Biomarker-Based Pharmacological Characterization of ENX-102, a Novel α2/3/5 Subtype-Selective GABAA Receptor Positive Allo-Steric Modulator: Translational Insights from Rodent and Human Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. In Vitro Experiments
2.2. In Vivo Experiments in Rats
2.2.1. Elevated Plus Maze
2.2.2. Quantitative EEG
2.2.3. Sleep Analysis
2.3. Multiple Ascending Dose (MAD) Study in Healthy Human Participants
2.3.1. Study Design
2.3.2. Study Population
2.3.3. Participant Disposition and Demographics
2.3.4. Dosing Scheme
2.3.5. Safety Assessments
2.3.6. Pharmacokinetic Assessments
2.3.7. Pharmacodynamic (PD) Assessments
NeuroCart CNS Test Battery
Quantitative EEG
2.4. Statistical Analyses
2.4.1. In Vivo Experiments in Rats: EPM, qEEG, and Sleep Analysis
2.4.2. MAD in Humans: Safety, PK, and PD Analyses
3. Results
3.1. In Vitro Experiments
3.2. In Vivo Experiments in Rats
3.2.1. Elevated Plus Maze
3.2.2. Quantitative EEG
3.2.3. Sleep Architecture
3.2.4. Pharmacokinetics
3.3. Multiple Ascending Dose (MAD) Study in Healthy Human Participants
3.3.1. Safety
3.3.2. Pharmacokinetics (PK)
3.3.3. Pharmacodynamic (PD) Effects
3.3.4. Quantitative EEG
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
α | Alpha |
β | Beta |
δ | Delta |
γ | Gamma |
θ | Theta |
AE | Adverse Event |
ANCOVA | Analysis of Covariance |
AUC | Area Under the Curve |
BMI | Body Mass Index |
CHDR | Centre for Human Drug Research |
CNS | Central Nervous System |
Cmax | Maximum Plasma Concentration |
Ctrough | Trough Plasma Concentration |
CV | Coefficent of Variation |
EEG | Electroencephalography |
EC50 | Half Maximal Effective Concentration |
Emax | Maximum Effect |
EPM | Elevated Plus Maze |
Fz-Cz | Fronto-Central EEG electrode region |
GABA | Gamma-Aminobutyric Acid |
GABAAR | GABAA Receptor |
HED | Human Equivalent Dose |
ICH GCP | International Conference on Harmonisation—Good Clinical Practise |
i.p. | Intraperitoneal |
MAD | Multiple Ascending Dose |
MoA | Mechanism of Aciton |
MOAA/S | Modified Observer’s Assessment of Alertness/Sedation |
NREM | Non-Rapid Eye Movement |
PAM | Positive Allosteric Modulator |
PBPK | Physiologically Based Pharmacokinetic |
PD | Pharmacodynamic |
PK | Pharmacokinetic |
qEEG | Quantitative EEG |
Rac | Accumulation Ratio |
REM | Rapid Eye Movement |
SAD | Single Ascending Dose |
SAEs | Serious Adverse Events |
SD | Sprangue Dawley (Rats) |
SEM | Standard Error of the Mean |
SPV | Saccadic Peak Velocity |
SRT | Saccadic Reaction Time |
Tmax | Time to Maximum Concentration |
T1/2 | Elimination Half-life |
VAS | Visual Analogue Scale |
Vz/F | Apparaent Volume of Distribution |
VVLT | Visual Verbal Learning Task |
WMO | Dutch Act on Medical Research Involving Human Subjects “Wet medisch-wetenschappelijk onderzoek met mensen” |
Appendix A
Appendix A.1
Appendix A.2
Appendix A.3
Appendix B
- Results in death;
- Is life threatening;NOTE: The term “life-threatening” in the definition of “serious” refers to an event in which the subject was at risk of death at the time of the event; it does not refer to an event which hypothetically might have caused death if it were more severe.
