The Autoimmune Gastritis Puzzle: Emerging Cellular Crosstalk and Molecular Pathways Driving Parietal Cell Loss and ECL Cell Hyperplasia
Abstract
1. Introduction
2. Methods
3. Mechanisms of Parietal Cell Loss
3.1. Adaptive Immunity
3.2. Intrinsic Epithelial Stress Pathways
3.3. Innate Immunity
4. Hypergastrinemia and ECL Cell Hyperplasia
4.1. Gastrin as a Trophic Factor
4.2. Molecular Pathways in ECL Cell Proliferation
5. Interplay with the Gastric Microbiome
6. Autoimmune Gastritis and Associated Autoimmune Disorder
7. Prognosis and Long-Term Outcomes
8. Therapeutic Perspectives
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lenti, M.V.; Rugge, M.; Lahner, E.; Miceli, E.; Toh, B.H.; Genta, R.M.; De Block, C.; Hershko, C.; Di Sabatino, A. Autoimmune gastritis. Nat. Rev. Dis. Primers 2020, 6, 56. [Google Scholar] [CrossRef]
- Soykan, İ.; Er, R.E.; Baykara, Y.; Kalkan, C. Unraveling the Mysteries of Autoimmune Gastritis. Turk. J. Gastroenterol. 2024, 36, 135–144. [Google Scholar] [CrossRef]
- Castellana, C.; Eusebi, L.H.; Dajti, E.; Iascone, V.; Vestito, A.; Fusaroli, P.; Fuccio, L.; D’errico, A.; Zagari, R.M. Autoimmune Atrophic Gastritis: A Clinical Review. Cancers 2024, 16, 1310. [Google Scholar] [CrossRef]
- Massironi, S.; Zilli, A.; Elvevi, A.; Invernizzi, P. The changing face of chronic autoimmune atrophic gastritis: An updated comprehensive perspective. Autoimmun. Rev. 2019, 18, 215–222. [Google Scholar] [CrossRef]
- Shah, S.C.; Piazuelo, M.B.; Kuipers, E.J.; Li, D. AGA Clinical Practice Update on the Diagnosis and Management of Atrophic Gastritis: Expert Review. Gastroenterology 2021, 161, 1325–1332.e7. [Google Scholar] [CrossRef]
- Vavallo, M.; Cingolani, S.; Cozza, G.; Schiavone, F.P.; Dottori, L.; Palumbo, C.; Lahner, E. Autoimmune Gastritis and Hypochlorhydria: Known Concepts from a New Perspective. Int. J. Mol. Sci. 2024, 25, 6818. [Google Scholar] [CrossRef]
- Massironi, S. Autoimmune gastritis: An organ-specific disease or a model of systemic autoimmunity? Parallels, divergences, and emerging insights. Expert Rev. Gastroenterol. Hepatol. 2025, 7, 1–9. [Google Scholar] [CrossRef]
- Taylor, L.; McCaddon, A.; Wolffenbuttel, B.H.R. Creating a Framework for Treating Autoimmune Gastritis-The Case for Replacing Lost Acid. Nutrients 2024, 16, 662. [Google Scholar] [CrossRef]
- Toh, B.H.; Sentry, J.W.; Alderuccio, F. The causative H+/K+ ATPase antigen in the pathogenesis of autoimmune gastritis. Immunol. Today 2000, 21, 348–354. [Google Scholar] [CrossRef]
- Iwamuro, M.; Tanaka, T.; Otsuka, M. Update in Molecular Aspects and Diagnosis of Autoimmune Gastritis. Curr. Issues Mol. Biol. 2023, 45, 5263–5275. [Google Scholar] [CrossRef]
- De Prado, Á.; Cal-Sabater, P.; Fiz-López, A.; Izquierdo, S.; Corrales, D.; Pérez-Cózar, F.; H-Vázquez, J.; Arribas-Rodríguez, E.; Perez-Segurado, C.; Muñoz, Á.M.; et al. Complex immune network and regional consistency in the human gastric mucosa revealed by high-resolution spectral cytometry. Sci. Rep. 2024, 14, 28685. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Yan, Z.; Yang, A. The Roles of Innate Lymphoid Cells in the Gastric Mucosal Immunology and Oncogenesis of Gastric Cancer. Int. J. Mol. Sci. 2023, 24, 6652. [Google Scholar] [CrossRef]
- Nouari, W.; Aribi, M. Innate lymphoid cells, immune functional dynamics, epithelial parallels, and therapeutic frontiers in infections. Int. Rev. Immunol. 2025, 44, 245–272. [Google Scholar]
- Waldum, H.; Mjønes, P. Towards Understanding of Gastric Cancer Based upon Physiological Role of Gastrin and ECL Cells. Cancers 2020, 12, 3477. [Google Scholar] [CrossRef] [PubMed]
