Safety Assessment of Stem Cell-Based Therapies: Current Standards and Advancing Frameworks
Abstract
1. Introduction
2. Assessment of the Toxicity of the Cellular Product
2.1. General and Reproductive Toxicity
2.2. Safety Pharmacology
3. Assessment of Oncogenicity, Teratogenicity and Tumorigenicity
3.1. Oncogenicity
3.2. Tumorigenicity
3.3. Teratogenicity
4. Assessment of Immunogenicity in Cell Therapy
4.1. Analyzing the Innate Immune Response
4.2. HLA Typing
5. Cell Distribution Assessment
5.1. Cell Labeling and Visualizing
5.2. PCR and Histology Methods for Cell Detection
6. Quality of Cellular Products
7. Regulatory Requirements for Biosafety Assessment of Cell Therapy
8. Current Limitations and Future Direction
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ALS | amyotrophic lateral sclerosis |
| APCs | astrocyte progenitor cells |
| BMSCs | bone marrow-derived mesenchymal stem cells |
| CAR-T | Chimeric Antigen Receptor T-Cell |
| CCL5 | C-C motif chemokine ligand 5 |
| CMC | Chemistry, Manufacturing, and Controls |
| CNS | central nervous system |
| CXCL12 | C-X-C motif chemokine ligand 12 |
| DNPCs | dopaminergic neuron progenitor cells |
| ECG | electrocardiography |
| EGFR | epidermal growth factor receptor |
| ELISA | enzyme-linked immunosorbent assay |
| EMA | European Medicines Agency |
| EOGRTS | Extended One-Generation Reproductive Toxicity Study |
| EpiSCs | human epidermal stem cells |
| ESC | embryonic stem cells |
| EVs | extracellular vesicles |
| FDA | Food and Drug Administration |
| H&E | haematoxylin–eosin |
| hESC-RPE | human embryonic stem cell–derived retinal pigment epithelial cells |
| HLA | human leukocyte antigens |
| HSC | hematopoietic stem cells |
| IAHSCT | immunoablative autologous hematopoietic stem cell transplantation |
| IBD | inflammatory bowel disease |
| ICH | International Conference on Harmonisation |
| IHC | immunohistochemistry |
| iPSCs | induced pluripotent stem cells |
| Ki67 | antigen Kiel 67 |
| KLF4 | Krüppel-like factor 4 |
| MLR | mixed lymphocyte culture reaction |
| MRI | magnetic resonance imaging |
| MSCs | mesenchymal stem/stromal cells |
| NANOG | homeobox protein NANOG |
| NK | natural killer |
| NPCs | neural progenitor cells |
| OCT3/4 | octamer-binding transcription factor 3/4 |
| OPCs | oligodendrocyte progenitor cells |
| PBMCs | peripheral blood mononuclear cells |
| PCOs | primary cholangiocyte organoids |
| PCR | polymerase chain reaction |
| PCNA | proliferating cell nuclear antigen |
| PD | Parkinson disease |
| PET | positron emission tomography |
| PMDA | Pharmaceuticals and Medical Devices Agency |
| SCID | severe combined immunodeficiency |
| SRY | SRY-box transcription factor 2 |
| SPECT | single-photon emission computed tomography |
| SSEA4 | stage-specific embryonic antigen-4 |
| TBI | traumatic brain injury |
| TRA-1-60 | tumor rejection antigen 1-60 |
| TRA-1-81 | tumor rejection antigen 1-81 |
| UC-MSCs | human umbilical cord–derived mesenchymal stem cells |
References
- Jacques, E.; Suuronen, E.J. The Progression of Regenerative Medicine and Its Impact on Therapy Translation. Clin. Transl. Sci. 2020, 13, 440–450. [Google Scholar] [CrossRef]
- El-Kadiry, A.E.-H.; Rafei, M.; Shammaa, R. Cell Therapy: Types, Regulation, and Clinical Benefits. Front. Med. 2021, 8, 756029. [Google Scholar] [CrossRef] [PubMed]
- Rahnama, M.; Ghasemzadeh, N.; Ebrahimi, Y.; Golchin, A. A Comprehensive Evaluation of Dermal Fibroblast Therapy in Clinical Trials for Treating Skin Disorders and Cosmetic Applications: A Scoping Review. Stem Cell Res. Ther. 2024, 15, 318. [Google Scholar] [CrossRef]
- Makarczyk, M.J. Cell Therapy Approaches for Articular Cartilage Regeneration. Organogenesis 2023, 19, 2278235. [Google Scholar] [CrossRef]
- Lee, J.H.; Fisher, D.E. Melanocyte Stem Cells as Potential Therapeutics in Skin Disorders. Expert. Opin. Biol. Ther. 2014, 14, 1569–1579. [Google Scholar] [CrossRef]
- Berckmueller, K.; Thomas, J.; Taha, E.A.; Choo, S.; Madhu, R.; Kanestrom, G.; Rupert, P.B.; Strong, R.; Kiem, H.P.; Radtke, S. CD90-targeted lentiviral vectors for HSC gene therapy. Mol. Ther. 2023, 31, 2901–2913. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wu, H.L.; Liu, Y.P.; Yan, D.Q.; Yuan, Z.L.; Chen, L.; Yang, Q.; Gao, Y.S.; Diao, B. Pre-Clinical Study of Human Umbilical Cord Mesenchymal Stem Cell Transplantation for the Treatment of Traumatic Brain Injury: Safety Evaluation from Immunogenic and Oncogenic Perspectives. Neural Regen. Res. 2022, 17, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Blanpain, C.; Horsley, V.; Fuchs, E. Epithelial stem cells: Turning over new leaves. Cell 2007, 128, 445–458. [Google Scholar] [CrossRef]
- Coles, B.L.K.; Labib, M.; Poudineh, M.; Innes, B.T.; Belair-Hickey, J.; Gomis, S.; Wang, Z.; Bader, G.D.; Sargent, E.H.; Kelley, S.O.; et al. A microfluidic platform enables comprehensive gene expression profiling of mouse retinal stem cells. Lab Chip 2021, 21, 4464–4476. [Google Scholar] [CrossRef]
- Golchin, A.; Chatziparasidou, A.; Ranjbarvan, P.; Niknam, Z.; Ardeshirylajimi, A. Embryonic Stem Cells in Clinical Trials: Current Overview of Developments and Challenges. In Cell Biology and Translational Medicine; Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2021; Volume 1312, pp. 19–37. [Google Scholar] [CrossRef]
- Sun, D.; Shi, X.; Li, S.; Wang, X.; Yang, X.; Wan, M. CAR-T Cell Therapy: A Breakthrough in Traditional Cancer Treatment Strategies (Review). Mol. Med. Rep. 2024, 29, 47. [Google Scholar] [CrossRef]
- Hu, W.; Wang, G.; Huang, D.; Sui, M.; Xu, Y. Cancer Immunotherapy Based on Natural Killer Cells: Current Progress and New Opportunities. Front. Immunol. 2019, 10, 1205. [Google Scholar] [CrossRef]
- Barnett, K.K.; Johnson, A.R.; Das, A.; Lee, C.-H.J.; Wang, C.; Wang, X.; Cho, E.S.; Kluetz, P.G.; Fashoyin-Aje, L.A. FDA Approval Summary: Afamitresgene Autoleucel for Adults with HLA-Restricted, MAGE-A4-Positive Unresectable or Metastatic Synovial Sarcoma after Prior Chemotherapy. Clin. Cancer Res. 2025, 31, 3112–3117. [Google Scholar] [CrossRef]
- Parums, D.V. Editorial: First Regulatory Approval for Adoptive Cell Therapy with Autologous Tumor-Infiltrating Lymphocytes (TILs)—Lifileucel (Amtagvi). Med. Sci. Monit. 2024, 30, e944927. [Google Scholar] [CrossRef]
- Etra, A.; Ferrara, J.L.M.; Levine, J.E. Remestemcel-L-Rknd (Ryoncil): The First Approved Cellular Therapy for Steroid-Refractory Acute GVHD. Blood 2025, 146, 1897–1901. [Google Scholar] [CrossRef]
