Study Models for Non-Syndromic Hearing Loss
Abstract
1. Introduction
2. Cell Lines
2.1. Ear Cell Progenitor Cell Lines
2.2. Cochlear Cell Lines
2.3. Vascular Stria Cell Lines
3. Animal Models
3.1. Mice
3.2. Rats
3.3. Rabbits
3.4. Zebrafish
3.5. Pigs
4. Stem Cells
4.1. Embryonic Stem Cells
4.2. Tissue-Specific Stem Cells
4.3. Induced Pluripotent Stem Cells
5. Organoids
5.1. Cochlear Organoids from Mouse Cells
5.2. Cochlear Organoids from Human Cells
5.3. Inner Ear Organoids from Pluripotent Stem Cells
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AAV | Adeno-associated virus |
| CRISPR | clustered regularly interspaced short palindromic repeats |
| CSSD | Congenital single-sided deafness |
| ESC | Embryonic stem cells |
| HEI-OC1 | House Ear Institute–Organ of Corti 1 |
| hESC | Human embryonic stem cells |
| IMO | Immortalized otocyst |
| iPSC | Induced pluripotent stem cells |
| SC | Stem cells |
| SVK-1 | Stria vascularis K-1 cell line |
| UB/OC | University of Bristol/Organ of Corti |
References
- OMS Surdité et Déficience Auditive. Organisation Mondiale de la Santé 2024. Available online: https://www.who.int/fr/news-room/fact-sheets/detail/deafness-and-hearing-loss (accessed on 26 April 2024).
- Young, A.; Ng, M. Genetic Hearing Loss. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Lasak, J.M.; Allen, P.; McVay, T.; Lewis, D. Hearing loss: Diagnosis and management. Prim. Care 2014, 41, 19–31. [Google Scholar] [CrossRef]
- Korver, A.M.H.; Smith, R.J.H.; Van Camp, G.; Schleiss, M.R.; Bitner-Glindzicz, M.A.K.; Lustig, L.R.; Usami, S.; Boudewyns, A.N. Congenital hearing loss. Nat. Rev. Dis. Primers 2017, 3, 16094. [Google Scholar] [CrossRef]
- Tekin, M.; Arnos, K.S.; Pandya, A. Advances in hereditary deafness. Lancet 2001, 358, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Zhao, L.; Guo, Y.; Yang, J. Gene therapy for hereditary hearing loss. Hear. Res. 2025, 455, 109151. [Google Scholar] [CrossRef] [PubMed]
- Kelsell, D.P.; Dunlop, J.; Stevens, H.P.; Lench, N.J.; Liang, J.N.; Parry, G.; Mueller, R.F.; Leigh, I.M. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 1997, 387, 80–83. [Google Scholar] [CrossRef]
- Yasunaga, S.; Grati, M.; Cohen-Salmon, M.; El-Amraoui, A.; Mustapha, M.; Salem, N.; El-Zir, E.; Loiselet, J.; Petit, C. A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nat. Genet. 1999, 21, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Balunathan, N.; Nair, S.S.; Kumar, S.R. Gene-Polymorphism in Non-Syndromic Hearing Loss: A Systematic Review. Indian J. Otolaryngol. Head Neck Surg. 2025, 77, 1981–1986. [Google Scholar] [CrossRef]
- Shearer, A.E.; Hildebrand, M.S.; Odell, A.M.; Smith, R.J. Genetic Hearing Loss Overview. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993. [Google Scholar]
- Ulrich, A.B.; Pour, P.M. Cell Lines. In Brenner’s Encyclopedia of Genetics, 2nd ed.; Maloy, S., Hughes, K., Eds.; Academic Press: San Diego, CA, USA, 2001; pp. 481–482. ISBN 978-0-08-096156-9. [Google Scholar]
- Kaur, G.; Dufour, J.M. Cell lines. Spermatogenesis 2012, 2, 1–5. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Isolating Cells and Growing Them in Culture. In Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Freshney, R.I. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, 6th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010; ISBN 978-0-470-52812-9. [Google Scholar]
- Katakura, Y.; Alam, S.; Shirahata, S. Chapter 5 Immortalization by gene transfection. Methods Cell Biol. 1998, 57, 69–91. [Google Scholar] [CrossRef]
- Glover, D.M. (Ed.) DNA Cloning: A Practical Approach; IRL Press: Oxford, UK, 1985. [Google Scholar]
- Jat, P.S.; Noble, M.D.; Ataliotis, P.; Tanaka, Y.; Yannoutsos, N.; Larsen, L.; Kioussis, D. Direct derivation of conditionally immortal cell lines from an H-2Kb-tsA58 transgenic mouse. Proc. Natl. Acad. Sci. USA 1991, 88, 5096–5100. [Google Scholar] [CrossRef]
