 25-Hydroxyvitamin D Levels and Peripheral Neuropathy in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. J. Endocrinol. Investig. 2015, 38, 513–518. [Google Scholar] [CrossRef]

| Category | Neuroprotective Factors | Growth Factors |
|---|---|---|
| Definition | Agents that protect existing neurons and promote overall nerve health by reducing damage and inflammation. | Biological molecules that stimulate cell growth, proliferation, differentiation, and regeneration. |
| Mechanism of Action | Primarily reduces oxidative stress, inflammation, and apoptosis, maintaining neuronal integrity and function. | Directly stimulates axonal outgrowth, nerve repair, and neuronal survival, actively regenerating damaged nerves. |
| Examples | - Omega-3 PUFAs (DHA, resolvins) reduce inflammation and enhance neurotrophic signaling. - PEDF enhances axonal growth and neuroprotection. | - Nerve Growth Factor (NGF) & rhNGF promote corneal nerve regeneration. - IGF-1 enhances mitochondrial activity and subbasal nerve density. - VEGF promotes corneal nerve regeneration. |
| Clinical Applications | Helps maintain corneal nerve function and prevents degeneration, especially in aging or post-surgical patients. | Used in therapeutic applications for neurodegenerative diseases like NK, glaucoma, and corneal injuries. |
| Post-Surgical Use | DHA + NGF therapy enhances post-PRK and LASIK nerve regeneration. | NGF, IGF-1, and PRP promote corneal nerve regeneration after nerve damage. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niktinat, H.; Alviar, M.; Kashani, M.; Massoumi, H.; Djalilian, A.R.; Jalilian, E. Aging and Corneal Nerve Health: Mechanisms of Degeneration and Emerging Therapies for the Cornea. Cells 2025, 14, 1730. https://doi.org/10.3390/cells14211730
Niktinat H, Alviar M, Kashani M, Massoumi H, Djalilian AR, Jalilian E. Aging and Corneal Nerve Health: Mechanisms of Degeneration and Emerging Therapies for the Cornea. Cells. 2025; 14(21):1730. https://doi.org/10.3390/cells14211730
Chicago/Turabian StyleNiktinat, Hanieh, Melinda Alviar, Marziyeh Kashani, Hamed Massoumi, Ali R. Djalilian, and Elmira Jalilian. 2025. "Aging and Corneal Nerve Health: Mechanisms of Degeneration and Emerging Therapies for the Cornea" Cells 14, no. 21: 1730. https://doi.org/10.3390/cells14211730
APA StyleNiktinat, H., Alviar, M., Kashani, M., Massoumi, H., Djalilian, A. R., & Jalilian, E. (2025). Aging and Corneal Nerve Health: Mechanisms of Degeneration and Emerging Therapies for the Cornea. Cells, 14(21), 1730. https://doi.org/10.3390/cells14211730