- Requires inpatient hospitalization or prolongation of existing hospitalization;
- Results in persistent or significant disability/incapacity;
- Is a congenital anomaly/birth defect;
- Important medical events that may not result in death, be life-threatening, or require hospitalization may be considered serious when, based on appropriate medical judgment, they may jeopardize the subject and may require medical or surgical intervention to prevent one of the outcomes listed in this definition. Examples of such medical events include allergic bronchospasm requiring intensive treatment in an emergency room or at home, blood dyscrasias or convulsions that do not result in subject hospitalization, or the development of study drug dependency or drug abuse.
Appendix C
Appendix C.1. Eye Movements
Appendix C.2. Adaptive Tracking
Appendix C.3. Pupillometry
Appendix C.4. Body Sway
Appendix C.5. Bond and Lader Visual Analog Scale
Appendix C.6. Visual Verbal Learning Task
Appendix D
References
- Bormann, J. The ‘ABC’ of GABA Receptors. Trends Pharmacol. Sci. 2000, 21, 16–19. [Google Scholar] [CrossRef]
- Calhoon, G.G.; Tye, K.M. Resolving the Neural Circuits of Anxiety. Nat. Neurosci. 2015, 18, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Williamson, J.B.; Jaffee, M.S.; Jorge, R.E. Posttraumatic Stress Disorder and Anxiety-Related Conditions. Contin. Lifelong Learn. Neurol. 2021, 27, 1738–1763. [Google Scholar] [CrossRef] [PubMed]
- Barnard, E.A.; Skolnick, P.; Olsen, R.W.; Mohler, H.; Sieghart, W.; Biggio, G.; Braestrup, C.; Bateson, A.N.; Langer, S.Z. International Union of Pharmacology. XV. Subtypes of Gamma-Aminobutyric AcidA Receptors: Classification on the Basis of Subunit Structure and Receptor Function. Pharmacol. Rev. 1998, 50, 291–313. [Google Scholar] [CrossRef]
- Bonin, R.P.; Orser, B.A. GABAA Receptor Subtypes Underlying General Anesthesia. Pharmacol. Biochem. Behav. 2008, 90, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, A.; Shen, K.; Gottlieb, A.; Limon, A. Human Brain Transcriptome Analysis Finds Region- and Subject-Specific Expression Signatures of GABAAR Subunits. Commun. Biol. 2019, 2, 153. [Google Scholar] [CrossRef]
- Song, J.J.; Curtis, M.A.; Faull, R.L.M.; Waldvogel, H.J. The Regional and Cellular Distribution of GABAA Receptor Subunits in the Human Amygdala. J. Chem. Neuroanat. 2022, 126, 102185. [Google Scholar] [CrossRef]
- Collinson, N.; Kuenzi, F.M.; Jarolimek, W.; Maubach, K.A.; Cothliff, R.; Sur, C.; Smith, A.; Otu, F.M.; Howell, O.; Atack, J.R.; et al. Enhanced Learning and Memory and Altered GABAergic Synaptic Transmission in Mice Lacking the A5 Subunit of the GABA A Receptor. J. Neurosci. 2002, 22, 5572–5580. [Google Scholar] [CrossRef]
- Jacob, T.C. Neurobiology and Therapeutic Potential of A5-GABA Type A Receptors. Front. Mol. Neurosci. 2019, 12, 179. [Google Scholar] [CrossRef]
- Hu, X.; Rocco, B.R.; Fee, C.; Sibille, E. Cell Type-Specific Gene Expression of Alpha 5 Subunit-Containing Gamma-Aminobutyric Acid Subtype A Receptors in Human and Mouse Frontal Cortex. Complex. Psychiatry 2018, 4, 204–215. [Google Scholar] [CrossRef]