- Vosough, M.; Nikfam, S.; Torabi, S.; Sadri, B.; Amoli, H.A.; Basi, A.; Niknejadi, M.; Hossein-Khannazer, N.; Hosseini, S.E.; Mardpour, S.; et al. Mesenchymal Stromal Cell Therapy Improves Refractory Perianal Fistula in Crohn’s Disease: Case Series Clinical Interventional Study. Cell J. 2022, 24, 62–68. [Google Scholar] [CrossRef]
- Ramzy, A.; Thompson, D.M.; Ward-Hartstonge, K.A.; Ivison, S.; Cook, L.; Garcia, R.V.; Loyal, J.; Kim, P.T.; Warnock, G.L.; Levings, M.K.; et al. Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell Stem Cell 2021, 28, 2047–2061.e5. [Google Scholar] [CrossRef]
- Schulz, T.C. Concise Review: Manufacturing of Pancreatic Endoderm Cells for Clinical Trials in Type 1 Diabetes. Stem Cells Transl. Med. 2015, 4, 927–931. [Google Scholar] [CrossRef]
- Geraghty, R.J.; Capes-Davis, A.; Davis, J.M.; Downward, J.; Freshney, R.I.; Knezevic, I.; Lovell-Badge, R.; Masters, J.R.W.; Meredith, J.; Stacey, G.N.; et al. Guidelines for the Use of Cell Lines in Biomedical Research. Br. J. Cancer 2014, 111, 1021–1046. [Google Scholar] [CrossRef] [PubMed]
- Masood, A.; Wahab, A.; Iqbal, Q.; Davis, J.; Ehsan, H.; Hashmi, H. Efficacy and Safety of Allogeneic Hematopoietic Stem Cell Transplant in Adults with Hemophagocytic Lymphohistiocytosis: A Systematic Review of Literature. Bone Marrow Transpl. 2022, 57, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Tabbara, I.A.; Zimmerman, K.; Morgan, C.; Nahleh, Z. Allogeneic Hematopoietic Stem Cell Transplantation: Complications and Results. Arch. Intern. Med. 2002, 162, 1558–1566. [Google Scholar] [CrossRef] [PubMed]
- Giménez, E.; Torres, I.; Albert, E.; Piñana, J.-L.; Hernández-Boluda, J.-C.; Solano, C.; Navarro, D. Cytomegalovirus (CMV) Infection and Risk of Mortality in Allogeneic Hematopoietic Stem Cell Transplantation (Allo-HSCT): A Systematic Review, Meta-Analysis, and Meta-Regression Analysis. Am. J. Transplant. 2019, 19, 2479–2494. [Google Scholar] [CrossRef]
- Auletta, J.J.; Kou, J.; Chen, M.; Bolon, Y.-T.; Broglie, L.; Bupp, C.; Christianson, D.; Cusatis, R.N.; Devine, S.M.; Eapen, M.; et al. Real-World Data Showing Trends and Outcomes by Race and Ethnicity in Allogeneic Hematopoietic Cell Transplantation: A Report from the Center for International Blood and Marrow Transplant Research. Transplant. Cell. Ther. 2023, 29, 346.e1–346.e10. [Google Scholar] [CrossRef]
- Golchin, A.; Farahany, T.Z. Biological Products: Cellular Therapy and FDA Approved Products. Stem Cell Rev. Rep. 2019, 15, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Fink, D.W., Jr. FDA Regulation of Stem Cell–Based Products. Science 2009, 324, 1662–1663. [Google Scholar] [CrossRef]
- Doblhoff-Dier, O.; Stacey, G. Cell Lines: Applications and Biosafety. In Biological Safety: Principles and Practices; ASM Press: Washington, DC, USA, 2014; pp. 221–240. [Google Scholar] [CrossRef]
- Pineda, C.; Castañeda Hernández, G.; Jacobs, I.A.; Alvarez, D.F.; Carini, C. Assessing the immunogenicity of biopharmaceuticals. BioDrugs 2016, 30, 195–206. [Google Scholar] [CrossRef]
- Gramer, M.J. Product Quality Considerations for Mammalian Cell Culture Process Development and Manufacturing. In Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2014; Volume 139, pp. 123–166. [Google Scholar]
- Batrakova, E.V.; Gendelman, H.E.; Kabanov, A.V. Cell-Mediated Drugs Delivery. Expert Opin. Drug Deliv. 2011, 8, 415–433. [Google Scholar] [CrossRef] [PubMed]
- Maguire, G. Transplanted Stem Cells Survive a Long Time: Do They Make You Sick? J. R. Soc. Med. 2019, 112, 412–414. [Google Scholar] [CrossRef]
- Yoneda, T.; Choi, B.H.; Gupta, P.K.; Ho, C.-Y.; Tsui, Y.P.; Wang, L.-M.; Fujiwara, Y.; Karasawa, H.; Moriya, Y.; Bando, K.; et al. Non-Clinical Assessment of Cell Therapy Products: The Perspective from Five Asian Countries/Regions Based on Regulatory Guidelines and the Underpinning Rationales. Cytotherapy 2021, 23, 874–885. [Google Scholar] [CrossRef] [PubMed]
- Kuriyan, A.E.; Albini, T.A.; Townsend, J.H.; Rodriguez, M.; Pandya, H.K.; Leonard, R.E.; Parrott, M.B.; Rosenfeld, P.J.; Flynn, H.W.; Goldberg, J.L. Vision Loss after Intravitreal Injection of Autologous “Stem Cells” for AMD. N. Engl. J. Med. 2017, 376, 1047–1053. [Google Scholar] [CrossRef]
- McBlane, J.W.; Phul, P.; Sharpe, M. Preclinical Development of Cell-Based Products: A European Regulatory Science Perspective. Pharm. Res. 2018, 35, 165. [Google Scholar] [CrossRef]
- Pognan, F.; Beilmann, M.; Boonen, H.C.M.; Czich, A.; Dear, G.; Hewitt, P.; Mow, T.; Oinonen, T.; Roth, A.; Steger-Hartmann, T.; et al. The Evolving Role of Investigative Toxicology in the Pharmaceutical Industry. Nat. Rev. Drug Discov. 2023, 22, 317–335. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.-G.; Wang, S.-K.; Cao, C.-C.; Harpur, E. Qualified Kidney Biomarkers and Their Potential Significance in Drug Safety Evaluation and Prediction. Pharmacol. Ther. 2013, 137, 100–107. [Google Scholar] [CrossRef]
- Avigan, M.I.; Bjornsson, E.S.; Pasanen, M.; Cooper, C.; Andrade, R.J.; Watkins, P.B.; Lewis, J.H.; Merz, M. Liver Safety Assessment: Required Data Elements and Best Practices for Data Collection and Standardization in Clinical Trials. Drug Saf. 2014, 37, 19–31. [Google Scholar] [CrossRef]
- McBlane, J.W. Preclinical safety testing for cell-based products using animals. Biologicals 2015, 43, 425–428. [Google Scholar] [CrossRef]
- Wang, H.; Ciccocioppo, R.; Terai, S.; Shoeibi, S.; Carnevale, G.; De Marchi, G.; Tsuchiya, A.; Ishii, S.; Tonouchi, T.; Furuyama, K.; et al. Targeted Animal Models for Preclinical Assessment of Cellular and Gene Therapies in Pancreatic and Liver Diseases: Regulatory and Practical Insights. Cytotherapy 2025, 27, 259–278. [Google Scholar] [CrossRef]
- Doi, D.; Magotani, H.; Kikuchi, T.; Ikeda, M.; Hiramatsu, S.; Yoshida, K.; Amano, N.; Nomura, M.; Umekage, M.; Morizane, A.; et al. Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson’s disease. Nat. Commun. 2020, 11, 3369. [Google Scholar] [CrossRef]
- Selck, C.; Dominguez-Villar, M. Antigen-Specific Regulatory T Cell Therapy in Autoimmune Diseases and Transplantation. Front. Immunol. 2021, 12, 661875. [Google Scholar] [CrossRef]
- Tikhomirova, A.V.; Goryachev, D.V.; Merkulov, V.A.; Lysikova, I.V.; Gubenko, A.I.; Zebrev, A.I.; Solovieva, A.P.; Romodanovsky, D.P.; Melnikova, E.V. Preclinical and clinical aspects of the development of biomedical cell products. Regul. Res. Med. Eval. 2018, 8, 23–35. [Google Scholar] [CrossRef]