- Holley, M.C.; Lawlor, P.W. Production of Conditionally Immortalised Cell Lines from a Transgenic Mouse. Audiol. Neurotol. 2009, 2, 25–35. [Google Scholar] [CrossRef]
- Atkinson, P.J.; Huarcaya Najarro, E.; Sayyid, Z.N.; Cheng, A.G. Sensory hair cell development and regeneration: Similarities and differences. Development 2015, 142, 1561–1571. [Google Scholar] [CrossRef] [PubMed]
- Ruben, R.J. The synthesis of DNA and RNA in the developing inner ear. Laryngoscope 1969, 79, 1546–1556. [Google Scholar] [CrossRef]
- Holley, M.C.; Nishida, Y.; Grix, N. Conditional immortalization of hair cells from the inner ear. Int. J. Dev. Neurosci. 1997, 15, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Kalinec, G.M.; Webster, P.; Lim, D.J.; Kalinec, F. A Cochlear Cell Line as an in vitro System for Drug Ototoxicity Screening. Audiol. Neurotol. 2003, 8, 177–189. [Google Scholar] [CrossRef]
- Barald, K.F.; Lindberg, K.H.; Hardiman, K.; Kavka, A.I.; Lewis, J.E.; Victor, J.C.; Gardner, C.A.; Poniatowski, A. Immortalized cell lines from embryonic avian and murine otocysts: Tools for molecular studies of the developing inner ear. Int. J. Dev. Neurosci. 1997, 15, 523–540. [Google Scholar] [CrossRef]
- Germiller, J.A.; Smiley, E.C.; Ellis, A.D.; Hoff, J.S.; Deshmukh, I.; Allen, S.J.; Barald, K.F. Molecular characterization of conditionally immortalized cell lines derived from mouse early embryonic inner ear. Dev. Dyn. 2004, 231, 815–827. [Google Scholar] [CrossRef]
- Choi, S.-W.; Abitbol, J.M.; Cheng, A.G. Hair Cell Regeneration: From Animals to Humans. Clin. Exp. Otorhinolaryngol. 2024, 17, 1–14. [Google Scholar] [CrossRef]
- Kelley, M.; Talreja, D.; Corwin, J. Replacement of hair cells after laser microbeam irradiation in cultured organs of corti from embryonic and neonatal mice. J. Neurosci. 1995, 15, 3013–3026. [Google Scholar] [CrossRef]
- Rivolta, M.N.; Grix, N.; Lawlor, P.; Ashmore, J.F.; Jagger, D.J.; Holley, M.C. Auditory hair cell precursors immortalized from the mammalian inner ear. Proc. R. Soc. Lond. B 1998, 265, 1595–1603. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.; Rivolta, M.; Holley, M. Identification of differentiating cochlear hair cells in vitro. Am. J. Otol. 2000, 21, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Rivolta, M.N.; Halsall, A.; Johnson, C.M.; Tones, M.A.; Holley, M.C. Transcript Profiling of Functionally Related Groups of Genes During Conditional Differentiation of a Mammalian Cochlear Hair Cell Line. Genome Res. 2002, 12, 1091–1099. [Google Scholar] [CrossRef]
- Riccardi, S.; Bergling, S.; Sigoillot, F.; Beibel, M.; Werner, A.; Leighton-Davies, J.; Knehr, J.; Bouwmeester, T.; Parker, C.N.; Roma, G.; et al. MiR-210 promotes sensory hair cell formation in the organ of corti. BMC Genom. 2016, 17, 309. [Google Scholar] [CrossRef]
- Park, C.; Thein, P.; Kalinec, G.; Kalinec, F. HEI-OC1 cells as a model for investigating prestin function. Hear. Res. 2016, 335, 9–17. [Google Scholar] [CrossRef]
- Beach, R.; Abitbol, J.M.; Allman, B.L.; Esseltine, J.L.; Shao, Q.; Laird, D.W. GJB2 Mutations Linked to Hearing Loss Exhibit Differential Trafficking and Functional Defects as Revealed in Cochlear-Relevant Cells. Front. Cell Dev. Biol. 2020, 8, 215. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Pandey, H.; Srivastava, P.; Mandal, K.; Phadke, S.R. Connexin 26 (GJB2) Mutations Associated with Non-Syndromic Hearing Loss (NSHL). Indian J. Pediatr. 2018, 85, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Belyantseva, I.A.; Kalinec, G.M.; Kalinec, F.; Kachar, B. In vitro differentiation of two immortalized cell lines derived from the stria vascularis of a transgenic mouse. In Proceedings of the 21st Midwinter Meeting Association for Research in Otolaryngology, St. Pete Beach, FL, USA, 15–19 February 1998; p. 620. [Google Scholar]