- Massironi, S.; Gallo, C.; Elvevi, A.; Stegagnini, M.; Coltro, L.A.; Invernizzi, P. Incidence and prevalence of gastric neuroendocrine tumors in patients with chronic atrophic autoimmune gastritis. World J. Gastrointest. Oncol. 2023, 15, 1451–1460. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, A.; Hu, C.; Yu, T.; Chen, J. Type-1 Grade 2 Multi-Focal Gastric Neuroendocrine Tumors Secondary to Chronic Autoimmune Gastritis. Front. Med. 2022, 9, 856125. [Google Scholar] [CrossRef]
- Brown, P.; Tetali, B.; Suresh, S.; Varma, A. Progression From Antral G-Cell Hyperplasia to Gastric Neuroendocrine Tumor in a Patient with Autoimmune Gastritis. ACG Case Rep. J. 2021, 8, e00649. [Google Scholar] [CrossRef]
- Miceli, E.; Lenti, M.V.; Gentile, A.; Gambini, G.; Petrucci, C.; Pitotti, L.; Mengoli, C.; Di Stefano, M.; Vanoli, A.; Luinetti, O.; et al. Long-term natural history of autoimmune gastritis: Results from a prospective, monocentric series. Am. J. Gastroenterol. 2023, 119, 837–845. [Google Scholar] [CrossRef]
- Massironi, S.; Sciola, V.; Spampatti, M.P.; Peracchi, M.; Conte, D. Gastric carcinoids: Between underestimation and overtreatment. World J. Gastroenterol. 2009, 15, 2177–2183. [Google Scholar] [CrossRef]
- Peracchi, M.; Gebbia, C.; Basilisco, G.; Quatrini, M.; Tarantino, C.; Vescarelli, C.; Massironi, S.; Conte, D. Plasma chromogranin A in patients with autoimmune chronic atrophic gastritis, enterochromaffin-like cell lesions and gastric carcinoids. Eur. J. Endocrinol. 2005, 152, 443–448. [Google Scholar] [CrossRef]
- Sheng, W.; Malagola, E.; Nienhüser, H.; Zhang, Z.; Kim, W.; Zamechek, L.; Sepulveda, A.; Hata, M.; Hayakawa, Y.; Zhao, C.-M.; et al. Hypergastrinemia Expands Gastric ECL Cells Through CCK2R+ Progenitor Cells via ERK Activation. Cell Mol. Gastroenterol. Hepatol. 2020, 10, 434–449.e1. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, X. Beyond metaplasia: Unraveling the complex pathogenesis of autoimmune atrophic gastritis and its implications for gastric cancer risk. Qjm 2025, 118, 203–247. [Google Scholar] [CrossRef]
- Goldenring, J.R.; Nam, K.T. Oxyntic atrophy, metaplasia, and gastric cancer. Prog. Mol. Biol. Transl. Sci. 2010, 96, 117–131. [Google Scholar]
- Conti, L.; Annibale, B.; Lahner, E. Autoimmune Gastritis and Gastric Microbiota. Microorganisms 2020, 8, 1827. [Google Scholar] [CrossRef] [PubMed]
- D’ELios, M.M.; Amedei, A.; Azzurri, A.; Benagiano, M.; Del Prete, G.; Bergman, M.P.; Vandenbroucke-Grauls, C.M.; Appelmelk, B.J. Molecular specificity and functional properties of autoreactive T-cell response in human gastric autoimmunity. Int. Rev. Immunol. 2005, 24, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Toh, B.H.; van Driel, I.R.; Gleeson, P.A. Autoimmune gastritis: Tolerance and autoimmunity to the gastric H+/K+ ATPase (proton pump). Autoimmunity 1992, 13, 165–172. [Google Scholar] [CrossRef]
- Suleymanov, Z. Expression of class I and II MHC receptors in Helicobacter pylori-positive patients with active gastritis and duodenal ulcer. Turk. J. Gastroenterol. 2003, 14, 168–172. [Google Scholar]
- Toh, B.H.; A Gleeson, P.; Simpson, R.J.; Moritz, R.L.; Callaghan, J.M.; Goldkorn, I.; Jones, C.M.; Martinelli, T.M.; Mu, F.T.; Humphris, D.C. The 60- to 90-kDa parietal cell autoantigen associated with autoimmune gastritis is a beta subunit of the gastric H+/K(+)-ATPase (proton pump). Proc. Natl. Acad. Sci. USA 1990, 87, 6418–6422. [Google Scholar] [CrossRef]