- Rustichelli, D.; Castiglia, S.; Gunetti, M.; Mareschi, K.; Signorino, E.; Muraro, M.; Castello, L.; Sanavio, F.; Leone, M.; Ferrero, I.; et al. Validation of Analytical Methods in Compliance with Good Manufacturing Practice: A Practical Approach. J. Transl. Med. 2013, 11, 197. [Google Scholar] [CrossRef] [PubMed]
- Broichhausen, C.; Riquelme, P.; Ahrens, N.; Wege, A.K.; Koehl, G.E.; Schlitt, H.J.; Banas, B.; Fändrich, F.; Geissler, E.K.; Hutchinson, J.A. In Question: The Scientific Value of Preclinical Safety Pharmacology and Toxicology Studies with Cell-Based Therapies. Mol. Ther. Methods Clin. Dev. 2014, 1, 14026. [Google Scholar] [CrossRef] [PubMed]
- Bedoya, F.; Frigault, M.J.; Maus, M.V. The Flipside of the Power of Engineered T Cells: Observed and Potential Toxicities of Genetically Modified T Cells as Therapy. Mol. Ther. 2017, 25, 314–320. [Google Scholar] [CrossRef]
- Thebault, S.; Lee, H.; Bose, G.; Tessier, D.; Abdoli, M.; Bowman, M.; Berard, J.; Walker, L.; Rush, C.A.; MacLean, H.; et al. Neurotoxicity after Hematopoietic Stem Cell Transplant in Multiple Sclerosis. Ann. Clin. Transl. Neurol. 2020, 7, 767–775. [Google Scholar] [CrossRef]
- Pei, W.; Fu, L.; Guo, W.; Wang, Y.; Fan, Y.; Yang, R.; Li, R.; Qiao, J.; Yu, Y. Efficacy and Safety of Mesenchymal Stem Cell Therapy for Ovarian Ageing in a Mouse Model. Stem Cell Res. Ther. 2024, 15, 96. [Google Scholar] [CrossRef]
- Munder, A.; Kloth, C.; Lewin, G. Evaluation of Reproductive Toxicology Studies According the OECD Guideline 443—Claim and Reality. Reprod. Toxicol. 2025, 132, 108752. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, Q.; Zhang, X.; Xie, C.; Liu, M.; Yuan, Y.; Feng, J.; Xing, H.; Ru, L.; Yuan, Z.; et al. Reproductive and Developmental Toxicity Assessment of Human Umbilical Cord Mesenchymal Stem Cells in Rats. Front. Cell Dev. Biol. 2022, 10, 883996. [Google Scholar] [CrossRef]
- Salmikangas, P.; Flory, E.; Reinhardt, J.; Hinz, T.; Maciulaitis, R. Regulatory Requirements for Clinical Trial and Marketing Authorisation Application for Cell-Based Medicinal Products. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2010, 53, 24–29. [Google Scholar] [CrossRef]
- Pugsley, M.K.; Authier, S.; Curtis, M.J. Principles of Safety Pharmacology. Br. J. Pharmacol. 2008, 154, 1382–1399. [Google Scholar] [CrossRef] [PubMed]
- Picard, S.; Goineau, S.; Guillaume, P.; Henry, J.; Hanouz, J.-L.; Rouet, R. Supplemental Studies for Cardiovascular Risk Assessment in Safety Pharmacology: A Critical Overview. Cardiovasc. Toxicol. 2011, 11, 285–307. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.J. Respiratory Safety Pharmacology—Current Practice and Future Directions. Regul. Toxicol. Pharmacol. RTP 2014, 69, 135–140. [Google Scholar] [CrossRef]
- Authier, S.; Arezzo, J.; Delatte, M.S.; Kallman, M.-J.; Markgraf, C.; Paquette, D.; Pugsley, M.K.; Ratcliffe, S.; Redfern, W.S.; Stevens, J.; et al. Safety Pharmacology Investigations on the Nervous System: An Industry Survey. J. Pharmacol. Toxicol. Methods 2016, 81, 37–46. [Google Scholar] [CrossRef]
- Momin, E.N.; Vela, G.; Zaidi, H.A.; Quiñones-Hinojosa, A. The Oncogenic Potential of Mesenchymal Stem Cells in the Treatment of Cancer: Directions for Future Research. Curr. Immunol. Rev. 2010, 6, 137–148. [Google Scholar] [CrossRef]
- Huang, W.; Percie du Sert, N.; Vollert, J.; Rice, A.S.C. General Principles of Preclinical Study Design. In Handbook of Experimental Pharmacology; Springer: Cham, Switzerland, 2020; Volume 257, pp. 55–69. [Google Scholar] [CrossRef]
- Nawaz, M.; Fatima, F.; Vallabhaneni, K.C.; Penfornis, P.; Valadi, H.; Ekström, K.; Kholia, S.; Whitt, J.D.; Fernandes, J.D.; Pochampally, R.; et al. Extracellular Vesicles: Evolving Factors in Stem Cell Biology. Stem Cells Int. 2016, 2016, 1073140. [Google Scholar] [CrossRef]
- Wu, R.; Su, Z.; Zhao, L.; Pei, R.; Ding, Y.; Li, D.; Zhu, S.; Xu, L.; Zhao, W.; Zhou, W. Extracellular Vesicle-Loaded Oncogenic lncRNA NEAT1 from Adipose-Derived Mesenchymal Stem Cells Confers Gemcitabine Resistance in Pancreatic Cancer via miR-491-5p/Snail/SOCS3 Axis. Stem Cells Int. 2023, 2023, 6510571. [Google Scholar] [CrossRef]
- Räsänen, K.; Herlyn, M. Paracrine Signaling between Carcinoma Cells and Mesenchymal Stem Cells Generates Cancer Stem Cell Niche via Epithelial-Mesenchymal Transition. Cancer Discov. 2012, 2, 775–777. [Google Scholar] [CrossRef] [PubMed]
- Khanh, V.C.; Fukushige, M.; Moriguchi, K.; Yamashita, T.; Osaka, M.; Hiramatsu, Y.; Ohneda, O. Type 2 Diabetes Mellitus Induced Paracrine Effects on Breast Cancer Metastasis Through Extracellular Vesicles Derived from Human Mesenchymal Stem Cells. Stem Cells Dev. 2020, 29, 1382–1394. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.J.; Levine, B.L.; June, C.H. Assessing the oncogenic risk: The long-term safety of autologous chimeric antigen receptor T cells. The Lancet 2025, 405, 751–754. [Google Scholar] [CrossRef]
- Sato, Y.; Bando, H.; Di Piazza, M.; Gowing, G.; Herberts, C.; Jackman, S.; Leoni, G.; Libertini, S.; MacLachlan, T.; McBlane, J.W.; et al. Tumorigenicity Assessment of Cell Therapy Products: The Need for Global Consensus and Points to Consider. Cytotherapy 2019, 21, 1095–1111. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, I.Z.; Abubakar, F.S.; Katsayal, B.S.; Ibrahim, B.; Adamu, A.; Usman, M.A.; Aliyu, M.; Suleiman, M.A.; Muhammad, A. Stem Cells in Regenerative Medicine: Unlocking Therapeutic Potential through Stem Cell Therapy, 3D Bioprinting, Gene Editing, and Drug Discovery. Biomed. Eng. Adv. 2025, 9, 100172. [Google Scholar] [CrossRef]
- Kuroda, T.; Yasuda, S.; Sato, Y. Tumorigenicity studies for human pluripotent stem cell-derived products. Biol. Pharm. Bull. 2013, 36, 189–192. [Google Scholar] [CrossRef]
- Wang, Z. Assessing Tumorigenicity in Stem Cell-Derived Therapeutic Products: A Critical Step in Safeguarding Regenerative Medicine. Bioengineering 2023, 10, 857. [Google Scholar] [CrossRef]
- Yasuda, S.; Sato, Y. Tumorigenicity Assessment of Human Cell-Processed Therapeutic Products. Biologicals 2015, 43, 416–421. [Google Scholar] [CrossRef]
- U.S. FDA. Guidance for Industry: Characterization and Qualification of Cell Substrates and Other Biological Starting Materials Used in the Production of Viral Vaccines for the Prevention and Treatment of Infectious Diseases Texts; FDA: Silver Spring, MD, USA, 2006.