- Gratton, M.A.; Meehan, D.T.; Smyth, B.J.; Cosgrove, D. Strial marginal cells play a role in basement membrane homeostasis: In vitro and in vivo evidence. Hear. Res. 2002, 163, 27–36. [Google Scholar] [CrossRef]
- Tu, T.-Y.; Chiu, J.-H.; Yang, W.K.; Chang, T.-J.; Yang, A.-H.; Shu, C.-H.; Lien, C.-F. Establishment and characterization of a strial marginal cell line maintaining vectorial electrolyte transport. Hear. Res. 1998, 123, 97–110. [Google Scholar] [CrossRef]
- Thulasiram, M.R.; Ogier, J.M.; Dabdoub, A. Hearing Function, Degeneration, and Disease: Spotlight on the Stria Vascularis. Front. Cell Dev. Biol. 2022, 10, 841708. [Google Scholar] [CrossRef]
- Tu, T.-Y.; Chiu, J.-H.; Shu, C.-H.; Lien, C.-F. cAMP mediates transepithelial K+ and Na+ transport in a strial marginal cell line. Hear. Res. 1999, 127, 149–157. [Google Scholar] [CrossRef]
- McGuinness, M.P.; Linder, C.C.; Morales, C.R.; Heckert, L.L.; Pikus, J.; Griswold, M.D. Relationship of a mouse Sertoli cell line (MSC-1) to normal Sertoli cells. Biol. Reprod. 1994, 51, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.Q.; Siveen, K.S.; Prabhu, K.S.; Kuttikrishnan, S.; Akhtar, S.; Shanmugakonar, M.; Al-Naemi, H.A.; Haris, M.; Uddin, S. Chapter 1—Role of animal research in human malignancies. In Animal Models in Cancer Drug Discovery; Azmi, A., Mohammad, R.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 1–29. ISBN 978-0-12-814704-7. [Google Scholar]
- Friedman, L.M.; Dror, A.A.; Avraham, K.B. Mouse models to study inner ear development and hereditary hearing loss. Int. J. Dev. Biol. 2007, 51, 609–631. [Google Scholar] [CrossRef] [PubMed]
- Kikkawa, Y.; Seki, Y.; Okumura, K.; Ohshiba, Y.; Miyasaka, Y.; Suzuki, S.; Ozaki, M.; Matsuoka, K.; Noguchi, Y.; Yonekawa, H. Advantages of a Mouse Model for Human Hearing Impairment. Exp. Anim. 2012, 61, 85–98. [Google Scholar] [CrossRef]
- Ehret, G. Age-dependent hearing loss in normal hearing mice. Naturwissenschaften 1974, 61, 506–507. [Google Scholar] [CrossRef] [PubMed]
- Driver, E.C.; Kelley, M.W. Development of the cochlea. Development 2020, 147, dev162263. [Google Scholar] [CrossRef]
- Zhu, G.; Huang, Y.; Zhang, L.; Yan, K.; Qiu, C.; He, Y.; Liu, Q.; Zhu, C.; Morín, M.; Moreno-Pelayo, M.Á.; et al. Cingulin regulates hair cell cuticular plate morphology and is required for hearing in human and mouse. EMBO Mol. Med. 2023, 15, e17611. [Google Scholar] [CrossRef]
- Zhu, G.-J.; Gong, S.; Ma, D.-B.; Tao, T.; He, W.-Q.; Zhang, L.; Wang, F.; Qian, X.-Y.; Zhou, H.; Fan, C.; et al. Aldh inhibitor restores auditory function in a mouse model of human deafness. PLoS Genet. 2020, 16, e1009040. [Google Scholar] [CrossRef]
- Domínguez-Ruiz, M.; Murillo-Cuesta, S.; Contreras, J.; Cantero, M.; Garrido, G.; Martín-Bernardo, B.; Gómez-Rosas, E.; Fernández, A.; Del Castillo, F.J.; Montoliu, L.; et al. A murine model for the del(GJB6-D13S1830) deletion recapitulating the phenotype of human DFNB1 hearing impairment: Generation and functional and histopathological study. BMC Genom. 2024, 25, 359. [Google Scholar] [CrossRef]
- Gabriel, H.-D.; Jung, D.; Bützler, C.; Temme, A.; Traub, O.; Winterhager, E.; Willecke, K. Transplacental Uptake of Glucose Is Decreased in Embryonic Lethal Connexin26-deficient Mice. J. Cell Biol. 1998, 140, 1453–1461. [Google Scholar] [CrossRef]
- Verdoodt, D.; van Wijk, E.; Broekman, S.; Venselaar, H.; Aben, F.; Sels, L.; De Backer, E.; Gommeren, H.; Szewczyk, K.; Van Camp, G.; et al. Rational design of a genomically humanized mouse model for dominantly inherited hearing loss, DFNA9. Hear. Res. 2024, 442, 108947. [Google Scholar] [CrossRef]
- Singh, J.; Randle, M.R.; Walters, B.J.; Cox, B.C. The transcription factor Pou4f3 is essential for the survival of postnatal and adult mouse cochlear hair cells and normal hearing. Front. Cell Neurosci. 2024, 18, 1369282. [Google Scholar] [CrossRef]