- Lahner, E.; Brigatti, C.; Marzinotto, I.; Carabotti, M.; Scalese, G.; Davidson, H.W.; Wenzlau, J.M.; Bosi, E.; Piemonti, L.; Annibale, B.; et al. Luminescent Immunoprecipitation System (LIPS) for Detection of Autoantibodies Against ATP4A and ATP4B Subunits of Gastric Proton Pump H+,K+-ATPase in Atrophic Body Gastritis Patients. Clin. Transl. Gastroenterol. 2017, 8, e215. [Google Scholar] [CrossRef]
- Alderuccio, F.; Murphy, K.; Biondo, M.; Field, J.; Toh, B.H. Reversing the autoimmune condition: Experience with experimental autoimmune gastritis. Int. Rev. Immunol. 2005, 24, 135–155. [Google Scholar] [CrossRef]
- Alderuccio, F.; Sentry, J.W.; Marshall, A.C.; Biondo, M.; Toh, B.H. Animal models of human disease: Experimental autoimmune gastritis--a model for autoimmune gastritis and pernicious anemia. Clin. Immunol. 2002, 102, 48–58. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, T.; Zhang, L.; Xing, Y.; Yan, Z.; Li, Q. Critical influence of cytokines and immune cells in autoimmune gastritis. Autoimmunity 2023, 56, 2174531. [Google Scholar] [CrossRef]
- Mommersteeg, M.; Simovic, I.; Yu, B.; van Nieuwenburg, S.; I, M.B.; Doukas, M.; Kuipers, E.; Spaander, M.; Peppelenbosch, M.; Castaño-Rodríguez, N.; et al. Autophagy mediates ER stress and inflammation in Helicobacter pylori-related gastric cancer. Gut Microbes 2022, 14, 2015238. [Google Scholar] [CrossRef]
- Gundu, C.; Arruri, V.K.; Sherkhane, B.; Khatri, D.K.; Singh, S.B. GSK2606414 attenuates PERK/p-eIF2α/ATF4/CHOP axis and augments mitochondrial function to mitigate high glucose induced neurotoxicity in N2A cells. Curr. Res. Pharmacol. Drug Discov. 2022, 3, 100087. [Google Scholar] [CrossRef]
- Huang, J.; Wan, L.; Lu, H.; Li, X. High expression of active ATF6 aggravates endoplasmic reticulum stress-induced vascular endothelial cell apoptosis through the mitochondrial apoptotic pathway. Mol. Med. Rep. 2018, 17, 6483–6489. [Google Scholar] [CrossRef] [PubMed]
- Rudi, J.; Kuck, D.; Strand, S.; von Herbay, A.; Mariani, S.M.; Krammer, P.H.; Galle, P.R.; Stremmel, W. Involvement of the CD95 (APO-1/Fas) receptor and ligand system in Helicobacter pylori-induced gastric epithelial apoptosis. J. Clin. Investig. 1998, 102, 1506–1514. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, R.; Fujii, H.; Shirai, T.; Saito, S.; Ishii, T.; Harigae, H. Autophagy plays a protective role as an anti-oxidant system in human T cells and represents a novel strategy for induction of T-cell apoptosis. Eur. J. Immunol. 2014, 44, 2508–2520. [Google Scholar] [CrossRef]
- He, Q.; Liu, M.; Rong, Z.; Liang, H.; Xu, X.; Sun, S.; Lei, Y.; Li, P.; Meng, H.; Zheng, R.; et al. Rebamipide attenuates alcohol-induced gastric epithelial cell injury by inhibiting endoplasmic reticulum stress and activating autophagy-related proteins. Eur. J. Pharmacol. 2022, 922, 174891. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Lin, I.-C.; Su, M.-C.; Hsu, P.-Y.; Hsiao, C.-C.; Hsu, T.-Y.; Liou, C.-W.; Chen, Y.-M.; Chin, C.-H.; Wang, T.-Y.; et al. Autophagy impairment in patients with obstructive sleep apnea modulates intermittent hypoxia-induced oxidative stress and cell apoptosis via hypermethylation of the ATG5 gene promoter region. Eur. J. Med. Res. 2023, 28, 82. [Google Scholar] [CrossRef]
- Chen, X.; Liu, R.; Liu, X.; Xu, C.; Wang, X. L-ascorbic Acid-2-Glucoside inhibits Helicobacter pylori-induced apoptosis through mitochondrial pathway in Gastric Epithelial cells. Biomed. Pharmacother. 2018, 97, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Calvino-Fernández, M.; Benito-Martínez, S.; Parra-Cid, T. Oxidative stress by Helicobacter pylori causes apoptosis through mitochondrial pathway in gastric epithelial cells. Apoptosis 2008, 13, 1267–1280. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Wang, H.; Nie, Y.; Mi, Q.; Chen, X.; Hou, Y. Midkine upregulates MICA/B expression in human gastric cancer cells and decreases natural killer cell cytotoxicity. Cancer Immunol. Immunother. 2012, 61, 1745–1753. [Google Scholar] [CrossRef]