- Petrus-Reurer, S.; Kumar, P.; Padrell Sánchez, S.; Aronsson, M.; André, H.; Bartuma, H.; Plaza Reyes, A.; Nandrot, E.F.; Kvanta, A.; Lanner, F. Preclinical Safety Studies of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells for the Treatment of Age-Related Macular Degeneration. Stem Cells Transl. Med. 2020, 9, 936–953. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Yao, H.; Dong, Q.; Zhang, H.; Yang, Z.; Yang, Y.; Zhu, J.; Xu, M.; Xu, R. Tumourigenicity and Immunogenicity of Induced Neural Stem Cell Grafts Versus Induced Pluripotent Stem Cell Grafts in Syngeneic Mouse Brain. Sci. Rep. 2016, 6, 29955. [Google Scholar] [CrossRef]
- Nelakanti, R.V.; Kooreman, N.G.; Wu, J.C. Teratoma Formation: A Tool for Monitoring Pluripotency in Stem Cell Research. Curr. Protoc. Stem Cell Biol. 2015, 32, 4a.8.1–4a.8.17. [Google Scholar] [CrossRef] [PubMed]
- Montilla-Rojo, J.; Bialecka, M.; Wever, K.E.; Mummery, C.L.; Looijenga, L.H.; Roelen, B.A.; Salvatori, D.C. Teratoma Assay for Testing Pluripotency and Malignancy of Stem Cells: Insufficient Reporting and Uptake of Animal-Free Methods-A Systematic Review. Int. J. Mol. Sci. 2023, 24, 3879. [Google Scholar] [CrossRef]
- Müller, F.J.; Goldmann, J.; Löser, P.; Loring, J.F. A call to standardize teratoma assays used to define human pluripotent cell lines. Cell Stem Cell 2010, 6, 412–414. [Google Scholar] [CrossRef]
- Jeon, J.; Cha, Y.; Hong, Y.J.; Lee, I.H.; Jang, H.; Ko, S.; Naumenko, S.; Kim, M.; Ryu, H.L.; Shrestha, Z.; et al. Pre-clinical safety and efficacy of human induced pluripotent stem cell-derived products for autologous cell therapy in Parkinson’s disease. Cell Stem Cell. 2025, 32, 343–360.e7. [Google Scholar] [CrossRef]
- Piao, J.; Zabierowski, S.; Dubose, B.N.; Hill, E.J.; Navare, M.; Claros, N.; Rosen, S.; Ramnarine, K.; Horn, C.; Fredrickson, C.; et al. Preclinical Efficacy and Safety of a Human Embryonic Stem Cell-Derived Midbrain Dopamine Progenitor Product, MSK-DA01. Cell Stem Cell 2021, 28, 217–229.e7. [Google Scholar] [CrossRef]
- Izrael, M.; Slutsky, S.G.; Admoni, T.; Cohen, L.; Granit, A.; Hasson, A.; Itskovitz-Eldor, J.; Krush Paker, L.; Kuperstein, G.; Lavon, N.; et al. Safety and Efficacy of Human Embryonic Stem Cell-Derived Astrocytes Following Intrathecal Transplantation in SOD1G93A and NSG Animal Models. Stem Cell Res. Ther. 2018, 9, 152. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.D.; Tan, G.; Hosseini, H.; Nagiel, A. Subretinal Transplantation of Embryonic Stem Cell–Derived Retinal Pigment Epithelium for the Treatment of Macular Degeneration: An Assessment at 4 Years. Investig. Ophthalmol. Vis. Sci. 2016, 57, ORSFc1–ORSFc9. [Google Scholar] [CrossRef]
- Knoedler, L.; Dean, J.; Diatta, F.; Thompson, N.; Knoedler, S.; Rhys, R.; Sherwani, K.; Ettl, T.; Mayer, S.; Falkner, F.; et al. Immune Modulation in Transplant Medicine: A Comprehensive Review of Cell Therapy Applications and Future Directions. Front. Immunol. 2024, 15, 1372862. [Google Scholar] [CrossRef]
- Chen, R.; Zou, J.; Chen, J.; Zhong, X.; Kang, R.; Tang, D. Pattern Recognition Receptors: Function, Regulation and Therapeutic Potential. Signal Transduct. Target. Ther. 2025, 10, 216. [Google Scholar] [CrossRef]
- Lemieux, W.; Fleischer, D.; Yang, A.Y.; Niemann, M.; Oualkacha, K.; Klement, W.; Richard, L.; Polychronakos, C.; Liwski, R.; Claas, F.; et al. Dissecting the Impact of Molecular T-Cell HLA Mismatches in Kidney Transplant Failure: A Retrospective Cohort Study. Front. Immunol. 2022, 13, 1067075. [Google Scholar] [CrossRef] [PubMed]
- Kishikawa, H.; Kinoshita, T.; Hashimoto, M.; Fukae, S.; Taniguchi, A.; Yamanaka, K.; Nakagawa, M.; Nishimura, K. Class II HLA Eplet Mismatch Is a Risk Factor for De Novo Donor-Specific Antibody Development and Antibody-Mediated Rejection in Kidney Transplantation Recipients. Transplant. Proc. 2018, 50, 2388–2391. [Google Scholar] [CrossRef]
- Richter, K.; Haliduola, H.N.; Schockaert, J.; Mazy, A.; Reznichenko, N.; Guenzi, E.; Berti, F. Ex Vivo Comparative Immunogenicity Assessment (EVCIA) to Determine Relative Immunogenicity in Chronic Plaque Psoriasis in Participants Receiving Humira® or Undergoing Repeated Switches between Humira® and AVT02. Immunother. Adv. 2024, 4, ltad029. [Google Scholar] [CrossRef]
- Krzewski, K.; Gil-Krzewska, A.; Nguyen, V.; Peruzzi, G.; Coligan, J.E. LAMP1/CD107a Is Required for Efficient Perforin Delivery to Lytic Granules and NK-Cell Cytotoxicity. Blood 2013, 121, 4672–4683. [Google Scholar] [CrossRef] [PubMed]
- Mangelinck, A.; Dubuisson, A.; Becht, E.; Dromaint-Catesson, S.; Fasquel, M.; Provost, N.; Walas, D.; Darville, H.; Galizzi, J.P.; Lefebvre, C.; et al. Characterization of CD4+ and CD8+ T Cells Responses in the Mixed Lymphocyte Reaction by Flow Cytometry and Single Cell RNA Sequencing. Front. Immunol. 2023, 14, 1320481. [Google Scholar] [CrossRef]
- Petrus-Reurer, S.; Romano, M.; Howlett, S.; Jones, J.L.; Lombardi, G.; Saeb-Parsy, K. Immunological considerations and challenges for regenerative cellular therapies. Commun. Biol. 2021, 4, 798. [Google Scholar] [CrossRef]
- Depuydt, E.; Broeckx, S.Y.; Chiers, K.; Patruno, M.; Da Dalt, L.; Duchateau, L.; Saunders, J.; Pille, F.; Martens, A.; Van Hecke, L.L.; et al. Cellular and Humoral Immunogenicity Investigation of Single and Repeated Allogeneic Tenogenic Primed Mesenchymal Stem Cell Treatments in Horses Suffering From Tendon Injuries. Front. Vet. Sci. 2022, 8, 789293. [Google Scholar] [CrossRef]
- Bremer, M.; Nardi Bauer, F.; Tertel, T.; Dittrich, R.; Horn, P.A.; Börger, V.; Giebel, B. Qualification of a multidonor mixed lymphocyte reaction assay for the functional characterization of immunomodulatory extracellular vesicles. Cytotherapy 2023, 25, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, M.; Iwanami, A.; Nagoshi, N.; Kohyama, J.; Itakura, G.; Iwai, H.; Nishimura, S.; Nishiyama, Y.; Kawabata, S.; Sugai, K.; et al. Evaluation of the immunogenicity of human iPS cell-derived neural stem/progenitor cells in vitro. Stem Cell Res. 2017, 19, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Dunkelberger, J.R.; Song, W.-C. Complement and Its Role in Innate and Adaptive Immune Responses. Cell Res. 2010, 20, 34–50. [Google Scholar] [CrossRef] [PubMed]