- Edwards, Z.; Preuss, C.V. GABA Receptor Positive Allosteric Modulators; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Serrats, J.; Vadodaria, K.C.; Brubaker, W.; Barker-Haliski, M.; White, H.S.; Evrard, A.; Roucard, C.; Taylor, E.; Vanover, K.E.; Cunningham, S.; et al. ENX−101, a GABAA Receptor A2,3,5-selective Positive Allosteric Modulator, Displays Antiseizure Effects in Rodent Seizure and Epilepsy Models. Epilepsia 2025, 66, 2124–2136. [Google Scholar] [CrossRef]
- MacLean, A.; Chappell, A.S.; Kranzler, J.; Evrard, A.; Monchal, H.; Roucard, C. BAER-101, a Selective Potentiator of A2- and A3-containing GABA A Receptors, Fully Suppresses Spontaneous Cortical Spike-wave Discharges in Genetic Absence Epilepsy Rats from Strasbourg (GAERS). Drug Dev. Res. 2024, 85, e22160. [Google Scholar] [CrossRef]
- Monti, J.M.; Spence, D.W.; Buttoo, K.; Pandi-Perumal, S.R. Zolpidem’s Use for Insomnia. Asian J. Psychiatr. 2017, 25, 79–90. [Google Scholar] [CrossRef]
- Nickolls, S.A.; Gurrell, R.; van Amerongen, G.; Kammonen, J.; Cao, L.; Brown, A.R.; Stead, C.; Mead, A.; Watson, C.; Hsu, C.; et al. Pharmacology in Translation: The Preclinical and Early Clinical Profile of the Novel A2/3 Functionally Selective GABA(A) Receptor Positive Allosteric Modulator PF-06372865. Br. J. Pharmacol. 2018, 175, 708–725. [Google Scholar] [CrossRef]
- Chen, X.; Jacobs, G.; de Kam, M.L.; Jaeger, J.; Lappalainen, J.; Maruff, P.; Smith, M.A.; Cross, A.J.; Cohen, A.; van Gerven, J. AZD6280, a Novel Partial γ-Aminobutyric Acid A Receptor Modulator, Demonstrates a Pharmacodynamically Selective Effect Profile in Healthy Male Volunteers. J. Clin. Psychopharmacol. 2015, 35, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jacobs, G.; de Kam, M.; Jaeger, J.; Lappalainen, J.; Maruff, P.; Smith, M.A.; Cross, A.J.; Cohen, A.; van Gerven, J. The Central Nervous System Effects of the Partial GABA-Aα2,3 -Selective Receptor Modulator AZD7325 in Comparison with Lorazepam in Healthy Males. Br. J. Clin. Pharmacol. 2014, 78, 1298–1314. [Google Scholar] [CrossRef] [PubMed]
- De Haas, S.; Franson, K.; Schmitt, J.; Cohen, A.; Fau, J.; Dubruc, C.; van Gerven, J. The Pharmacokinetic and Pharmacodynamic Effects of SL65.1498, a GABA-A 2,3 Selective Agonist, in Comparison with Lorazepam in Healthy Volunteers. J. Psychopharmacol. 2009, 23, 625–632. [Google Scholar] [CrossRef]
- Zuiker, R.G.; Chen, X.; Østerberg, O.; Mirza, N.R.; Muglia, P.; de Kam, M.; Klaassen, E.S.; van Gerven, J.M. NS11821, a Partial Subtype-Selective GABAA Agonist, Elicits Selective Effects on the Central Nervous System in Randomized Controlled Trial with Healthy Subjects. J. Psychopharmacol. 2016, 30, 253–262. [Google Scholar] [CrossRef]
