Osmotic Fragility in Leukodepleted Stored Red Blood Cells: Implications for Neurocritical Care Transfusion Strategies
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Size and Power Analysis
2.2. Leukodepleted Red Blood Cell Concentrates (RBC)
2.3. Beutler’s Method for Assessing OF
2.4. Free Hemoglobin Accumulation and Storage-Induced Hemolysis
2.5. Flow Cytometry
2.6. Statistical Analysis
3. Results
3.1. Osmotic Fragility: Beutler’s Method
3.2. Osmotic Fragility: Flow Cytometry
3.3. Free Hemoglobin in the Stored Bags
4. Discussion
4.1. RBC Storage Lesion: A Missing Link in Transfusion Outcomes
4.2. OF, Storage Lesions, and the Transfusion Dilemma
4.3. Reevaluating Storage Duration and Quality Control in Transfusion Practice
4.4. Study Limitations
4.5. Clinical Implications and Future Directions
5. Conclusions
Keypoints
- RBC OF increases significantly after 28 days of storage, indicating a progressive decline in membrane integrity and heightened susceptibility to hemolysis. These alterations may adversely affect post-transfusion RBC survival and impair O2 delivery—particularly relevant in neurocritical care patients, where optimal tissue oxygenation is essential.
- OF testing using flow cytometry provides a rapid and reliable method to assess the quality of stored pRBCs. This technique has the potential to serve as a point-of-care tool, enabling the personalization of transfusion strategies based on RBC integrity.
- Incorporating storage duration into transfusion decision-making may help improve clinical outcomes in patients with acute brain injuries, where the efficacy of O2 delivery is critical to neurological recovery.
- Further clinical studies are needed to evaluate the impact of the storage time and quality of RBCs on long-term neurological outcomes and to determine evidence-based thresholds for transfusion in neurocritical populations.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 2,3-DPG | 2,3-diphosphoglycerate |
| ANOVA | Analysis of Variance |
| ATP | Adenosine 5′-triphosphate |
| CO2 | Carbon dioxide |
| CPD | Citrate-phosphate-dextrose |
| CPP | Cerebral perfusion pressure |
| EU | European Union |
| FCM | Flow cytometry |
| fHb | Free hemoglobin |
| FSC | Forward scatter channels |
| Hb | Hemoglobin |
| Hct | Hematocrit |
| ICP | Intracranial pressure |
| ICU | Intensive Care Unit |
| NaCl | Sodium chloride |
| NO | Nitric oxide |
| O2 | Oxygen |
| OD | Optical density |
| OF | Osmotic fragility |
| PBS | Phosphate-buffered saline |
| PbtO2 | Brain tissue oxygen pressure |
| pRBC | Packed red blood cell |
| RBC | Red blood cell |
| SAGM | Saline, Adenine, Glucose, and Mannitol |
| SSC | Side scatter channels |
| TBI | Traumatic brain injury |
| tHb | Total hemoglobin |
| TRALI | Transfusion-related acute lung injury |
| UK | United Kingdom |
| WB | Whole blood |
| WHO | World Health Organization |
References
- Napolitano, L.M.; Kurek, S.; Luchette, F.A.; Corwin, H.L.; Barie, P.S.; Tisherman, S.A.; Hebert, P.C.; Anderson, G.L.; Bard, M.R.; Bromberg, W.; et al. Clinical practice guideline: Red blood cell transfusion in adult trauma and critical care. Crit. Care Med. 2009, 37, 3124–3157. [Google Scholar] [CrossRef] [PubMed]