- Schanzenbacher, J.; Köhl, J.; Karsten, C.M. Anaphylatoxins Spark the Flame in Early Autoimmunity. Front. Immunol. 2022, 13, 958392. [Google Scholar] [CrossRef]
- Khan, M.A.; Shamma, T. Complement Factor and T-Cell Interactions during Alloimmune Inflammation in Transplantation. J. Leukoc. Biol. 2019, 105, 681–694. [Google Scholar] [CrossRef] [PubMed]
- Mehler, V.J.; Burns, C.J.; Stauss, H.; Francis, R.J.; Moore, M.L. Human iPSC-Derived Neural Crest Stem Cells Exhibit Low Immunogenicity. Mol. Ther. Methods Clin. Dev. 2020, 16, 161–171. [Google Scholar] [CrossRef]
- Carey, B.S.; Poulton, K.V.; Poles, A. Factors Affecting HLA Expression: A Review. Int. J. Immunogenet. 2019, 46, 307–320. [Google Scholar] [CrossRef]
- Schwartz, R.; Momburg, F.; Moldenhauer, G.; Dörken, B.; Schirrmacher, V. Induction of HLA Class-II Antigen Expression on Human Carcinoma Cell Lines by IFN-Gamma. Int. J. Cancer 1985, 35, 245–250. [Google Scholar] [CrossRef]
- Beniers, A.J.; Peelen, W.P.; Debruyne, F.M.; Schalken, J.A. HLA-Class-I and -Class-II Expression on Renal Tumor Xenografts and the Relation to Sensitivity for Alpha-IFN, Gamma-IFN and TNF. Int. J. Cancer 1991, 48, 709–716. [Google Scholar] [CrossRef]
- Ohno, Y.; Kitamura, H.; Takahashi, N.; Ohtake, J.; Kaneumi, S.; Sumida, K.; Homma, S.; Kawamura, H.; Minagawa, N.; Shibasaki, S.; et al. IL-6 down-Regulates HLA Class II Expression and IL-12 Production of Human Dendritic Cells to Impair Activation of Antigen-Specific CD4+ T Cells. Cancer Immunol. Immunother. 2016, 65, 193–204. [Google Scholar] [CrossRef]
- Keskinen, P.; Ronni, T.; Matikainen, S.; Lehtonen, A.; Julkunen, I. Regulation of HLA Class I and II Expression by Interferons and Influenza A Virus in Human Peripheral Blood Mononuclear Cells. Immunology 1997, 91, 421–429. [Google Scholar] [CrossRef]
- Lehmann, P.V.; Zhang, W. Unique Strengths of ELISPOT for T Cell Diagnostics. In Handbook of ELISPOT. Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2012; pp. 3–23. [Google Scholar] [CrossRef]
- Choo, S.Y. The HLA System: Genetics, Immunology, Clinical Testing, and Clinical Implications. Yonsei Med. J. 2007, 48, 11–23. [Google Scholar] [CrossRef]
- Geo, J.A.; Ameen, R.; Al Shemmari, S.; Thomas, J. Advancements in HLA Typing Techniques and Their Impact on Transplantation Medicine. Med. Princ. Pract. 2024, 33, 215–231. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.W.; Oh, E.J.; Lee, S.B.; Moon, I.S.; Kim, D.G.; Choi, B.S.; Park, S.C.; Choi, Y.J.; Park, Y.J.; Han, K. Detection of Donor-Specific Anti-HLA Class I and II Antibodies Using Antibody Monitoring System. Transplant. Proc. 2006, 38, 2803–2806. [Google Scholar] [CrossRef] [PubMed]
- Morin-Zorman, S.; Loiseau, P.; Taupin, J.-L.; Caillat-Zucman, S. Donor-Specific Anti-HLA Antibodies in Allogeneic Hematopoietic Stem Cell Transplantation. Front. Immunol. 2016, 7, 307. [Google Scholar] [CrossRef]
- Emborg, M.E.; Metzger, J.M.; D’Amour, K.; Colwell, J.C.; Neumann, L.C.; Zhang, A.; Federoff, H.J. Advantages and Challenges of Using Allogeneic vs. Autologous Sources for Neuronal Cell Replacement in Parkinson’s Disease: Insights from Non-Human. Brain Res. Bull. 2025, 224, 111297. [Google Scholar] [CrossRef]
- Li, X.; Feng, X.; Sun, X.; Hou, N.; Han, F.; Liu, Y. Global, Regional, and National Burden of Alzheimer’s Disease and Other Dementias, 1990–2019. Front. Aging Neurosci. 2022, 14, 937486. [Google Scholar] [CrossRef]
- Kot, M.; Baj-Krzyworzeka, M.; Szatanek, R.; Musiał-Wysocka, A.; Suda-Szczurek, M.; Majka, M. The Importance of HLA Assessment in “Off-the-Shelf” Allogeneic Mesenchymal Stem Cells Based-Therapies. Int. J. Mol. Sci. 2019, 20, 5680. [Google Scholar] [CrossRef]
- de Almeida, P.E.; Ransohoff, J.D.; Nahid, M.A.; Wu, J.C. Immunogenicity of Pluripotent Stem Cells and Their Derivatives. Circ. Res. 2013, 112, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Tapia, N.; Schöler, H.R. Molecular Obstacles to Clinical Translation of iPSCs. Cell Stem Cell 2016, 19, 298–309. [Google Scholar] [CrossRef]
- Ye, Q.; Sung, T.-C.; Yang, J.-M.; Ling, Q.-D.; He, Y.; Higuchi, A. Generation of Universal and Hypoimmunogenic Human Pluripotent Stem Cells. Cell Prolif. 2020, 53, e12946. [Google Scholar] [CrossRef]
- Leibacher, J.; Henschler, R. Biodistribution, Migration and Homing of Systemically Applied Mesenchymal Stem/Stromal Cells. Stem Cell Res. Ther. 2016, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Zhang, M.; Tao, E.; Wang, J.; Wei, N.; Lu, Y.; Liu, Q.; Hao, K.; Zhou, F.; Wang, G. Pharmacokinetic Characteristics of Mesenchymal Stem Cells in Translational Challenges. Signal Transduct. Target. Ther. 2024, 9, 242. [Google Scholar] [CrossRef]
- Kamiyama, Y.; Naritomi, Y.; Moriya, Y.; Yamamoto, S.; Kitahashi, T.; Maekawa, T.; Yahata, M.; Hanada, T.; Uchiyama, A.; Noumaru, A.; et al. Biodistribution Studies for Cell Therapy Products: Current Status and Issues. Regen. Ther. 2021, 18, 202–216. [Google Scholar] [CrossRef]
- Zhou, J.; Shi, F.; Luo, X.; Lei, B.; Shi, Z.; Huang, C.; Zhang, Y.; Li, X.; Wang, H.; Li, X.-Y.; et al. The Persistence and Antitumor Efficacy of CAR-T Cells Are Modulated by Tonic Signaling within the CDR. Int. Immunopharmacol. 2024, 126, 111239. [Google Scholar] [CrossRef]
- Devillier, R.; Forcade, E.; Garnier, A.; Guenounou, S.; Thepot, S.; Guillerm, G.; Ceballos, P.; Hicheri, Y.; Dumas, P.-Y.; Peterlin, P.; et al. In-Depth Time-Dependent Analysis of the Benefit of Allo-HSCT for Elderly Patients with CR1 AML: A FILO Study. Blood Adv. 2022, 6, 1804–1812. [Google Scholar] [CrossRef]