- Defourny, J. TBC1D24 is likely to regulate vesicle trafficking in glia-like non-sensory epithelial cells of the cochlea. Int. J. Dev. Biol. 2024, 68, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Askew, C.; Chien, W.W. Adeno-Associated Virus Gene Replacement for Recessive Inner Ear Dysfunction: Progress and Challenges. Hear. Res. 2020, 394, 107947. [Google Scholar] [CrossRef] [PubMed]
- Gadenstaetter, A.J.; Krumpoeck, P.E.; Landegger, L.D. Inner Ear Gene Therapy: An Overview from Bench to Bedside. Mol. Diagn. Ther. 2025, 29, 161–181. [Google Scholar] [CrossRef]
- Qi, J.; Tan, F.; Zhang, L.; Lu, L.; Zhang, S.; Zhai, Y.; Lu, Y.; Qian, X.; Dong, W.; Zhou, Y.; et al. AAV—Mediated Gene Therapy Restores Hearing in Patients with DFNB9 Deafness. Adv. Sci. 2024, 11, 2306788. [Google Scholar] [CrossRef]
- Valayannopoulos, V.; Bance, M.; Carvalho, D.S.; Greinwald, J.H.; Harvey, S.A.; Ishiyama, A.; Landry, E.C.; Löwenheim, H.; Lustig, L.R.; Manrique, M.; et al. DB-OTO Gene Therapy for Inherited Deafness. N. Engl. J. Med. 2025. [Google Scholar] [CrossRef]
- Guo, J.; Ma, X.; Skidmore, J.M.; Cimerman, J.; Prieskorn, D.M.; Beyer, L.A.; Swiderski, D.L.; Dolan, D.F.; Martin, D.M.; Raphael, Y. GJB2 gene therapy and conditional deletion reveal developmental stage-dependent effects on inner ear structure and function. Mol. Ther. Methods Clin. Dev. 2021, 23, 319–333. [Google Scholar] [CrossRef]
- Akil, O.; Dyka, F.; Calvet, C.; Emptoz, A.; Lahlou, G.; Nouaille, S.; Boutet de Monvel, J.; Hardelin, J.-P.; Hauswirth, W.W.; Avan, P.; et al. Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model. Proc. Natl. Acad. Sci. USA 2019, 116, 4496–4501. [Google Scholar] [CrossRef] [PubMed]
- Al-Moyed, H.; Cepeda, A.P.; Jung, S.; Moser, T.; Kügler, S.; Reisinger, E. A dual-AAV approach restores fast exocytosis and partially rescues auditory function in deaf otoferlin knock-out mice. EMBO Mol. Med. 2019, 11, e9396. [Google Scholar] [CrossRef]
- Rankovic, V.; Vogl, C.; Dörje, N.M.; Bahader, I.; Duque-Afonso, C.J.; Thirumalai, A.; Weber, T.; Kusch, K.; Strenzke, N.; Moser, T. Overloaded Adeno-Associated Virus as a Novel Gene Therapeutic Tool for Otoferlin-Related Deafness. Front. Mol. Neurosci. 2021, 13, 600051. [Google Scholar] [CrossRef]
- Tao, Y.; Lamas, V.; Du, W.; Zhu, W.; Li, Y.; Whittaker, M.N.; Zuris, J.A.; Thompson, D.B.; Rameshbabu, A.P.; Shu, Y.; et al. Treatment of monogenic and digenic dominant genetic hearing loss by CRISPR-Cas9 ribonucleoprotein delivery in vivo. Nat. Commun. 2023, 14, 4928. [Google Scholar] [CrossRef] [PubMed]
- Petit, C.; Bonnet, C.; Safieddine, S. Deafness: From genetic architecture to gene therapy. Nat. Rev. Genet. 2023, 24, 665–686. [Google Scholar] [CrossRef]
- Castaño-González, K.; Köppl, C.; Pyott, S.J. The crucial role of diverse animal models to investigate cochlear aging and hearing loss. Hear. Res. 2024, 445, 108989. [Google Scholar] [CrossRef]
- Bryda, E.C. The Mighty Mouse: The Impact of Rodents on Advances in Biomedical Research. Mo. Med. 2013, 110, 207–211. [Google Scholar] [PubMed]
- Kelly, J.B.; Masterton, B. Auditory sensitivity of the albino rat. J. Comp. Physiol. Psychol. 1977, 91, 930–936. [Google Scholar] [CrossRef]
- Uziel, A.; Romand, R.; Marot, M. Development of Cochlear Potentials in Rats. Int. J. Audiol. 1981, 20, 89–100. [Google Scholar] [CrossRef]
- Du, Z.; Chen, J.; Zhu, H.; Chu, H. Differential Expression of LaminB1 in the Developing Rat Cochlea. J. Int. Adv. Otol. 2019, 15, 106–111. [Google Scholar] [CrossRef]
- Modlinska, K.; Pisula, W. The Norway rat, from an obnoxious pest to a laboratory pet. eLife 2020, 9, e50651. [Google Scholar] [CrossRef]