- Utter, G.H.; Shahlaie, K.; Zwienenberg-Lee, M.; Muizelaar, J.P. Anemia in the setting of traumatic brain injury: The arguments for and against liberal transfusion. J. Neurotrauma 2011, 28, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Litofsky, N.S.; Martin, S.; Diaz, J.; Ge, B.; Petroski, G.; Miller, D.C.; Barnes, S.L. The Negative Impact of Anemia in Outcome from Traumatic Brain Injury. World Neurosurg. 2016, 90, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Guglielmi, A.; Graziano, F.; Bogossian, E.G.; Turgeon, A.F.; Taccone, F.S.; Citerio, G.; The CENTER-TBI Participants and Investigators. Haemoglobin values, transfusion practices, and long-term outcomes in critically ill patients with traumatic brain injury: A secondary analysis of CENTER-TBI. Crit. Care 2024, 28, 199. [Google Scholar] [CrossRef]
- Carr, K.R.; Rodriguez, M.; Ottesen, A.; Michalek, J.; Son, C.; Patel, V.; Jimenez, D.; Seifi, A. Association Between Relative Anemia and Early Functional Recovery After Severe Traumatic Brain Injury (TBI). Neurocrit. Care 2016, 25, 185–192. [Google Scholar] [CrossRef]
- Kaplan, A. Preparation, Storage, and Characteristics of Whole Blood, Blood Components, and Plasma Derivatives. In Transfusion Medicine; McCullogh, J., Ed.; Wiley: New York, NY, USA, 2021; pp. 59–89. [Google Scholar] [CrossRef]
- Yoshida, T.; Prudent, M.; D’Alessandro, A. Red blood cell storage lesion: Causes and potential clinical consequences. Blood Transfus. 2019, 17, 27–52. [Google Scholar] [CrossRef]
- Blumberg, N.; Heal, J.M.; Rowe, J.M. A randomized trial of washed red blood cell and platelet transfusions in adult acute leukemia [ISRCTN76536440]. BMC Hematol. 2004, 4, 6. [Google Scholar] [CrossRef]
- Robinson, S.; Harris, A.; Atkinson, S.; Atterbury, C.; Bolton-Maggs, P.; Elliott, C.; Hawkins, T.; Hazra, E.; Howell, C.; New, H. The administration of blood components: A British Society for Haematology Guideline. Transfus. Med. 2018, 28, 3–21. [Google Scholar] [CrossRef]
- Flegel, W.A.; Natanson, C.; Klein, H.G. Does prolonged storage of red blood cells cause harm? Br. J. Haematol. 2014, 165, 3–16. [Google Scholar] [CrossRef]
- Sardar, M.; Shaikh, N.; Ansell, J.; Jacob, A.; Yada, S.; Kelly, D.B.; Doraiswamy, M.; Khan, W.J.; Anwer, F.; Eng, M.H. Impact of Storage Lesion on Post-transfusion Rise in Hemoglobin. Cureus 2018, 10, e2952. [Google Scholar] [CrossRef]
- Orbach, A.; Zelig, O.; Yedgar, S.; Barshtein, G. Biophysical and Biochemical Markers of Red Blood Cell Fragility. Transfus. Med. Hemother. 2017, 44, 183–187. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, A.; D’Amici, G.M.; Vaglio, S.; Zolla, L. Time-course investigation of SAGM-stored leukocyte-filtered red bood cell concentrates: From metabolism to proteomics. Haematologica 2012, 97, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Damiani, E.; Adrario, E.; Luchetti, M.M.; Scorcella, C.; Carsetti, A.; Mininno, N.; Pierantozzi, S.; Principi, T.; Strovegli, D.; Bencivenga, R.; et al. Plasma free hemoglobin and microcirculatory response to fresh or old blood transfusions in sepsis. PLoS ONE 2015, 10, e0122655. [Google Scholar] [CrossRef]
- Kim-Shapiro, D.B.; Lee, J.; Gladwin, M.T. Storage lesion: Role of red blood cell breakdown. Transfusion 2011, 51, 844–851. [Google Scholar] [CrossRef]
- Donadee, C.; Raat, N.J.H.; Kanias, T.; Tejero, J.; Lee, J.S.; Kelley, E.E.; Zhao, X.; Liu, C.; Reynolds, H.; Azarov, I.; et al. Nitric Oxide Scavenging by Red Blood Cell Microparticles and Cell-Free Hemoglobin as a Mechanism for the Red Cell Storage Lesion. Circulation 2011, 124, 465–476. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Liumbruno, G.; Grazzini, G.; Zolla, L. Red blood cell storage: The story so far. Blood Transfus. 2010, 8, 82–88. [Google Scholar] [CrossRef]