- Galli, F.; Varani, M.; Lauri, C.; Silveri, G.G.; Onofrio, L.; Signore, A. Immune Cell Labelling and Tracking: Implications for Adoptive Cell Transfer Therapies. EJNMMI Radiopharm. Chem. 2021, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Streit, M.; Budiarta, M.; Jungblut, M.; Beliu, G. Fluorescent Labeling Strategies for Molecular Bioimaging. Biophys. Rep. 2025, 5, 100200. [Google Scholar] [CrossRef]
- Bailey, A.M.; Mendicino, M.; Au, P. An FDA Perspective on Preclinical Development of Cell-Based Regenerative Medicine Products. Nat. Biotechnol. 2014, 32, 721–723. [Google Scholar] [CrossRef] [PubMed]
- Allard, J.; Li, K.; Lopez, X.M.; Blanchard, S.; Barbot, P.; Rorive, S.; Decaestecker, C.; Pochet, R.; Bohl, D.; Lepore, A.C.; et al. Immunohistochemical Toolkit for Tracking and Quantifying Xenotransplanted Human Stem Cells. Regen. Med. 2014, 9, 437–452. [Google Scholar] [CrossRef]
- Naumova, A.V.; Modo, M.; Moore, A.; Murry, C.E.; Frank, J.A. Clinical imaging in regenerative medicine. Nat. Biotechnol. 2014, 32, 804–818. [Google Scholar] [CrossRef]
- Fujita, E.; Yamamoto, S.; Hanada, T.; Jogasaki, S.; Koga, Y.; Yatsuda, Y.; Kakizaki, Y.; Jo, Y.; Asano, Y.; Yonezawa, K.; et al. Using qPCR and ddPCR to study biodistribution of cell therapy products: A multi-site evaluation. Cytotherapy 2025, 27, 51–65. [Google Scholar] [CrossRef]
- Monné Rodríguez, J.M.; Frisk, A.L.; Kreutzer, R.; Lemarchand, T.; Lezmi, S.; Saravanan, C.; Stierstorfer, B.; Thuilliez, C.; Vezzali, E.; Wieczorek, G.; et al. European Society of Toxicologic Pathology (Pathology 2.0 Molecular Pathology Special Interest Group): Review of in Situ Hybridization Techniques for Drug Research And. Toxicol. Pathol. 2023, 51, 92–111. [Google Scholar] [CrossRef]
- Manley, N.C.; Priest, C.A.; Denham, J.; Wirth, E.D.; Lebkowski, J.S. Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cells: Preclinical Efficacy and Safety in Cervical Spinal Cord Injury. Stem Cells Transl. Med. 2017, 6, 1917–1929. [Google Scholar] [CrossRef] [PubMed]
- Kirkeby, A.; Nelander, J.; Hoban, D.B.; Rogelius, N.; Bjartmarz, H.; Novo Nordisk Cell Therapy R&D; Storm, P.; Fiorenzano, A.; Adler, A.F.; Vale, S.; et al. Preclinical Quality, Safety, and Efficacy of a Human Embryonic Stem Cell-Derived Product for the Treatment of Parkinson’s Disease, STEM-PD. Cell Stem Cell 2023, 30, 1299–1314.e9. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Lee, N.; Johnson, N.; Hong, J.; Zhao, J.; Sun, X.; Zhang, J. Quality Assessment Strategy Development and Analytical Method Selection of GMP Grade Biological Drugs for Gene and Cell Therapy. BBA Adv. 2025, 7, 100151. [Google Scholar] [CrossRef]
- Dittmar, K.E.J.; Simann, M.; Zghoul, N.; Schön, O.; Meyring, W.; Hannig, H.; Macke, L.; Dirks, W.G.; Miller, K.; Garritsen, H.S.P.; et al. Quality of Cell Products: Authenticity, Identity, Genomic Stability and Status of Differentiation. Transfus. Med. Hemother. 2010, 37, 57–64. [Google Scholar] [CrossRef]
- Markovic, O.; Markovic, N. Cell Cross-Contamination in Cell Cultures: The Silent and Neglected Danger. In Vitro Cell. Dev. Biol. Anim. 1998, 34, 1–8. [Google Scholar] [CrossRef]
- Brimble, S.N.; Zeng, X.; Weiler, D.A.; Luo, Y.; Liu, Y.; Lyons, I.G.; Freed, W.J.; Robins, A.J.; Rao, M.S.; Schulz, T.C. Karyotypic Stability, Genotyping, Differentiation, Feeder-Free Maintenance, and Gene Expression Sampling in Three Human Embryonic Stem Cell Lines Derived Prior to August 9, 2001. Stem Cells Dev. 2004, 13, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Keerti, A.; Ninave, S. DNA Fingerprinting: Use of Autosomal Short Tandem Repeats in Forensic DNA Typing. Cureus 2022, 14, e30210. [Google Scholar] [CrossRef]
- Almeida, J.L.; Dakic, A.; Kindig, K.; Kone, M.; Letham, D.L.D.; Langdon, S.; Peat, R.; Holding-Pillai, J.; Hall, E.M.; Ladd, M.; et al. Interlaboratory Study to Validate a STR Profiling Method for Intraspecies Identification of Mouse Cell Lines. PLoS ONE 2019, 14, e0218412. [Google Scholar] [CrossRef]
- Li, R.; Johnson, R.; Yu, G.; McKenna, D.H.; Hubel, A. Preservation of Cell-Based Immunotherapies for Clinical Trials. Cytotherapy 2019, 21, 943–957. [Google Scholar] [CrossRef] [PubMed]
- Kanda, G.N.; Tsuzuki, T.; Terada, M.; Sakai, N.; Motozawa, N.; Masuda, T.; Nishida, M.; Watanabe, C.T.; Higashi, T.; Horiguchi, S.A.; et al. Robotic Search for Optimal Cell Culture in Regenerative Medicine. eLife 2022, 11, e77007. [Google Scholar] [CrossRef]
- Zhao, X.; Li, X.; Wang, Y.; Guo, Y.; Huang, Y.; Lv, D.; Lei, M.; Yu, S.; Luo, G.; Zhan, R. Stability and Biosafety of Human Epidermal Stem Cell for Wound Repair: Preclinical Evaluation. Stem Cell Res. Ther. 2023, 14, 4. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, G.; Gan, G.; Naren, D.; Liu, X.; Liu, H.; Mo, J.; Lu, S.; Nie, D.; Ma, L. Preclinical Short-Term and Long-Term Safety of Human Bone Marrow Mesenchymal Stem Cells. Cell Transplant. 2023, 32, 09636897231213271. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Lee, S.; Kim, M.J.; Kim, J.-H. Brief Summary of the Regulatory Frameworks of Regenerative Medicine Therapies. Front. Pharmacol. 2025, 15, 1486812. [Google Scholar] [CrossRef]
- Hirai, T.; Yasuda, S.; Umezawa, A.; Sato, Y. Country-Specific Regulation and International Standardization of Cell-Based Therapeutic Products Derived from Pluripotent Stem Cells. Stem Cell Rep. 2023, 18, 1573. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, T.; Aoi, T.; Umezawa, A.; Ozawa, K.; Sato, Y.; Sawa, Y.; Matsuyama, A.; Yamanaka, S.; Yamato, M. A Study on Ensuring the Quality and Safety of Pharmaceuticals and Medical Devices Derived from the Processing of Autologous Human Somatic Stem Cells. Regen. Ther. 2015, 2, 57–69. [Google Scholar] [CrossRef]
- Center for Biologics Evaluation and Research. Safety Testing of Human Allogeneic Cells Expanded for Use in Cell-Based Medical Products. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/safety-testing-human-allogeneic-cells-expanded-use-cell-based-medical-products (accessed on 3 September 2025).