- Naoi, K.; Kuramoto, T.; Kuwamura, Y.; Gohma, H.; Kuwamura, M.; Serikawa, T. Characterization of the Kyoto Circling (KCI) Rat Carrying a Spontaneous Nonsense Mutation in the Protocadherin 15 (Pcdh15) Gene. Exp. Anim. 2009, 58, 1–10. [Google Scholar] [CrossRef]
- Escabi, C.D.; Frye, M.D.; Trevino, M.; Lobarinas, E. The rat animal model for noise-induced hearing loss. J. Acoust. Soc. Am. 2019, 146, 3692–3709. [Google Scholar] [CrossRef] [PubMed]
- Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Katz, L.C.; LaMantia, A.-S.; McNamara, J.O.; Williams, S.M. The Audible Spectrum. In Neuroscience, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2001. [Google Scholar]
- Luebke, A.E.; Stagner, B.B.; Martin, G.K.; Lonsbury-Martin, B.L. Adaptation of distortion product otoacoustic emissions predicts susceptibility to acoustic over-exposure in alert rabbits. J. Acoust. Soc. Am. 2014, 135, 1941–1949. [Google Scholar] [CrossRef]
- Bhattacharyya, T.K.; Dayal, V.S. Influence of age on hair cell loss in the rabbit cochlea. Hear. Res. 1989, 40, 179–183. [Google Scholar] [CrossRef]
- Martin, G.K.; Stagner, B.B.; Dong, W.; Lonsbury-Martin, B.L. Comparing Distortion Product Otoacoustic Emissions to Intracochlear Distortion Products Inferred from a Noninvasive Assay. J. Assoc. Res. Otolaryngol. 2016, 17, 271–287. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.P.; Song, J.; Prieskorn, D.; Zou, J.; Li, Y.; Dolan, D.; Xu, J.; Zhang, J.; Jayasundera, K.T.; Yang, J.; et al. USH2A Gene Mutations in Rabbits Lead to Progressive Retinal Degeneration and Hearing Loss. Transl. Vis. Sci. Technol. 2023, 12, 26. [Google Scholar] [CrossRef]
- Nguyen, V.P.; Hu, J.; Zhe, J.; Chen, E.Y.; Yang, D.; Paulus, Y.M. Multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence imaging of USH2A knockout rabbits. Sci. Rep. 2023, 13, 22071. [Google Scholar] [CrossRef]
- Alkowari, M.; Espino-Guarch, M.; Daas, S.; Abdelrahman, D.; Hasan, W.; Krishnamoorthy, N.; Sathappan, A.; Sheehan, P.; Panhuys, N.V.; The Qatar Genome Program Research Consortium; et al. Functional Characterization of the MYO6 Variant p.E60Q in Non-Syndromic Hearing Loss Patients. Int. J. Mol. Sci. 2022, 23, 3369. [Google Scholar] [CrossRef]
- Sheets, L.; Holmgren, M.; Kindt, K.S. How Zebrafish Can Drive the Future of Genetic-Based Hearing and Balance Research. J. Assoc. Res. Otolaryngol. 2021, 22, 215–235. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, T.T. Zebrafish as a model for hearing and deafness. Dev. Neurobiol. 2002, 53, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Chen, X.; Dai, L.; Tu, J.; Hu, H.; Sun, X.; Luo, J.; Li, P.; Fu, Y.; Zhu, Y.; et al. Knockout of dhx38 Causes Inner Ear Developmental Defects in Zebrafish. Biomedicines 2024, 13, 20. [Google Scholar] [CrossRef]
- Li, Y.; Ning, G.; Kang, B.; Zhu, J.; Wang, X.-Y.; Wang, Q.; Cai, T. A novel recessive mutation in OXR1 is identified in patient with hearing loss recapitulated by the knockdown zebrafish. Hum. Mol. Genet. 2022, 32, 764–772. [Google Scholar] [CrossRef]
- Wang, X.; Liu, T.-X.; Zhang, Y.; Xu, L.-W.; Yuan, S.-L.; Cui, A.-L.; Guo, W.-W.; Wang, Y.-F.; Yang, S.-M.; Zhao, J.-G. Genetically modified pigs: Emerging animal models for hereditary hearing loss. Zool. Res. 2024, 45, 284–291. [Google Scholar] [CrossRef]
- Yao, J.; Zeng, H.; Zhang, M.; Wei, Q.; Wang, Y.; Yang, H.; Lu, Y.; Li, R.; Xiong, Q.; Zhang, L.; et al. OSBPL2-disrupted pigs recapitulate dual features of human hearing loss and hypercholesterolaemia. J. Genet. Genom. 2019, 46, 379–387. [Google Scholar] [CrossRef]
- Ren, W.; Xu, C.; Zheng, F.-J.; Lin, T.-T.; Jin, P.; Zhang, Y.; Guo, W.-W.; Liu, C.-H.; Zhou, X.-Y.; Wang, L.-L.; et al. A Porcine Congenital Single-Sided Deafness Model, Its Population Statistics and Degenerative Changes. Front. Cell Dev. Biol. 2021, 9, 672216. [Google Scholar] [CrossRef]