- Rodella, L.; Rezzani, R.; Zauli, G.; Mariani, A.R.; Rizzoli, R.; Vitale, M. Apoptosis induced by NK cells is modulated by the NK-active cytokines IL-2 and IL-12. Int. Immunol. 1998, 10, 719–725. [Google Scholar] [CrossRef]
- Poggi, A.; Benelli, R.; Venè, R.; Costa, D.; Ferrari, N.; Tosetti, F.; Zocchi, M.R. Human Gut-Associated Natural Killer Cells in Health and Disease. Front. Immunol. 2019, 10, 961. [Google Scholar] [CrossRef]
- Della Bella, C.; Antico, A.; Panozzo, M.P.; Capitani, N.; Petrone, L.; Benagiano, M.; D’eLios, S.; Sparano, C.; Azzurri, A.; Pratesi, S.; et al. Gastric Th17 Cells Specific for H(+)/K(+)-ATPase and Serum IL-17 Signature in Gastric Autoimmunity. Front. Immunol. 2022, 13, 952674. [Google Scholar] [CrossRef] [PubMed]
- Judd, L.M.; Gleeson, P.A.; Toh, B.H.; van Driel, I.R. Autoimmune gastritis results in disruption of gastric epithelial cell development. Am. J. Physiol. 1999, 277, G209–G218. [Google Scholar] [CrossRef]
- Torbenson, M.; Abraham, S.C.; Boitnott, J.; Yardley, J.H.; Wu, T.T. Autoimmune gastritis: Distinct histological and immunohistochemical findings before complete loss of oxyntic glands. Mod. Pathol. 2002, 15, 102–109. [Google Scholar] [CrossRef]
- Watanabe, H.; Yoneda, S.; Motoyama, Y.; Mukai, K.; Okuno, Y.; Kozawa, J.; Nishizawa, H.; Maeda, N.; Otsuki, M.; Matsuoka, T.-A.; et al. Marked Hypergastrinemia with G-cell Hyperplasia in Two Autoimmune Gastritis Patients. Intern. Med. 2020, 59, 799–803. [Google Scholar] [CrossRef]
- Waldum, H.L.; Brenna, E.; Sandvik, A.K. Relationship of ECL cells and gastric neoplasia. Yale J. Biol. Med. 1998, 71, 325–335. [Google Scholar] [PubMed]
- Prinz, C.; Scott, D.R.; Hurwitz, D.; Helander, H.F.; Sachs, G. Gastrin effects on isolated rat enterochromaffin-like cells in primary culture. Am. J. Physiol. 1994, 267 Pt 1, G663–G675. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, C.M.; Al-Haider, W.; Håkanson, R.; Rehfeld, J.F.; Kopin, A.S. Differentiation of gastric ECL cells is altered in CCK(2) receptor-deficient mice. Gastroenterology 2002, 123, 577–585. [Google Scholar]
- Shamburek, R.D.; Schubert, M.L. Control of gastric acid secretion. Histamine H2-receptor antagonists and H+K(+)-ATPase inhibitors. Gastroenterol. Clin. N. Am. 1992, 21, 527–550. [Google Scholar] [CrossRef] [PubMed]
- Obrink, K.J. Histamine and gastric acid secretion. A review. Scand. J. Gastroenterol. Suppl. 1991, 180, 4–8. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Khurana, S.S.; Bellone, C.J.; Capoccia, B.J.; Sagartz, J.E.; Kesman, R.A.; Jr et, a.l. Autoimmune gastritis mediated by CD4+ T cells promotes the development of gastric cancer. Cancer Res. 2013, 73, 2117–2126. [Google Scholar]
- Zheng, B.; Kobayashi, H.; Tu, R.; Huang, K.; Zhi, X.; Lian, G.; Wu, F.; Qian, J.; Ochiai, Y.; Waterbury, Q.T.; et al. Gastrin-dependent expansion of Cck2r(+) corpus progenitors accelerates ulcer healing and inhibits gastric dysplasia. Gut 2025. ahead of print. [Google Scholar]
- Zhang, A.; Niu, L.; Ni, Y.; Liu, W.; Gao, X.; Chang, L.; Cao, P. STAT3 inhibition mitigates experimental autoimmune gastritis by restoring Th17/Treg immune balance. Immunol. Res. 2025, 73, 90. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, C.; Sato, J.; Yamashita, S.; Sasaki, A.; Akahane, T.; Aoki, R.; Yamamichi, M.; Liu, Y.-Y.; Ito, M.; Furuta, T.; et al. Autoimmune gastritis induces aberrant DNA methylation reflecting its carcinogenic potential. J. Gastroenterol. 2022, 57, 144–155. [Google Scholar] [CrossRef]