- Korones, D.; Pearson, H.A. Normal erythrocyte osmotic fragility in hereditary spherocytosis. J. Pediatr. 1989, 114, 264–266. [Google Scholar] [CrossRef]
- Beutler, E.; Kuhl, W.; West, C. The osmotic fragility of erythrocytes after prolonged liquid storage and after reinfusion. Blood 1982, 59, 1141–1147. [Google Scholar] [CrossRef]
- Tagliabue, S.; Rey-Perez, A.; Exposito, L.; Jimenez, A.F.; Valles Angulo, S.; Maruccia, F.; Fischer, J.B.; Kacprzak, M.; Poca, M.A.; Durduran, T. Hybrid diffuse optical appraisal of peripheral and cerebral changes in critically ill patients receiving red blood cell transfusion. Biophotonics Discov. 2025, 2, 015001. [Google Scholar] [CrossRef]
- Mustafa, I.; Al Marwani, A.; Mamdouh Nasr, K.; Abdulla Kano, N.; Hadwan, T. Time Dependent Assessment of Morphological Changes: Leukodepleted Packed Red Blood Cells Stored in SAGM. BioMed Res. Int. 2016, 2016, 4529434. [Google Scholar] [CrossRef] [PubMed]
- Blasi, B.; D’Alessandro, A.; Ramundo, N.; Zolla, L. Red blood cell storage and cell morphology. Transfus. Med. 2012, 22, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Harboe, M. A method for determination of hemoglobin in plasma by near-ultraviolet spectrophotometry. Scand. J. Clin. Lab. Investig. 1959, 11, 66–70. [Google Scholar] [CrossRef]
- Han, V.; Serrano, K.; Devine, D.V. A comparative study of common techniques used to measure haemolysis in stored red cell concentrates. Vox Sang. 2010, 98, 116–123. [Google Scholar] [CrossRef]
- Chung, H.J.; Chung, J.W.; Yi, J.; Hur, M.; Lee, T.H.; Hwang, S.H.; Song, Y.K.; Lee, D.H. Automation of Harboe method for the measurement of plasma free hemoglobin. J. Clin. Lab. Anal. 2020, 34, e23242. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, A.; Saito, N.; Yamauchi, Y.; Takeda, M.; Ueki, S.; Itoga, M.; Kojima, K.; Kayaba, H. Flow cytometric analysis of red blood cell osmotic fragility. J. Lab. Autom. 2014, 19, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Bikos, L.H. ReCentering Psych Stats; Seattle Pacific University Library: Seattle, WA, USA, 2023. [Google Scholar]
- Kline, R.B. Data Preparation and Psychometrics Review. In Methodology in the Social Sciences. Principles and Practice of Structural Equation Modeling, 5th ed.; The Guilford Press: New York, NY, USA, 2016. [Google Scholar]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-Response Analysis Using R. PLoS ONE 2016, 10, e0146021. [Google Scholar] [CrossRef]
- R Core Team. R: A language and environment for statistical computing. 2022. Available online: https://www.bibsonomy.org/bibtex/7469ffee3b07f9167cf47e7555041ee7 (accessed on 23 July 2025).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research; Northwestern University: Evanston, IL, USA, 2024. [Google Scholar]
- Griesdale, D.E.; Sekhon, M.S.; Menon, D.K.; Lavinio, A.; Donnelly, J.; Robba, C.; Sekhon, I.S.; Taylor, A.; Henderson, W.R.; Turgeon, A.F.; et al. Hemoglobin Area and Time Index Above 90 g/L are Associated with Improved 6-Month Functional Outcomes in Patients with Severe Traumatic Brain Injury. Neurocrit. Care 2015, 23, 78–84. [Google Scholar] [CrossRef]
- Miller, J.D.; Sweet, R.C.; Narayan, R.; Becker, D.P. Early insults to the injured brain. JAMA 1978, 240, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Corwin, H.L.; Surgenor, S.D.; Gettinger, A. Transfusion practice in the critically ill. Crit. Care Med. 2003, 31, S668–S671. [Google Scholar] [CrossRef] [PubMed]