- Human Cell-Based Medicinal Products—Scientific Guideline European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/human-cell-based-medicinal-products-scientific-guideline (accessed on 3 September 2025).
- Regenerative Medical Products. Available online: https://www.pmda.go.jp/english/review-services/reviews/0003.html (accessed on 3 September 2025).
- Guo, C.; Ma, X.; Gao, F.; Guo, Y. Off-Target Effects in CRISPR/Cas9 Gene Editing. Front. Bioeng. Biotechnol. 2023, 11, 1143157. [Google Scholar] [CrossRef]
- Shen, J.; Swift, B.; Mamelok, R.; Pine, S.; Sinclair, J.; Attar, M. Design and Conduct Considerations for First-in-Human Trials. Clin. Transl. Sci. 2019, 12, 6–19. [Google Scholar] [CrossRef]
- Mizoguchi, H.; Zhang, A.J.; Gupta, P.K.; Komuro, M.; Cheun, W.K.; Chiu, C.W.; Choi, B. Regulatory Systems and Requirements for Clinical Trials of AAV-Based Gene Therapies—Perspectives from Six Asian Countries or Regions: Report from the 6th Asia Partnership Conference of Regenerative Medicine—April 20, 2023. Regen. Ther. 2024, 26, 334–345. [Google Scholar] [CrossRef]
- Cai, Y.; Sui, L.; Wang, J.; Qian, W.; Peng, Y.; Gong, L.; Wu, W.; Gao, Y. Post-Marketing Surveillance Framework of Cell and Gene Therapy Products in the European Union, the United States, Japan, South Korea and China: A Comparative Study. BMC Med. 2024, 22, 421. [Google Scholar] [CrossRef]
- Maličev, E.; Jazbec, K. An Overview of Mesenchymal Stem Cell Heterogeneity and Concentration. Pharmaceuticals 2024, 17, 350. [Google Scholar] [CrossRef] [PubMed]
- Kakroodi, F.A.; Khodadoust, E.; Alizadeh, M.; Hayaei Tehrani, R.S.; Sarabi, P.A.; Rahmanian, M.; Vosough, M. Current Challenges and Future Directions of ATMPs in Regenerative Medicine. Regen. Ther. 2025, 30, 358–370. [Google Scholar] [CrossRef]
- Iglesias-Lopez, C.; Agustí, A.; Obach, M.; Vallano, A. Regulatory Framework for Advanced Therapy Medicinal Products in Europe and United States. Front. Pharmacol. 2019, 10, 921. [Google Scholar] [CrossRef]
- Marques, L.; Costa, B.; Pereira, M.; Silva, A.; Santos, J.; Saldanha, L.; Silva, I.; Magalhães, P.; Schmidt, S.; Vale, N. Advancing Precision Medicine: A Review of Innovative In Silico Approaches for Drug Development, Clinical Pharmacology and Personalized Healthcare. Pharmaceutics 2024, 16, 332. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.; Hua, H.; Zhou, S.; Yang, Z.; Yang, C.; Huang, G.; Zeng, J.; Zhao, J. Current Landscape of Innovative Drug Development and Regulatory Support in China. Signal Transduct. Target. Ther. 2025, 10, 220. [Google Scholar] [CrossRef] [PubMed]
- Strecanska, M.; Sekelova, T.; Smolinska, V.; Kuniakova, M.; Nicodemou, A. Automated Manufacturing Processes and Platforms for Large-Scale Production of Clinical-Grade Mesenchymal Stem/ Stromal Cells. Stem Cell Rev. Rep. 2025, 21, 372–389. [Google Scholar] [CrossRef] [PubMed]
- Palladino, F.; Marcelino, P.R.F.; Schlogl, A.E.; José, Á.H.M.; Rodrigues, R.D.C.L.B.; Fabrino, D.L.; Santos, I.J.B.; Rosa, C.A. Bioreactors: Applications and Innovations for a Sustainable and Healthy Future—A Critical Review. Appl. Sci. 2024, 14, 9346. [Google Scholar] [CrossRef]
- Papamichail, L.; Koch, L.S.; Veerman, D.; Broersen, K.; van der Meer, A.D. Organoids-on-a-Chip: Microfluidic Technology Enables Culture of Organoids with Enhanced Tissue Function and Potential for Disease Modeling. Front. Bioeng. Biotechnol. 2025, 13, 1515340. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez Reyes, C.D.; Alejo-Jacuinde, G.; Perez Sanchez, B.; Chavez Reyes, J.; Onigbinde, S.; Mogut, D.; Hernández-Jasso, I.; Calderón-Vallejo, D.; Quintanar, J.L.; Mechref, Y. Multi Omics Applications in Biological Systems. Curr. Issues Mol. Biol. 2024, 46, 5777–5793. [Google Scholar] [CrossRef]
- Dogiparthi, L.K.; Bukke, S.P.N.; Thalluri, C.; Thalamanchi, B.; Vidya, K.P.; Sree, G.N.; Tatiparthi, H.; Uppicherla, D.; Thummaginjala, K.P. The Role of Genomics and Proteomics in Drug Discovery and Its Application in Pharmacy. Discov. Appl. Sci. 2025, 7, 552. [Google Scholar] [CrossRef]
- Astarita, G.; Kelly, R.S.; Lasky-Su, J. Metabolomics and Lipidomics Strategies in Modern Drug Discovery and Development. Drug Discov. Today 2023, 28, 103751. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Li, J.; Hu, Y.; Zhang, M.; Wang, H. Optogenetics and Chemogenetics: Key Tools for Modulating Neural Circuits in Rodent Models of Depression. Front. Neural Circuits 2025, 19, 1516839. [Google Scholar] [CrossRef]
- Parusel, S.; Yi, M.-H.; Hunt, C.L.; Wu, L.-J. Chemogenetic and Optogenetic Manipulations of Microglia in Chronic Pain. Neurosci. Bull. 2023, 39, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Antil, S.; Abraham, J.S.; Sripoorna, S.; Maurya, S.; Dagar, J.; Makhija, S.; Bhagat, P.; Gupta, R.; Sood, U.; Lal, R.; et al. DNA Barcoding, an Effective Tool for Species Identification: A Review. Mol. Biol. Rep. 2023, 50, 761–775. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yu, Y.; Liu, G.; Zhang, S.; Luo, C.; Hu, S.; Wan, S.; Zhao, L. A Promising Frontier of Circulating Messenger RNA in Liquid Biopsy: From Mechanisms to Clinical Applications. Int. J. Cancer 2025, 157, 1519–1537. [Google Scholar] [CrossRef]
- Nikanjam, M.; Kato, S.; Kurzrock, R. Liquid Biopsy: Current Technology and Clinical Applications. J. Hematol. Oncol. 2022, 15, 131. [Google Scholar] [CrossRef] [PubMed]
- Rossignoli, F.; Hoffman, D.; Atif, E.; Shah, K. Developing and Characterizing a Two-Layered Safety Switch for Cell Therapies. Cancer Biol. Ther. 2023, 24, 2232146. [Google Scholar] [CrossRef]
- Amberger, M.; Grueso, E.; Ivics, Z. CRISISS: A Novel, Transcriptionally and Post-Translationally Inducible CRISPR/Cas9-Based Cellular Suicide Switch. Int. J. Mol. Sci. 2023, 24, 9799. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, K.; Pan, Y.; Rao, L.; Luo, G. Engineered Cell Membrane-Derived Nanoparticles in Immune Modulation. Adv. Sci. 2021, 8, 2102330. [Google Scholar] [CrossRef]