- Arai, J.; Niikura, R.; Hayakawa, Y.; Suzuki, N.; Hirata, Y.; Ushiku, T.; Fujishiro, M. Clinicopathological Features of Gastric Cancer with Autoimmune Gastritis. Biomedicines 2022, 10, 884. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Uno, K.; Iijima, K.; Abe, Y.; Koike, T.; Asano, N.; Asanuma, K.; Shimosegawa, T. Acidic bile salts induces mucosal barrier dysfunction through let-7a reduction during gastric carcinogenesis after Helicobacter pylori eradication. Oncotarget 2018, 9, 18069–18083. [Google Scholar] [CrossRef]
- McColl, K.E. The elegance of the gastric mucosal barrier: Designed by nature for nature. Gut 2012, 61, 787–788. [Google Scholar]
- Chen, B.; Sun, L.; Zhang, X. Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases. J. Autoimmun. 2017, 83, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Rogier, R.; Koenders, M.I.; Abdollahi-Roodsaz, S. Toll-like receptor mediated modulation of T cell response by commensal intestinal microbiota as a trigger for autoimmune arthritis. J. Immunol. Res. 2015, 2015, 527696. [Google Scholar] [CrossRef]
- Huo, S.; Lv, K.; Han, L.; Zhao, Y.; Jiang, J. Gut microbiota in gastric cancer: From pathogenesis to precision medicine. Front. Microbiol. 2025, 16, 1606924. [Google Scholar] [CrossRef]
- Rajilic-Stojanovic, M.; Figueiredo, C.; Smet, A.; Hansen, R.; Kupcinskas, J.; Rokkas, T.; Andersen, L.; Machado, J.C.; Ianiro, G.; Gasbarrini, A.; et al. Systematic review: Gastric microbiota in health and disease. Aliment. Pharmacol. Ther. 2020, 51, 582–602. [Google Scholar] [CrossRef]
- Ferreira, R.M.; Pereira-Marques, J.; Pinto-Ribeiro, I.; Costa, J.L.; Carneiro, F.; Machado, J.C.; Figueiredo, C. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 2018, 67, 226–236. [Google Scholar] [CrossRef]
- Oksanen, A.M.; Haimila, K.E.; Rautelin, H.I.; Partanen, J.A. Immunogenetic characteristics of patients with autoimmune gastritis. World J. Gastroenterol. 2010, 16, 354–358. [Google Scholar] [CrossRef]
- Brorsson, C.A.; Pociot, F. Shared Genetic Basis for Type 1 Diabetes, Islet Autoantibodies, and Autoantibodies Associated with Other Immune-Mediated Diseases in Families with Type 1 Diabetes. Diabetes Care 2015, 38 (Suppl. S2), S8–S13. [Google Scholar] [CrossRef]
- Cellini, M.; Santaguida, M.G.; Virili, C.; Capriello, S.; Brusca, N.; Gargano, L.; Centanni, M. Hashimoto’s Thyroiditis and Autoimmune Gastritis. Front. Endocrinol. 2017, 8, 92. [Google Scholar] [CrossRef]
- Boutzios, G.; Koukoulioti, E.; Goules, A.V.; Kalliakmanis, I.; Giovannopoulos, I.; Vlachoyiannopoulos, P.; Moutsopoulos, H.M.; Tzioufas, A.G. Hashimoto Thyroiditis, Anti-Parietal Cell Antibodies: Associations with Autoimmune Diseases and Malignancies. Front. Endocrinol. 2022, 13, 860880. [Google Scholar] [CrossRef] [PubMed]
- De Block, C.E.; De Leeuw, I.H.; Van Gaal, L.F. Autoimmune gastritis in type 1 diabetes: A clinically oriented review. J. Clin. Endocrinol. Metab. 2008, 93, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Massironi, S.; Dispinzieri, G.; Rossi, A.; Cristoferi, L.; Lenti, M.V.; Gerussi, A.; Elvevi, A.; Carbone, M.; Bonfichi, A.; Di Sabatino, A.; et al. Immunological and clinical overlap between autoimmune gastritis and autoimmune liver diseases: A prospective cohort study. Front. Immunol. 2025, 16, 1628478. [Google Scholar] [CrossRef] [PubMed]