- Gobatto, A.L.N.; Link, M.A.; Solla, D.J.; Bassi, E.; Tierno, P.F.; Paiva, W.; Taccone, F.S.; Malbouisson, L.M. Transfusion requirements after head trauma: A randomized feasibility controlled trial. Crit. Care 2019, 23, 89. [Google Scholar] [CrossRef]
- Hebert, P.C.; Wells, G.; Blajchman, M.A.; Marshall, J.; Martin, C.; Pagliarello, G.; Tweeddale, M.; Schweitzer, I.; Yetisir, E. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. N. Engl. J. Med. 1999, 340, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Maas, A.I.R.; Menon, D.K.; Steyerberg, E.W.; Citerio, G.; Lecky, F.; Manley, G.T.; Hill, S.; Legrand, V.; Sorgner, A.; CENTER-TBI participants and investigators. Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI): A Prospective Longitudinal Observational Study. Neurosurgery 2015, 76, 67–80. [Google Scholar] [CrossRef]
- Taccone, F.S.; Rynkowski Bittencourt, C.; Moller, K.; Lormans, P.; Quintana-Diaz, M.; Caricato, A.; Cardoso Ferreira, M.A.; Badenes, R.; Kurtz, P.; Sondergaard, C.B.; et al. Restrictive vs Liberal Transfusion Strategy in Patients With Acute Brain Injury: The TRAIN Randomized Clinical Trial. JAMA 2024, 332, 1623–1633. [Google Scholar] [CrossRef]
- Turgeon, A.F.; Fergusson, D.A.; Clayton, L.; Patton, M.P.; Neveu, X.; Walsh, T.S.; Docherty, A.; Malbouisson, L.M.; Pili-Floury, S.; English, S.W.; et al. Liberal or Restrictive Transfusion Strategy in Patients with Traumatic Brain Injury. N. Engl. J. Med. 2024, 391, 722–735. [Google Scholar] [CrossRef]
- English, S.W.; Delaney, A.; Fergusson, D.A.; Chassé, M.; Turgeon, A.F.; Lauzier, F.; Tuttle, A.; Sadan, O.; Griesdale, D.E.; Redekop, G.; et al. Liberal or Restrictive Transfusion Strategy in Aneurysmal Subarachnoid Hemorrhage. N. Engl. J. Med. 2025, 392, 1079–1088. [Google Scholar] [CrossRef]
- Coz Yataco, A.O.; Soghier, I.; Hébert, P.C.; Belley-Cote, E.; Disselkamp, M.; Flynn, D.; Halvorson, K.; Iaccarino, J.M.; Lim, W.; Lindenmeyer, C.C.; et al. Red Blood Cell Transfusion in Critically Ill Adults: An American College of Chest Physicians Clinical Practice Guideline. Chest 2025, 167, 477–489. [Google Scholar] [CrossRef]
- Hoh, B.L.; Ko, N.U.; Amin-Hanjani, S.; Chou, S.H.-Y.; Cruz-Flores, S.; Dangayach, N.S.; Derdeyn, C.P.; Du, R.; Hänggi, D.; Hetts, S.W.; et al. 2023 Guideline for the Management of Patients With Aneurysmal Subarachnoid Hemorrhage: A Guideline From the American Heart Association/American Stroke Association. Stroke 2023, 54, e314–e370. [Google Scholar] [CrossRef]
- WHO. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. Available online: https://iris.who.int/bitstream/handle/10665/85839/WHO_NMH_NHD_MNM_11.1_eng.pdf (accessed on 19 August 2025).
- Klinken, S.P. Red blood cells. Int. J. Biochem. Cell Biol. 2002, 34, 1513–1518. [Google Scholar] [CrossRef]
- Arif, S.H.; Yadav, N.; Rehman, S.; Mehdi, G. Study of Hemolysis During Storage of Blood in the Blood Bank of a Tertiary Health Care Centre. Indian J. Hematol. Blood Transfus. 2017, 33, 598–602. [Google Scholar] [CrossRef] [PubMed]
- European Directorate for the Quality of Medicines & HealthCare. 2023. Available online: https://www.edqm.eu/en/blood-guide (accessed on 30 October 2025).
- U.S. Department of Health and Human Services, Food and Drug Administration, & Center for Biologics Evaluation and Research. 2024. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/recommendations-development-blood-collection-processing-and-storage-systems-manufacture-blood (accessed on 30 October 2025).