- Morales, M.; Varlinskaya, E.I.; Spear, L.P. Anxiolytic Effects of the GABA(A) Receptor Partial Agonist, L-838,417: Impact of Age, Test Context Familiarity, and Stress. Pharmacol. Biochem. Behav. 2013, 109, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, M.; Kordás, K.S.; Gravius, A.; Bölcskei, K.; Parsons, C.G.; Dekundy, A.; Danysz, W.; Dézsi, L.; Wittko-Schneider, I.M.; Sághy, K.; et al. Assessment of the Effects of NS11394 and L-838417, A2/3 Subunit-Selective GABAA Receptor-Positive Allosteric Modulators, in Tests for Pain, Anxiety, Memory and Motor Function. Behav. Pharmacol. 2012, 23, 790–801. [Google Scholar] [CrossRef]
- Atack, J.R.; Wafford, K.A.; Tye, S.J.; Cook, S.M.; Sohal, B.; Pike, A.; Sur, C.; Melillo, D.; Bristow, L.; Bromidge, F.; et al. TPA023 [7-(1,1-Dimethylethyl)-6-(2-Ethyl-2 H-1,2,4-Triazol-3-Ylmethoxy)-3-(2-Fluorophenyl)-1,2,4-Triazolo[4,3-b]Pyridazine], an Agonist Selective for A2- and A3-Containing GABA A Receptors, Is a Nonsedating Anxiolytic in Rodents and Primates. J. Pharmacol. Exp. Ther. 2006, 316, 410–422. [Google Scholar] [CrossRef]
- De Haas, S.L.; de Visser, S.J.; van der Post, J.P.; de Smet, M.; Schoemaker, R.C.; Rijnbeek, B.; Cohen, A.F.; Vega, J.M.; Agrawal, N.G.B.; Goel, T.V.; et al. Pharmacodynamic and Pharmacokinetic Effects of TPA023, a GABAA α2,3 Subtype-Selective Agonist, Compared to Lorazepam and Placebo in Healthy Volunteers. J. Psychopharmacol. 2007, 21, 374–383. [Google Scholar] [CrossRef]
- Atack, J.; Hallett, D.; Tye, S.; Wafford, K.; Ryan, C.; Sanabria-Bohórquez, S.; Eng, W.; Gibson, R.; Burns, H.; Dawson, G.; et al. Preclinical and Clinical Pharmacology of TPA023B, a GABAA Receptor A2/A3 Subtype-Selective Partial Agonist. J. Psychopharmacol. 2011, 25, 329–344. [Google Scholar] [CrossRef]
- Van Laere, K.; Bormans, G.; Sanabria-Bohórquez, S.M.; de Groot, T.; Dupont, P.; De Lepeleire, I.; de Hoon, J.; Mortelmans, L.; Hargreaves, R.J.; Atack, J.R.; et al. In Vivo Characterization and Dynamic Receptor Occupancy Imaging of TPA023B, an A2/A3/A5 Subtype Selective γ-Aminobutyric Acid–A Partial Agonist. Biol. Psychiatry 2008, 64, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Groeneveld, G.J.; Hay, J.L.; Van Gerven, J.M. Measuring Blood–Brain Barrier Penetration Using the NeuroCart, a CNS Test Battery. Drug Discov. Today Technol. 2016, 20, 27–34. [Google Scholar] [CrossRef]
- Van Steveninck, A.L.; Schoemaker, H.C.; Pieters, M.S.M.; Kroon, R.; Breimer, D.D.; Cohen, A.F. A Comparison of the Sensitivities of Adaptive Tracking, Eye Movement Analysis, and Visual Analog Lines to the Effects of Incremental Doses of Temazepam in Healthy Volunteers. Clin. Pharmacol. Ther. 1991, 50, 172–180. [Google Scholar] [CrossRef]
- Amerongen, G.V. Integrated Assessment of Neurocognitive, Neurophysiological and Pain Processing in Early Clinical Drug Development. Ph.D. Thesis, Leiden University, Leiden, The Netherlands, 2020. [Google Scholar]
- Chen, X.; Broeyer, F.; de Kam, M.; Baas, J.; Cohen, A.; van Gerven, J. Pharmacodynamic Response Profiles of Anxiolytic and Sedative Drugs. Br. J. Clin. Pharmacol. 2017, 83, 1028–1038. [Google Scholar] [CrossRef]
- Jobert, M.; Wilson, F.J.; Ruigt, G.S.F.; Brunovsky, M.; Prichep, L.S.; Drinkenburg, W.H.I.M. Guidelines for the Recording and Evaluation of Pharmaco-EEG Data in Man: The International Pharmaco-EEG Society (IPEG). Neuropsychobiology 2012, 66, 201–220. [Google Scholar] [CrossRef] [PubMed]