- Lahner, E.; Zagari, R.M.; Zullo, A.; Di Sabatino, A.; Meggio, A.; Cesaro, P.; Lenti, M.V.; Annibale, B.; Corazza, G.R. Chronic atrophic gastritis: Natural history, diagnosis and therapeutic management. A position paper by the Italian Society of Hospital Gastroenterologists and Digestive Endoscopists [AIGO], the Italian Society of Digestive Endoscopy [SIED], the Italian Society of Gastroenterology [SIGE], and the Italian Society of Internal Medicine [SIMI]. Dig. Liver Dis. 2019, 51, 1621–1632. [Google Scholar] [CrossRef] [PubMed]
- Lenti, M.V.; Broglio, G.; Di Sabatino, A. Unravelling the risk of developing gastric cancer in autoimmune gastritis. Gut 2023, 72, 1429–1430. [Google Scholar] [CrossRef]
- Toh, B.H.; Alderuccio, F. Pernicious anaemia. Autoimmunity 2004, 37, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Rogez, J.; Urbanski, G.; Vinatier, E.; Lavigne, C.; Emmanuel, L.; Dupin, I.; Ravaiau, C.; Lacombe, V. Iron deficiency in pernicious anemia: Specific features of iron deficient patients and preliminary data on response to iron supplementation. Clin. Nutr. 2024, 43, 1025–1032. [Google Scholar] [CrossRef]
- Cavalcoli, F.; Zilli, A.; Conte, D.; Massironi, S. Micronutrient deficiencies in patients with chronic atrophic autoimmune gastritis: A review. World J. Gastroenterol. 2017, 23, 563–572. [Google Scholar] [CrossRef]
- Chen, C.; Yang, Y.; Li, P.; Hu, H. Incidence of Gastric Neoplasms Arising from Autoimmune Metaplastic Atrophic Gastritis: A Systematic Review and Case Reports. J. Clin. Med. 2023, 12, 1062. [Google Scholar] [CrossRef]
- Dell’UNto, E.; Mandair, D.; Riding, G.; Rimondi, A.; Rinzivillo, M.; Esposito, G.; Luong, T.V.; Lahner, E.; Watkins, J.; Annibale, B.; et al. The indolent nature of type 1 gastric neuroendocrine tumors under 1 cm. Dig. Liver Dis. 2025. ahead of print. [Google Scholar] [CrossRef]
- Massironi, S.; Zilli, A.; Fanetti, I.; Ciafardini, C.; Conte, D.; Peracchi, M. Intermittent treatment of recurrent type-1 gastric carcinoids with somatostatin analogues in patients with chronic autoimmune atrophic gastritis. Dig. Liver Dis. 2015, 47, 978–983. [Google Scholar] [CrossRef]
- Merola, E.; Sbrozzi-Vanni, A.; Panzuto, F.; D’aMbra, G.; Di Giulio, E.; Pilozzi, E.; Capurso, G.; Lahner, E.; Bordi, C.; Annibale, B.; et al. Type I gastric carcinoids: A prospective study on endoscopic management and recurrence rate. Neuroendocrinology 2012, 95, 207–213. [Google Scholar] [CrossRef]
- Lahner, E.; Annibale, B.; Dilaghi, E.; Millado, C.L.; Lenti, M.V.; Di Sabatino, A.; Miceli, E.; Massironi, S.; Zucchini, N.; Cannizzaro, R.; et al. Clinical and Endoscopic-Histological Features of Multifocal and Corpus-Restricted Atrophic Gastritis Patients with Non-Cardia Gastric Cancer or Dysplasia: A Multicenter, Cross-Sectional Study. Clin. Transl. Gastroenterol. 2025, 16, e00862. [Google Scholar] [CrossRef]
- Rugge, M.; Bricca, L.; Guzzinati, S.; Sacchi, D.; Pizzi, M.; Savarino, E.; Farinati, F.; Zorzi, M.; Fassan, M.; Tos, A.P.D.; et al. Autoimmune gastritis: Long-term natural history in naïve Helicobacter pylori-negative patients. Gut 2023, 72, 30–38. [Google Scholar] [CrossRef]
- Esposito, G.; Dilaghi, E.; Cazzato, M.; Pilozzi, E.; Conti, L.; Carabotti, M.; Di Giulio, E.; Annibale, B.; Lahner, E. Endoscopic surveillance at 3 years after diagnosis, according to European guidelines, seems safe in patients with atrophic gastritis in a low-risk region. Dig. Liver Dis. 2021, 53, 467–473. [Google Scholar] [CrossRef]
- Boyce, M.; van den Berg, F.; Mitchell, T.; Darwin, K.; Warrington, S. Randomised trial of the effect of a gastrin/CCK2 receptor antagonist on esomeprazole-induced hypergastrinaemia: Evidence against rebound hyperacidity. Eur. J. Clin. Pharmacol. 2017, 73, 129–139. [Google Scholar] [CrossRef]