- Lamolda, M.; Frejo, L.; Gallego-Martinez, A.; Lopez-Escamez, J.A. Application of Human Stem Cells to Model Genetic Sensorineural Hearing Loss and Meniere Disease. Cells 2023, 12, 988. [Google Scholar] [CrossRef]
- Tang, P.-C.; Hashino, E.; Nelson, R.F. Progress in Modeling and Targeting Inner Ear Disorders with Pluripotent Stem Cells. Stem Cell Rep. 2020, 14, 996–1008. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Ulfendahl, M. The potential of stem cells for the restoration of auditory function in humans. Regen. Med. 2013, 8, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Czajkowski, A.; Mounier, A.; Delacroix, L.; Malgrange, B. Pluripotent stem cell-derived cochlear cells: A challenge in constant progress. Cell Mol. Life Sci. 2018, 76, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Dufner-Almeida, L.G.; da Cruz, D.B.; Mingroni Netto, R.C.; Batissoco, A.C.; Oiticica, J.; Salazar-Silva, R. Stem-cell therapy for hearing loss: Are we there yet? Braz. J. Otorhinolaryngol. 2019, 85, 520–529. [Google Scholar] [CrossRef]
- Pauley, S.; Kopecky, B.; Beisel, K.; Soukup, G.; Fritzsch, B. Stem cells and molecular strategies to restore hearing. Panminerva Med. 2008, 50, 41–53. [Google Scholar]
- Senn, P.; Mina, A.; Volkenstein, S.; Kranebitter, V.; Oshima, K.; Heller, S. Progenitor Cells from the Adult Human Inner Ear. Anat. Rec. 2020, 303, 461–470. [Google Scholar] [CrossRef]
- Batissoco, A.C.; Cruz, D.B.; Alegria, T.G.P.; Kobayashi, G.; Oiticica, J.; Soares Netto, L.E.; Passos-Bueno, M.R.; Haddad, L.A.; Mingroni Netto, R.C. GJB2 c.35del variant up-regulates GJA1 gene expression and affects differentiation of human stem cells. Genet. Mol. Biol. 2024, 47, e20230170. [Google Scholar] [CrossRef] [PubMed]
- Proteomic Analysis of Stem Cell Differentiation and Early Development—PMC. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC3282409/#s5 (accessed on 5 October 2025).
- The Mitochondrial Protein OPA1 Regulates the Quiescent State of Adult Muscle Stem Cells—PMC. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC10249109/#S11 (accessed on 5 October 2025).
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Scesa, G.; Adami, R.; Bottai, D. iPSC Preparation and Epigenetic Memory: Does the Tissue Origin Matter? Cells 2021, 10, 1470. [Google Scholar] [CrossRef]
- Oshima, K.; Shin, K.; Diensthuber, M.; Peng, A.W.; Ricci, A.J.; Heller, S. Mechanosensitive Hair Cell-like Cells from Embryonic and Induced Pluripotent Stem Cells. Cell 2010, 141, 704–716. [Google Scholar] [CrossRef]
- Connolly, K.; Gonzalez-Cordero, A. Modelling inner ear development and disease using pluripotent stem cells—A pathway to new therapeutic strategies. Dis. Model. Mech. 2022, 15, dmm049593. [Google Scholar] [CrossRef]
- Hosoya, M.; Fujioka, M.; Sone, T.; Okamoto, S.; Akamatsu, W.; Ukai, H.; Ueda, H.R.; Ogawa, K.; Matsunaga, T.; Okano, H. Cochlear Cell Modeling Using Disease-Specific iPSCs Unveils a Degenerative Phenotype and Suggests Treatments for Congenital Progressive Hearing Loss. Cell Rep. 2017, 18, 68–81. [Google Scholar] [CrossRef]
- Fukunaga, I.; Oe, Y.; Danzaki, K.; Ohta, S.; Chen, C.; Iizumi, M.; Shiga, T.; Matsuoka, R.; Anzai, T.; Hibiya-Motegi, R.; et al. Generation of two iPSC lines from siblings of a homozygous patient with hearing loss and a heterozygous carrier with normal hearing carrying p.G45E/Y136X mutation in GJB2. Stem Cell Res. 2021, 53, 102290. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wen, J.; Liu, X.; Chen, A.; Li, S.; Liu, J.; Sun, J.; Gong, W.; Kang, X.; Feng, Z.; et al. Gene regulation analysis of patient-derived iPSCs and its CRISPR-corrected control provides a new tool for studying perturbations of ELMOD3 c.512A>G mutation during the development of inherited hearing loss. PLoS ONE 2023, 18, e0288640. [Google Scholar] [CrossRef] [PubMed]