- Seifert, H.A.; Blouin, R.T.; Conard, P.F.; Gross, J.B. Sedative Doses of Propofol Increase Beta Activity of the Processed Electroencephalogram. Anesth. Analg. 1993, 76, 976–978. [Google Scholar] [CrossRef]
- Link, C.; Leigh, T.; Fell, G. Effects of Granisetron and Lorazepam, Alone and in Combination, on the EEG of Human Volunteers. Br. J. Clin. Pharmacol. 1991, 31, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Link, C.; Leigh, T.; Dennison, J. The Effects of BRL 46470A, a Novel 5-HT3 Receptor Antagonist, and Lorazepam on Psychometric Performance and the EEG. Br. J. Clin. Pharmacol. 1993, 35, 395–399. [Google Scholar] [CrossRef]
- Breimer, L.T.M.; Hennis, P.J.; Burm, A.G.L.; Danhof, M.; Bovill, J.G.; Spierdijk, J.; Vletter, A.A. Quantification of the EEG Effect of Midazolam by Aperiodic Analysis in Volunteers. Clin. Pharmacokinet. 1990, 18, 245–253. [Google Scholar] [CrossRef]
- De Visser, S.J.; Van Der Post, J.P.; De Waal, P.P.; Cornet, F.; Cohen, A.F.; Van Gerven, J.M.A. Biomarkers for the Effects of Benzodiazepines in Healthy Volunteers. Br. J. Clin. Pharmacol. 2003, 55, 39–50. [Google Scholar] [CrossRef]
- Yamakura, T.; Bertaccini, E.; Trudell, J.R.; Harris, R.A. Anesthetics and Ion Channels: Molecular Models and Sites of Action. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 23–51. [Google Scholar] [CrossRef]
- Purdon, P.L.; Pierce, E.T.; Mukamel, E.A.; Prerau, M.J.; Walsh, J.L.; Wong, K.F.K.; Salazar-Gomez, A.F.; Harrell, P.G.; Sampson, A.L.; Cimenser, A.; et al. Electroencephalogram Signatures of Loss and Recovery of Consciousness from Propofol. Proc. Natl. Acad. Sci. USA 2013, 110, E1142–E1151. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.; Bruno, M.-A.; Riedner, B.A.; Boveroux, P.; Noirhomme, Q.; Landsness, E.C.; Brichant, J.-F.; Phillips, C.; Massimini, M.; Laureys, S.; et al. Propofol Anesthesia and Sleep: A High-Density EEG Study. Sleep 2011, 34, 283–291. [Google Scholar] [CrossRef]
- Uygun, D.S.; Basheer, R. Circuits and Components of Delta Wave Regulation. Brain Res. Bull. 2022, 188, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Purdon, P.L.; Sampson, A.; Pavone, K.J.; Brown, E.N. Clinical Electroencephalography for Anesthesiologists. Anesthesiology 2015, 123, 937–960. [Google Scholar] [CrossRef]
- Xi, C.; Sun, S.; Pan, C.; Ji, F.; Cui, X.; Li, T. Different Effects of Propofol and Dexmedetomidine Sedation on Electroencephalogram Patterns: Wakefulness, Moderate Sedation, Deep Sedation and Recovery. PLoS ONE 2018, 13, e0199120. [Google Scholar] [CrossRef] [PubMed]
- Veselis, R.A.; Reinsel, R.; Alagesan, R.; Heino, R.; Bedford, R.F. The EEC as a Monitor of Midazolam Amnesia. Anesthesiology 1991, 74, 866–874. [Google Scholar] [CrossRef]
- Dias, R.; Sheppard, W.F.A.; Fradley, R.L.; Garrett, E.M.; Stanley, J.L.; Tye, S.J.; Goodacre, S.; Lincoln, R.J.; Cook, S.M.; Conley, R.; et al. Evidence for a Significant Role of A3-Containing GABAA Receptors in Mediating the Anxiolytic Effects of Benzodiazepines. J. Neurosci. 2005, 25, 10682–10688. [Google Scholar] [CrossRef] [PubMed]