- Kidd, M.; Siddique, Z.-L.; Drozdov, I.; Gustafsson, B.; Camp, R.; Black, J.; Boyce, M.; Modlin, I. The CCK(2) receptor antagonist, YF476, inhibits Mastomys ECL cell hyperplasia and gastric carcinoid tumor development. Regul. Pept. 2010, 162, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Shi, Y.; Dai, S.; Deng, M.; Zhu, K.; Xu, Y.; Chen, Z.; Xu, Z.; Zhang, T.; Liang, S. The role of MAPK pathway in gastric cancer: Unveiling molecular crosstalk and therapeutic prospects. J. Transl. Med. 2024, 22, 1142. [Google Scholar] [CrossRef] [PubMed]
- Gharibi, T.; Babaloo, Z.; Hosseini, A.; Abdollahpour-Alitappeh, M.; Hashemi, V.; Marofi, F.; Nejati, K.; Baradaran, B. Targeting STAT3 in cancer and autoimmune diseases. Eur. J. Pharmacol. 2020, 878, 173107. [Google Scholar] [CrossRef] [PubMed]
- Deka, D.; D’Incà, R.; Sturniolo, G.C.; Das, A.; Pathak, S.; Banerjee, A. Role of ER Stress Mediated Unfolded Protein Responses and ER Stress Inhibitors in the Pathogenesis of Inflammatory Bowel Disease. Dig. Dis. Sci. 2022, 67, 5392–5406. [Google Scholar] [CrossRef]
- Zhao, J.; Hao, S.; Chen, Y.; Ye, X.; Fang, P.; Hu, H. Tauroursodeoxycholic acid liposome alleviates DSS-induced ulcerative colitis through restoring intestinal barrier and gut microbiota. Colloids Surf. B Biointerfaces 2024, 236, 113798. [Google Scholar]
- Pan, D.; Wang, J.; Ye, H.; Qin, Y.; Xu, S.; Ye, G.; Shen, H. Tauroursodeoxycholic acid suppresses biliary epithelial cell apoptosis and endoplasmic reticulum stress by miR-107/NCK1 axis in a FXR-dependent manner. Drug Chem. Toxicol. 2024, 47, 839–847. [Google Scholar] [CrossRef]
- Lamm, V.; Deng, R.; Huang, K.; Soleymanjahi, S.; Liu, T.-C.; Xie, Y.; Gremida, A.K.; Deepak, P.; Chen, C.-H.; Davidson, N.O.; et al. Tauroursodeoxycholic Acid (TUDCA) Reduces ER Stress and Lessens Disease Activity in Ulcerative Colitis. medRxiv 2025. [Google Scholar] [CrossRef]
- Lee, H.; Lim, J.W.; Kim, H. Effect of Astaxanthin on Activation of Autophagy and Inhibition of Apoptosis in Helicobacter pylori-Infected Gastric Epithelial Cell Line AGS. Nutrients 2020, 12, 1750. [Google Scholar] [CrossRef]
- McQuaid, S.L.; Loughran, S.T.; Power, P.A.; Maguire, P.; Szczygiel, A.; Johnson, P.A. Low-dose IL-2 induces CD56(bright) NK regulation of T cells via NKp44 and NKp46. Clin. Exp. Immunol. 2020, 200, 228–241. [Google Scholar] [CrossRef]
- Amoroso, C.; Perillo, F.; Strati, F.; Fantini, M.C.; Caprioli, F.; Facciotti, F. The Role of Gut Microbiota Biomodulators on Mucosal Immunity and Intestinal Inflammation. Cells 2020, 9, 1234. [Google Scholar] [CrossRef]
- Dottori, L.; Pivetta, G.; Annibale, B.; Lahner, E. Update on Serum Biomarkers in Autoimmune Atrophic Gastritis. Clin. Chem. 2023, 69, 1114–1131. [Google Scholar] [CrossRef] [PubMed]
- Nehme, F.; Rowe, K.; Palko, W.; Tofteland, N.; Salyers, W. Autoimmune metaplastic atrophic gastritis and association with neuroendocrine tumors of the stomach. Clin. J. Gastroenterol. 2020, 13, 299–307. [Google Scholar]
- Lv, Y.; Chen, C.; Han, M.; Tian, C.; Song, F.; Feng, S.; Xu, M.; Zhao, Z.; Zhou, H.; Su, W.; et al. CXCL2: A key player in the tumor microenvironment and inflammatory diseases. Cancer Cell Int. 2025, 25, 133. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Song, C.; Wu, L.; Zhang, Q.; Hou, D.; Chen, P.; Yu, S.; Wang, Z.; Chu, Y.; Zhang, J.; et al. Netrin-4 as a biomarker promotes cell proliferation and invasion in gastric cancer. Oncotarget 2015, 6, 9794–9806. [Google Scholar] [CrossRef] [PubMed]