- Rouhani, F.; Kumasaka, N.; de Brito, M.C.; Bradley, A.; Vallier, L.; Gaffney, D. Genetic Background Drives Transcriptional Variation in Human Induced Pluripotent Stem Cells. PLoS Genet. 2014, 10, e1004432. [Google Scholar] [CrossRef]
- Corrò, C.; Novellasdemunt, L.; Li, V.S.W. A brief history of organoids. Am. J. Physiol. Cell Physiol. 2020, 319, C151–C165. [Google Scholar] [CrossRef]
- Lancaster, M.A.; Huch, M. Disease modelling in human organoids. Dis. Model. Mech. 2019, 12, dmm039347. [Google Scholar] [CrossRef]
- Veninga, V.; Voest, E.E. Tumor organoids: Opportunities and challenges to guide precision medicine. Cancer Cell 2021, 39, 1190–1201. [Google Scholar] [CrossRef]
- Lauwereyns, J.; Bajramovic, J.; Bert, B.; Camenzind, S.; De Kock, J.; Elezović, A.; Erden, S.; Gonzalez-Uarquin, F.; Ulman, Y.I.; Hoffmann, O.I.; et al. Toward a common interpretation of the 3Rs principles in animal research. Lab Anim. 2024, 53, 347–350. [Google Scholar] [CrossRef]
- Russell, W.; Burch, R. The principles of humane experimental technique. In The Principles of Humane Experimental Technique; Methuen & Co., Ltd.: London, UK, 1959. [Google Scholar]
- Díaz, L.; Zambrano-González, E.; Flores, M.E.; Contreras, M.; Crispín, J.C.; Alemán, G.; Bravo, C.; Armenta-Espinosa, A.; Valdés, V.J.; Tovar, A.; et al. Ethical Considerations in Animal Research: The Principle of 3R’s. Rev. Investig. Clínica 2021, 73, 199–209. [Google Scholar] [CrossRef]
- Clevers, H. Modeling Development and Disease with Organoids. Cell 2016, 165, 1586–1597. [Google Scholar] [CrossRef]
- Shah, J.J.; Jimenez-Jaramillo, C.A.; Lybrand, Z.R.; Yuan, T.T.; Erbele, I.D. Modern In Vitro Techniques for Modeling Hearing Loss. Bioengineering 2024, 11, 425. [Google Scholar] [CrossRef]
- Koehler, K.R.; Hashino, E. 3D mouse embryonic stem cell culture for generating inner ear organoids. Nat. Protoc. 2014, 9, 1229–1244. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Hu, L.; Edge, A.S.B. Generation of hair cells in neonatal mice by β-catenin overexpression in Lgr5-positive cochlear progenitors. Proc. Natl. Acad. Sci. USA 2013, 110, 13851–13856. [Google Scholar] [CrossRef] [PubMed]
- Roccio, M.; Edge, A.S.B. Inner ear organoids: New tools to understand neurosensory cell development, degeneration and regeneration. Development 2019, 146, dev177188. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Ma, J.; Wu, M.; Guo, L.; Chen, Y.; Li, G.; Sun, S.; Chai, R.; Li, H.; Li, W. Generation of innervated cochlear organoid recapitulates early development of auditory unit. Stem Cell Rep. 2022, 18, 319–336. [Google Scholar] [CrossRef]
- Forrester-Gauntlett, B.; Peters, L.; Oback, B. Grainyhead-like 2 is required for morphological integrity of mouse embryonic stem cells and orderly formation of inner ear-like organoids. Front. Cell Dev. Biol. 2023, 11, 1112069. [Google Scholar] [CrossRef]
- Pechriggl, E.J.; Bitsche, M.; Glueckert, R.; Rask-Andersen, H.; Blumer, M.J.F.; Schrott-Fischer, A.; Fritsch, H. Development of the innervation of the human inner ear. Dev. Neurobiol. 2015, 75, 683–702. [Google Scholar] [CrossRef]
- Roccio, M.; Perny, M.; Ealy, M.; Widmer, H.R.; Heller, S.; Senn, P. Molecular characterization and prospective isolation of human fetal cochlear hair cell progenitors. Nat. Commun. 2018, 9, 4027. [Google Scholar] [CrossRef]
- European Parliament, Council of the European Union. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union 2010, 276, 33–79. [Google Scholar]
- Koehler, K.R.; Mikosz, A.M.; Molosh, A.I.; Patel, D.; Hashino, E. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 2013, 500, 217–221. [Google Scholar] [CrossRef] [PubMed]
- DeJonge, R.E.; Liu, X.-P.; Deig, C.R.; Heller, S.; Koehler, K.R.; Hashino, E. Modulation of Wnt Signaling Enhances Inner Ear Organoid Development in 3D Culture. PLoS ONE 2016, 11, e0162508. [Google Scholar] [CrossRef] [PubMed]