- Christian, E.P.; Snyder, D.H.; Song, W.; Gurley, D.A.; Smolka, J.; Maier, D.L.; Ding, M.; Gharahdaghi, F.; Liu, X.F.; Chopra, M.; et al. EEG-β/γ Spectral Power Elevation in Rat: A Translatable Biomarker Elicited by GABAAα2/3-Positive Allosteric Modulators at Nonsedating Anxiolytic Doses. J. Neurophysiol. 2015, 113, 116–131. [Google Scholar] [CrossRef] [PubMed]
- Visser, S.A.G.; Wolters, F.L.C.; van der Graaf, P.H.; Peletier, L.A.; Danhof, M. Dose-Dependent EEG Effects of Zolpidem Provide Evidence for GABAA Receptor Subtype Selectivity in Vivo. J. Pharmacol. Exp. Ther. 2003, 304, 1251–1257. [Google Scholar] [CrossRef]
- Pellow, S.; Chopin, P.; File, S.E.; Briley, M. Validation of Open: Closed Arm Entries in an Elevated plus-Maze as a Measure of Anxiety in the Rat. J. Neurosci. Methods 1985, 14, 149–167. [Google Scholar] [CrossRef]
- Hogg, S. A Review of the Validity and Variability of the Elevated Plus-Maze as an Animal Model of Anxiety. Pharmacol. Biochem. Behav. 1996, 54, 21–30. [Google Scholar] [CrossRef]
- Brett, R.R.; Pratt, J.A. Chronic Handling Modifies the Anxiolytic Effect of Diazepam in the Elevated Plus-Maze. Eur. J. Pharmacol. 1990, 178, 135–138. [Google Scholar] [CrossRef]
- Sandra, E. Chronic Diazepam Treatment: Effect of Dose on Development of Tolerance and Incidence of Withdrawal in an Animal Test of Anxiety. Hum. Psychopharmacol. Clin. Exp. 1989, 4, 59–63. [Google Scholar] [CrossRef]
- Stock, H.; Foradori, C.; Ford, K.; Wilson, M.A. A Lack of Tolerance to the Anxiolytic Effects of Diazepam on the Plus-Maze: Comparison of Male and Female Rats. Psychopharmacology 2000, 147, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.; Jacob, S. A Simple Practice Guide for Dose Conversion between Animals and Human. J. Basic. Clin. Pharm. 2016, 7, 27. [Google Scholar] [CrossRef]
- Walton, N.Y.; Treiman, D.M. Lorazepam Treatment of Experimental Status Epilepticus in the Rat. Neurology 1990, 40, 990. [Google Scholar] [CrossRef]
- Vinkers, C.H.; Olivier, B. Mechanisms Underlying Tolerance after Long-Term Benzodiazepine Use: A Future for Subtype-Selective Receptor Modulators? Adv. Pharmacol. Sci. 2012, 2012, 416864. [Google Scholar] [CrossRef] [PubMed]
- Muthukumaraswamy, S.D. High-Frequency Brain Activity and Muscle Artifacts in MEG/EEG: A Review and Recommendations. Front. Hum. Neurosci. 2013, 7, 138. [Google Scholar] [CrossRef]
- Misselhorn, J.; Schwab, B.C.; Schneider, T.R.; Engel, A.K. Synchronization of Sensory Gamma Oscillations Promotes Multisensory Communication. eNeuro 2019, 6, ENEURO.0101-19.2019. [Google Scholar] [CrossRef]
- Wei, M.; Roodenrys, S. A Scoping Review on the Extent and Nature of Anxiety-Related Research within the Research Domain Criteria (RDoC) Framework: Limited Coverage Using Non-Disorder-Specific Search Terms. New Ideas Psychol. 2021, 63, 100901. [Google Scholar] [CrossRef]