- Pandian, J.; Ganesan, K. Delineation of gastric tumors with activated ERK/MAPK signaling cascades for the development of targeted therapeutics. Exp. Cell Res. 2022, 410, 112956. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Chen, G.-S.; Shao, Y.; Li, X.-L.; Xu, H.-C.; Zhang, H.; Zhu, G.-Q.; Zhou, Y.-C.; He, X.-P.; Sun, W.-H. Gastrin acting on the cholecystokinin2 receptor induces cyclooxygenase-2 expression through JAK2/STAT3/PI3K/Akt pathway in human gastric cancer cells. Cancer Lett. 2013, 332, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Morgos, D.-T.; Stefani, C.; Miricescu, D.; Greabu, M.; Stanciu, S.; Nica, S.; Stanescu-Spinu, I.-I.; Balan, D.G.; Balcangiu-Stroescu, A.-E.; Coculescu, E.-C.; et al. Targeting PI3K/AKT/mTOR and MAPK Signaling Pathways in Gastric Cancer. Int. J. Mol. Sci. 2024, 25, 1848. [Google Scholar] [CrossRef] [PubMed]
- Chipurupalli, S.; Samavedam, U.; Robinson, N. Crosstalk Between ER Stress, Autophagy and Inflammation. Front. Med. 2021, 8, 758311. [Google Scholar] [CrossRef] [PubMed]
Molecular Pathway | Stimuli/Trigger | Primary Cellular Outcome | Relevance to AIG Pathogenesis |
---|---|---|---|
ERK/MAPK | Gastrin via CCK2R | ECL proliferation | Promotes hyperplasia and neoplastic risk |
PI3K/Akt | Gastrin, growth factors | Enhanced survival, anti-apoptosis | Maintains expanded ECL pool |
STAT3 | Cytokines, PI3K/Akt crosstalk | Proliferation, angiogenesis | Facilitates gNEN progression |
PERK–CHOP (ER stress) | Inflammation, misfolded proteins | Parietal cell apoptosis | Links immune attack to cell loss |
Fas/FasL | T-cell/NK engagement | Caspase-8–mediated apoptosis | Direct parietal cytotoxicity |
Autophagy | Stress, nutrient deprivation | Organelle clearance | Normally protective; impaired in AIG |
TLR signaling | Microbial PAMPs | Innate immune activation | Perpetuates mucosal inflammation |
Strategy | Target/Mechanism | Current Status |
---|---|---|
Vitamin B12 supplementation | Corrects anemia | Clinical standard |
Netazepide (CCK2R antagonist) | Blocks gastrin-driven ECL hyperplasia | Clinical trials completed |
ER stress modulators (e.g., TUDCA) | Reduce parietal cell apoptosis | Preclinical |
Autophagy enhancers | Promote epithelial resilience | Preclinical |
Immunomodulators (e.g., Treg therapies) | Restore tolerance | Theoretical |
Microbiome modulation | Correct dysbiosis | Preclinical/theoretical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massironi, S.; Oriani, E.; Dell’Anna, G.; Danese, S.; Facciotti, F. The Autoimmune Gastritis Puzzle: Emerging Cellular Crosstalk and Molecular Pathways Driving Parietal Cell Loss and ECL Cell Hyperplasia. Cells 2025, 14, 1576. https://doi.org/10.3390/cells14201576
Massironi S, Oriani E, Dell’Anna G, Danese S, Facciotti F. The Autoimmune Gastritis Puzzle: Emerging Cellular Crosstalk and Molecular Pathways Driving Parietal Cell Loss and ECL Cell Hyperplasia. Cells. 2025; 14(20):1576. https://doi.org/10.3390/cells14201576
Chicago/Turabian StyleMassironi, Sara, Elena Oriani, Giuseppe Dell’Anna, Silvio Danese, and Federica Facciotti. 2025. "The Autoimmune Gastritis Puzzle: Emerging Cellular Crosstalk and Molecular Pathways Driving Parietal Cell Loss and ECL Cell Hyperplasia" Cells 14, no. 20: 1576. https://doi.org/10.3390/cells14201576
APA StyleMassironi, S., Oriani, E., Dell’Anna, G., Danese, S., & Facciotti, F. (2025). The Autoimmune Gastritis Puzzle: Emerging Cellular Crosstalk and Molecular Pathways Driving Parietal Cell Loss and ECL Cell Hyperplasia. Cells, 14(20), 1576. https://doi.org/10.3390/cells14201576