- Koehler, K.R.; Nie, J.; Longworth-Mills, E.; Liu, X.-P.; Lee, J.; Holt, J.R.; Hashino, E. Generation of inner ear organoids with functional hair cells from human pluripotent stem cells. Nat. Biotechnol. 2017, 35, 583–589. [Google Scholar] [CrossRef]
- Hocevar, S.E.; Liu, L.; Duncan, R.K. Matrigel is required for efficient differentiation of isolated, stem cell-derived otic vesicles into inner ear organoids. Stem Cell Res. 2021, 53, 102295. [Google Scholar] [CrossRef]
- Moore, S.T.; Nakamura, T.; Nie, J.; Solivais, A.J.; Aristizábal-Ramírez, I.; Ueda, Y.; Manikandan, M.; Reddy, V.S.; Romano, D.R.; Hoffman, J.R.; et al. Generating high-fidelity cochlear organoids from human pluripotent stem cells. Cell Stem Cell 2023, 30, 950–961.e7. [Google Scholar] [CrossRef] [PubMed]
- Zafeer, M.F.; Ramzan, M.; Duman, D.; Mutlu, A.; Seyhan, S.; Kalcioglu, M.T.; Fitoz, S.; DeRosa, B.A.; Guo, S.; Dykxhoorn, D.M.; et al. Human organoids for rapid validation of gene variants linked to cochlear malformations. Hum. Genet. 2025, 144, 375–389. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, J.; Xin, X.; Liu, C.; Li, L.; Mei, X.; Li, M. Merits and challenges of iPSC-derived organoids for clinical applications. Front. Cell Dev. Biol. 2023, 11, 1188905. [Google Scholar] [CrossRef] [PubMed]
- Waldhaus, J.; Jiang, L.; Liu, L.; Liu, J.; Duncan, R.K. Mapping the developmental potential of mouse inner ear organoids at single-cell resolution. iScience 2024, 27, 109069. [Google Scholar] [CrossRef]
- Moisan, S.; Le Nabec, A.; Quillévéré, A.; Le Maréchal, C.; Férec, C. Characterization of GJB2 cis-regulatory elements in the DFNB1 locus. Hum. Genet. 2019, 138, 1275–1286. [Google Scholar] [CrossRef]
- Le Nabec, A.; Blotas, C.; Briset, A.; Collobert, M.; Férec, C.; Moisan, S. 3D Chromatin Organization Involving MEIS1 Factor in the cis-Regulatory Landscape of GJB2. Int. J. Mol. Sci. 2022, 23, 6964. [Google Scholar] [CrossRef]
- Ekdale, E.G. Form and function of the mammalian inner ear. J. Anat. 2015, 228, 324. [Google Scholar] [CrossRef]
- Maraslioglu-Sperber, A.; Blanc, F.; Heller, S. Murine cochlear damage models in the context of hair cell regeneration research. Hear. Res. 2024, 447, 109021. [Google Scholar] [CrossRef] [PubMed]
- Leclère, J.; Marianowski, R.; Montier, T. Gene therapy for hearing loss: Current status and future prospects of non-viral vector delivery systems. Hear. Res. 2024, 453, 109130. [Google Scholar] [CrossRef] [PubMed]
| Model | Disadvantages | Advantages | Utilizations |
|---|---|---|---|
| IMO cells |
|
|
|
| UB/OC |
|
| |
| HEI-OC1 |
| ||
| SVK-1 |
|
| |
| MCPV-8 |
|
|
| Model | Disadvantages | Advantages | Utilizations |
|---|---|---|---|
| Mice |
|
| |
| Rats |
| ||
| Rabbits |
| ||
| Zebrafish |
|
| |
| Pigs |
|
|
| Model | Disadvantages | Advantages | Utilizations |
|---|---|---|---|
| Embryonic stem cells |
|
| |
| Tissue-specific stem cells |
|
|
|
| Induce pluripotent stem cells |
|
|
|
| Model | Disadvantages | Advantages | Utilizations |
|---|---|---|---|
| Cochlear organoids from mouse cells | |||
| Cochlear organoids from human cells |
|
| |
| Inner ear organoids from pluripotent stem cells |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoyau, V.; Leclère, J.-C.; Moisan, S. Study Models for Non-Syndromic Hearing Loss. Cells 2025, 14, 1658. https://doi.org/10.3390/cells14211658
Hoyau V, Leclère J-C, Moisan S. Study Models for Non-Syndromic Hearing Loss. Cells. 2025; 14(21):1658. https://doi.org/10.3390/cells14211658
Chicago/Turabian StyleHoyau, Valentine, Jean-Christophe Leclère, and Stéphanie Moisan. 2025. "Study Models for Non-Syndromic Hearing Loss" Cells 14, no. 21: 1658. https://doi.org/10.3390/cells14211658
APA StyleHoyau, V., Leclère, J.-C., & Moisan, S. (2025). Study Models for Non-Syndromic Hearing Loss. Cells, 14(21), 1658. https://doi.org/10.3390/cells14211658