- Blanco-Hinojo, L.; Pujol, J.; Macià, D.; Martínez-Vilavella, G.; Martín-Santos, R.; Pérez-Sola, V.; Deus, J. Mapping the Synchronization Effect of Gamma-Aminobutyric Acid Inhibition on the Cerebral Cortex Using Magnetic Resonance Imaging. Brain Connect. 2021, 11, 393–403. [Google Scholar] [CrossRef]
- Klautke, J.; Foster, C.; Medendorp, W.P.; Heed, T. Dynamic Spatial Coding in Parietal Cortex Mediates Tactile-Motor Transformation. Nat. Commun. 2023, 14, 4532. [Google Scholar] [CrossRef]
- Leicht, G.; Herrmann, C.S.; Mulert, C. BOLD-Response and EEG Gamma Oscillations. In EEG—fMRI; Springer International Publishing: Cham, Switzerland, 2022; pp. 641–661. [Google Scholar]
- Nickel, B.; Szelenyi, I. Comparison of Changes in the EEG of Freely Moving Rats Induced by Enciprazine, Buspirone and Diazepam. Neuropharmacology 1989, 28, 799–803. [Google Scholar] [CrossRef]
- Perna, G.; Alciati, A.; Riva, A.; Micieli, W.; Caldirola, D. Long-Term Pharmacological Treatments of Anxiety Disorders: An Updated Systematic Review. Curr. Psychiatry Rep. 2016, 18, 23. [Google Scholar] [CrossRef]
- Ivarsson, M.; Paterson, L.M.; Hutson, P.H. Antidepressants and REM Sleep in Wistar–Kyoto and Sprague–Dawley Rats. Eur. J. Pharmacol. 2005, 522, 63–71. [Google Scholar] [CrossRef]
- Parmentier-Batteur, S.; OBrien, J.A.; Doran, S.; Nguyen, S.J.; Flick, R.B.; Uslaner, J.M.; Chen, H.; Finger, E.N.; Wil-liams, T.M.; Jacobson, M.A.; et al. Differential Effects of the MGluR5 Positive Allosteric Modulator CDPPB in the Cortex and Striatum Following Repeated Administration. Neuropharmacology 2012, 62, 1453–1460. [Google Scholar] [CrossRef]
- Leiser, S.C.; Pehrson, A.L.; Robichaud, P.J.; Sanchez, C. Multimodal Antidepressant Vortioxetine Increases Frontal Cortical Oscillations Unlike Escitalopram and Duloxetine—A Quantitative EEG Study in Rats. Br. J. Pharmacol. 2014, 171, 4255–4272. [Google Scholar] [CrossRef] [PubMed]
- Leiser, S.C.; Iglesias-Bregna, D.; Westrich, L.; Pehrson, A.L.; Sanchez, C. Differentiated Effects of the Multimodal Antidepressant Vortioxetine on Sleep Architecture: Part 2, Pharmacological Interactions in Rodents Suggest a Role of Serotonin-3 Receptor Antagonism. J. Psychopharmacol. 2015, 29, 1092–1105. [Google Scholar] [CrossRef] [PubMed]
- de Haas, S.; Schoemaker, R.; van Gerven, J.; Hoever, P.; Cohen, A.; Dingemanse, J. Pharmacokinetics, Pharmacodynamics and the Pharmacokinetic/Pharmacodynamic Relationship of Zolpidem in Healthy Subjects. J. Psychopharmacol. 2010, 24, 1619–1629. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmus, M.M.; Hay, J.L.; Zuiker, R.G.; Okkerse, P.; Perdrieu, C.; Sauser, J.; Beaumont, M.; Schmitt, J.; van Gerven, J.M.; Silber, B.Y. Effects of a Single, Oral 60 Mg Caffeine Dose on Attention in Healthy Adult Subjects. J. Psychopharmacol. 2017, 31, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt, P.; Wade, P.; Smith, A.; Richens, A. Benzodiazepines Impair Smooth Pursuit Eye Movements. Br. J. Clin. Pharmacol. 1983, 15, 259–262. [Google Scholar] [CrossRef]
- Borland, R.; Nicholson, A. Visual Motor Co-ordination and Dynamic Visual Acuity. Br. J. Clin. Pharmacol. 1984, 18, 69S–72S. [Google Scholar] [CrossRef] [PubMed]