- Teng, F.; Cui, T.; Zhou, L.; Gao, Q.; Zhou, Q.; Li, W. Programmable Synthetic Receptors: The next-Generation of Cell and Gene Therapies. Signal Transduct. Target. Ther. 2024, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Guo, R.; Chen, D.; Deng, Z.; Gao, J. SynBioNanoDesign: Pioneering Targeted Drug Delivery with Engineered Nanomaterials. J. Nanobiotechnol. 2025, 23, 178. [Google Scholar] [CrossRef] [PubMed]


| Cell Type | Disease | Method of Cell Administration | Toxicity | Tumor Formation | Cell Distribution | Other | Reference |
|---|---|---|---|---|---|---|---|
| DNPCs (IPSCs) | PD | Brain’s striatum of NOG mice (2 × 105 cells per mouse); subcutaneous in NOG mice (6 × 105 cells); stereotactic injection of 4 × 105 cells in nude rats | Animal survival rate, general condition, behavior, blood and urine tests; pathohistological analysis (52 weeks); | Histology: markers of DNPCs (FOXA2 and TUJ1), markers of iPSCs (OCT3/4, LIN28, and TRA-2-49), markers of early neuronal progenitor cells (SOX1, PAX6); proliferation marker (Ki67), H&E staining; | Histology: H&E, IHC (Ku80); | Proliferative activity: histology (Ki67); cell survival: histology | Doi D. et al., 2020 [39] |
| DNPCs (IPSC) | PD | Brain’s striatum of the immunodeficient mice (1 × 105 cells) | Survival, animal weight, blood analysis, histopathology; | Histology: pluripotency marker (Oct4), proliferation marker (Ki67), H&E staining; | PCR; | Proliferative activity: histology (Ki67, Sox1, and Pax6); Survival of transplanted cells: histology (hCAM); | Jeon J. et al., 2025 [72] |
| APCs | ALS | Intrathecal injection of cells into the cerebrospinal fluid of transgenic hSOD1 mice (3 × 106 cells per mice) | Survival, animal weight, blood analysis, histopathology; | Histopathology, histology: pluripotency markers (SSEA-4, EPCAM, and Tra-1-60); | In situ hybridization (Alu Y sequence), PCR; | Proliferative activity: histology (Ki67); Survival of transplanted cells: histology (Stem121, Stem123); | Izrael M. et al., 2018 [74] |
| DNPCs (ESC) | PD | Intrastriatal injection of cells into immunodeficient mice (4 × 105 cells) | Survival, animal weight, blood analysis, histopathology; | Histology: markers of DNPCs (FOXA2, LMX1A, and PITX3), pluripotency marker POU5F1; H&E staining + histopathology (groups: DNPCs+ 0.1% ESC, DNPCs+ 1% ESC, DNPCs+ 10% ESC, 100% ESC) | PCR; | Proliferative activity: histology (Ki-67) Cell survival: histology (STEM121) | Piao J. et al., 2021 [73] |
| DNPCs (ESC) | PD | Intrastriatal injection of cells into immunodeficient mice (7 × 105 cells) | Survival, animal weight, blood analysis, body temperature, appetite, behavioral tests (Irwin test), histopathology, organ weights | Histopathology | PCR; | Proliferative activity: histology (Ki67); Survival of transplanted cells: histology (hNCAM) | Kirkeby A. et al., 2023 [120] |
| UC-MSCs | TBI | In situ (5 × 104 cells) or into the tail vein (5 × 105 cells) | - | Pathohistology: mutation variant of epidermal growth factor receptor type III—EGFRvIII | Fluorescent visualization (UC-MSCs labeled with CFSE); | Proliferative activity: PCNA; Immunomodulatory | Wang G. et al., 2022 [7] |
| OPCs | Cervical spinal cord injury | Injection into spinal cord parenchyma of nude immunodeficient rats (2.4 × 105 or 2.4 × 106 cells per rat) | Survival, animal weight, blood analysis, grooming; general state, activity, allodynia assessment, histopathology. | Histopathology | In situ hybridization, PCR, histology | Proliferative activity: histology (Ki67); | Manley NC. et al., 2017 [119] |
| hESC-RPE | Stargardt’s macular distrophy | Subretinally in immune-deficient mice | - | Immunohistochemistry | Fluorescent visualization | Immunophenotyping and karyotyping of hESC-RPE, cell survival: histology | Schwartz et al., 2016 [75] |
| hESC-RPE | Age-related macular degeneration | Subcutaneous injection in immunocompromised NOG mice (1 × 107 per mice) or subretinal injections into albino rabbit eyes (5 × 104 cells) | - | Histology: H&E staining PCR: expression RPE-specific markers | Multicolor-confocal scanning laser ophthalmoscopy and immunohistochemistry: markers specific for RPE (NuMA and BEST-1) | Immunophenotyping, genotyping, whole-genome sequencing analysis, single-cell RNA sequencing, and karyotyping of hESC-RPE, cell survival: histology | Petrus-Reurer et al., 2020 [67] |
| EpiSCs | wound repair | Subcutaneously injection in female athymic nude mice (1 × 107 per mouse EpiSCs was injected) | - | Histology: H&E staining | - | Senescence, telomerase activity assay, and transcriptome analysis for assessment of quality of EpiSCs | Zhao et al., 2023 [129] |
| hBMSCs | - | Intravenous injection into BALB/c mice low (1.0 × 106/kg), medium (1.0 × 107/kg), and high (1.0 × 108/kg) concentrations of hBMMSCs | Survival, animal weight, general state, blood analysis, spontaneous behavior, histopathology | - | - | Tests for bacteria, fungi, mycoplasma, hepatitis virus, and endotoxin; immunophenotyping and karyotyping of MSCs | Liang et al., 2023 [130] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonov, G.E.; Grinchevskaya, L.R.; Makhnach, O.V.; Samburova, M.V.; Goldshtein, D.V.; Salikhova, D.I. Safety Assessment of Stem Cell-Based Therapies: Current Standards and Advancing Frameworks. Cells 2025, 14, 1660. https://doi.org/10.3390/cells14211660
Leonov GE, Grinchevskaya LR, Makhnach OV, Samburova MV, Goldshtein DV, Salikhova DI. Safety Assessment of Stem Cell-Based Therapies: Current Standards and Advancing Frameworks. Cells. 2025; 14(21):1660. https://doi.org/10.3390/cells14211660
Chicago/Turabian StyleLeonov, Georgy E., Lydia R. Grinchevskaya, Oleg V. Makhnach, Marina V. Samburova, Dmitry V. Goldshtein, and Diana I. Salikhova. 2025. "Safety Assessment of Stem Cell-Based Therapies: Current Standards and Advancing Frameworks" Cells 14, no. 21: 1660. https://doi.org/10.3390/cells14211660
APA StyleLeonov, G. E., Grinchevskaya, L. R., Makhnach, O. V., Samburova, M. V., Goldshtein, D. V., & Salikhova, D. I. (2025). Safety Assessment of Stem Cell-Based Therapies: Current Standards and Advancing Frameworks. Cells, 14(21), 1660. https://doi.org/10.3390/cells14211660