- Manrique-Castaño, S.; Rodríguez-Rosero, L.; Vallejo-Serna, R. A Case Report of Hemolytic Hyponatremia. Cureus 2024, 16, e53417. [Google Scholar] [CrossRef] [PubMed]
- Berezina, T.L.; Zaets, S.B.; Morgan, C.; Spillert, C.R.; Kamiyama, M.; Spolarics, Z.; Deitch, E.A.; Machiedo, G.W. Influence of storage on red blood cell rheological properties. J. Surg. Res. 2002, 102, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Piagnerelli, M.; Zouaoui Boudjeltia, K.; Brohee, D.; Vereerstraeten, A.; Piro, P.; Vincent, J.L.; Vanhaeverbeek, M. Assessment of erythrocyte shape by flow cytometry techniques. J. Clin. Pathol. 2007, 60, 549–554. [Google Scholar] [CrossRef]
- Grigorev, G.V.; Lebedev, A.V.; Wang, X.; Qian, X.; Maksimov, G.V.; Lin, L. Advances in Microfluidics for Single Red Blood Cell Analysis. Biosensors 2023, 13, 117. [Google Scholar] [CrossRef]
- Matthews, K.; Myrand-Lapierre, M.-E.; Ang, R.R.; Duffy, S.P.; Scott, M.D.; Ma, H. Microfluidic deformability analysis of the red cell storage lesion. J. Biomech. 2015, 48, 4065–4072. [Google Scholar] [CrossRef]







| Osmolality (mOsm/Kg) | % PBS | Osmolality (mOsm/Kg) | [NaCl] (g/L) | Dilution |
|---|---|---|---|---|
| 307.4 | 100 | 306.6 | 9.0 | 1 |
| 245.9 | 80 | 255.5 | 7.5 | 2 |
| 184.4 | 60 | 221.5 | 6.5 | 3 |
| 169.1 | 55 | 204.4 | 6.0 | 4 |
| 153.7 | 50 | 187.4 | 5.5 | 5 |
| 138.3 | 45 | 170.4 | 5.0 | 6 |
| 123.0 | 40 | 136.3 | 4.0 | 7 |
| 107.6 | 35 | 119.2 | 3.5 | 8 |
| 92.2 | 30 | 102.2 | 3.0 | 9 |
| 0.00 | Distilled water | 68.1 | 2.0 | 10 |
| - | - | 34.1 | 1.0 | 11 |
| - | - | 0.00 | Distilled water | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peris, M.; Poca, M.A.; Ortuño, A.; Pons, V.; Rodríguez-Borrero, N.; Jurado, D.; Parra-López, R.; Rierola, M.; Sahuquillo, J. Osmotic Fragility in Leukodepleted Stored Red Blood Cells: Implications for Neurocritical Care Transfusion Strategies. Cells 2025, 14, 1726. https://doi.org/10.3390/cells14211726
Peris M, Poca MA, Ortuño A, Pons V, Rodríguez-Borrero N, Jurado D, Parra-López R, Rierola M, Sahuquillo J. Osmotic Fragility in Leukodepleted Stored Red Blood Cells: Implications for Neurocritical Care Transfusion Strategies. Cells. 2025; 14(21):1726. https://doi.org/10.3390/cells14211726
Chicago/Turabian StylePeris, Marta, Maria A. Poca, Ana Ortuño, Verónica Pons, Nuria Rodríguez-Borrero, Desiree Jurado, Rafael Parra-López, Marina Rierola, and Juan Sahuquillo. 2025. "Osmotic Fragility in Leukodepleted Stored Red Blood Cells: Implications for Neurocritical Care Transfusion Strategies" Cells 14, no. 21: 1726. https://doi.org/10.3390/cells14211726
APA StylePeris, M., Poca, M. A., Ortuño, A., Pons, V., Rodríguez-Borrero, N., Jurado, D., Parra-López, R., Rierola, M., & Sahuquillo, J. (2025). Osmotic Fragility in Leukodepleted Stored Red Blood Cells: Implications for Neurocritical Care Transfusion Strategies. Cells, 14(21), 1726. https://doi.org/10.3390/cells14211726