- Twa, M.D.; Bailey, M.D.; Hayes, J.; Bullimore, M. Estimation of Pupil Size by Digital Photography. J. Cataract. Refract. Surg. 2004, 30, 381–389. [Google Scholar] [CrossRef]
- Crestani, F.; Löw, K.; Keist, R.; Mandelli, M.-J.; Möhler, H.; Rudolph, U. Molecular Targets for the Myorelaxant Action of Diazepam. Mol. Pharmacol. 2001, 59, 442–445. [Google Scholar] [CrossRef] [PubMed]
- van Steveninck, A.L.; van Berckel, B.N.M.; Schoemaker, R.C.; Breimer, D.D.; van Gerven, J.M.A.; Cohen, A.F. The Sensitivity of Pharmacodynamic Tests for the Central Nervous System Effects of Drugs on the Effects of Sleep Deprivation. J. Psychopharmacol. 1999, 13, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Van Steveninck, A.L.; Gieschke, R.; Schoemaker, R.C.; Roncari, G.; Tuk, B.; Pieters, M.S.M.; Breimer, D.D.; Cohen, A.F. Pharmacokinetic and Pharmacodynamic Interactions of Bretazenil and Diazepam with Alcohol. Br. J. Clin. Pharmacol. 1996, 41, 565–573. [Google Scholar] [CrossRef]
- Norris, H. The Action of Sedatives on Brain Stem Oculomotor Systems in Man. Neuropharmacology 1971, 10, 181–191. [Google Scholar] [CrossRef]
- BOND, A.; LADER, M. The Use of Analogue Scales in Rating Subjective Feelings. Br. J. Med. Psychol. 1974, 47, 211–218. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nettesheim, P.; Vadodaria, K.C.; Vanover, K.E.; Borghans, L.G.J.M.; Arce, E.; Brubaker, W.; Cunningham, S.; Parks, S.; Serrats, J.; Sudarsan, V.; et al. Biomarker-Based Pharmacological Characterization of ENX-102, a Novel α2/3/5 Subtype-Selective GABAA Receptor Positive Allo-Steric Modulator: Translational Insights from Rodent and Human Studies. Cells 2025, 14, 1575. https://doi.org/10.3390/cells14201575
Nettesheim P, Vadodaria KC, Vanover KE, Borghans LGJM, Arce E, Brubaker W, Cunningham S, Parks S, Serrats J, Sudarsan V, et al. Biomarker-Based Pharmacological Characterization of ENX-102, a Novel α2/3/5 Subtype-Selective GABAA Receptor Positive Allo-Steric Modulator: Translational Insights from Rodent and Human Studies. Cells. 2025; 14(20):1575. https://doi.org/10.3390/cells14201575
Chicago/Turabian StyleNettesheim, Pauline, Krishna C. Vadodaria, Kimberly E. Vanover, Laura G. J. M. Borghans, Estibaliz Arce, William Brubaker, Stephen Cunningham, Stephanie Parks, Jordi Serrats, Vikram Sudarsan, and et al. 2025. "Biomarker-Based Pharmacological Characterization of ENX-102, a Novel α2/3/5 Subtype-Selective GABAA Receptor Positive Allo-Steric Modulator: Translational Insights from Rodent and Human Studies" Cells 14, no. 20: 1575. https://doi.org/10.3390/cells14201575
APA StyleNettesheim, P., Vadodaria, K. C., Vanover, K. E., Borghans, L. G. J. M., Arce, E., Brubaker, W., Cunningham, S., Parks, S., Serrats, J., Sudarsan, V., Taylor, E., Klaassen, E., Stuurman, F. E., & Jacobs, G. E. (2025). Biomarker-Based Pharmacological Characterization of ENX-102, a Novel α2/3/5 Subtype-Selective GABAA Receptor Positive Allo-Steric Modulator: Translational Insights from Rodent and Human Studies. Cells, 14(20), 1575. https://doi.org/10.3390/cells14201575