Matrix-Guided Vascular-like Cord Formation by MRC-5 Lung Fibroblasts: Evidence of Structural and Transcriptional Plasticity
Abstract
1. Introduction
2. Materials and Methods
2.1. Hydrogel
2.2. Cell Cultures and Treatments
2.3. Tube Formation Assay
2.4. Quantitative ImageJ Analysis for Angiogenic Assay
2.5. Fluorescent Staining
2.6. Cell Invasion Assay
2.7. In Vitro Cell Viability Assay
2.8. RNA Extraction and Real-Time Polymerase Chain Reaction (qPCR)
2.9. RNASeq, Gene Ontology, and Pathway Enrichment Analysis
2.10. Statistical Analysis
3. Results
3.1. Optimal Cell Number for Tube Formation Assay
3.2. In Vitro Tube Formation Reveals Different Morphological Patterns
3.3. MRC-5 Cell Cord Formation over Time
3.4. Cell Viability and Proliferation
3.5. Capillary Sprouting from Gel-Embedded Spheroid-like Aggregates
3.6. MRC-5 Cells Invade Through Matrigel Gel
3.7. Assessment of Endothelial Biomarkers in the Matrigel-Grown MRC-5 Cell Cultures
3.8. RNASeq, Gene Ontology, and Pathway Enrichment Analysis of Differentially Expressed Genes in MRC-5 Cells Expanded in Matrigel
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, G.; Gao, J.; Ding, P.; Gao, Y. The role of endothelial cell–pericyte interactions in vascularization and diseases. J. Adv. Res. 2025, 67, 269–288. [Google Scholar] [CrossRef]
- Mammoto, A.; Mammoto, T. Vascular Niche in Lung Alveolar Development, Homeostasis, and Regeneration. Front. Bioeng. Biotechnol. 2019, 7, 318. [Google Scholar] [CrossRef]
- Lang, Z.; Chen, T.; Zhu, S.; Wu, X.; Wu, Y.; Miao, X.; Wang, Q.; Zhao, L.; Zhu, Z.; Xu, R.X. Construction of vascular grafts based on tissue-engineered scaffolds. Mater. Today Bio 2024, 29, 101336. [Google Scholar] [CrossRef]
- Devillard, C.D.; Marquette, C.A. Vascular Tissue Engineering: Challenges and Requirements for an Ideal Large Scale Blood Vessel. Front. Bioeng. Biotechnol. 2021, 9, 721843. [Google Scholar] [CrossRef]
- Weinberg, C.B.; Bell, E. A blood vessel model constructed from collagen and cultured vascular cells. Science 1986, 231, 397–400. [Google Scholar] [CrossRef]
- Chew, D.K.W.; Owens, C.D.; Belkin, M.; Donaldson, M.C.; Whittemore, A.D.; Mannick, J.A.; Conte, M.S. Bypass in the absence of ipsilateral greater saphenous vein: Safety and superiority of the contralateral greater saphenous vein. J. Vasc. Surg. 2002, 35, 1085–1092. [Google Scholar] [CrossRef]
- Conte, M.S. Critical appraisal of surgical revascularization for critical limb ischemia. J. Vasc. Surg. 2013, 57 (Suppl. S2), 8S–13S. [Google Scholar] [CrossRef]
- Klinkert, P.; Post, P.N.; Breslau, P.J.; van Bockel, J.H. Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature. Eur. J. Vasc. Endovasc. Surg. 2004, 27, 357–362. [Google Scholar] [CrossRef]
- Saito, J.; Kaneko, M.; Ishikawa, Y.; Yokoyama, U. Challenges and Possibilities of Cell-Based Tissue-Engineered Vascular Grafts. Cyborg Bionic Syst. 2021, 2021, 1532103. [Google Scholar] [CrossRef]
- Masson-Meyers, D.S.; Tayebi, L. Vascularization strategies in tissue engineering approaches for soft tissue repair. J. Tissue Eng. Regen. Med. 2021, 15, 747–762. [Google Scholar] [CrossRef]
- Timmermans, F.; Plum, J.; Yöder, M.C.; Ingram, D.A.; Vandekerckhove, B.; Case, J. Endothelial progenitor cells: Identity defined? J. Cell. Mol. Med. 2009, 13, 87–102. [Google Scholar] [CrossRef]
- Chen, K.; Li, Y.; Xu, L.; Qian, Y.; Liu, N.; Zhou, C.; Liu, J.; Zhou, L.; Xu, Z.; Jia, R.; et al. Comprehensive insight into endothelial progenitor cell-derived extracellular vesicles as a promising candidate for disease treatment. Stem Cell Res. Ther. 2022, 13, 238. [Google Scholar] [CrossRef]
- Soliman, H.; Theret, M.; Scott, W.; Hill, L.; Underhill, T.M.; Hinz, B.; Rossi, F.M.V. Multipotent stromal cells: One name, multiple identities. Cell Stem Cell 2021, 28, 1690–1707. [Google Scholar] [CrossRef]
- Abbas, O.L.; Özatik, O.; Gönen, Z.B.; Öğüt, S.; Özatik, F.Y.; Salkın, H.; Musmul, A. Comparative Analysis of Mesenchymal Stem Cells from Bone Marrow, Adipose Tissue, and Dental Pulp as Sources of Cell Therapy for Zone of Stasis Burns. J. Investig. Surg. 2019, 32, 477–490. [Google Scholar] [CrossRef]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef]
- Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001, 7, 211–228. [Google Scholar] [CrossRef]
- Plikus, M.V.; Wang, X.; Sinha, S.; Forte, E.; Thompson, S.M.; Herzog, E.L.; Driskell, R.R.; Rosenthal, N.; Biernaskie, J.; Horsley, V. Fibroblasts: Origins, definitions, and functions in health and disease. Cell 2021, 184, 3852–3872. [Google Scholar] [CrossRef]
- Zhang, K.; Na, T.; Wang, L.; Gao, Q.; Yin, W.; Wang, J.; Yuan, B.Z. Human diploid MRC-5 cells exhibit several critical properties of human umbilical cord-derived mesenchymal stem cells. Vaccine 2014, 32, 6820–6827. [Google Scholar] [CrossRef]
- Humphrey, J.D.; Dufresne, E.R.; Schwartz, M.A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 2014, 15, 802–812. [Google Scholar] [CrossRef]
- Watt, F.M.; Fujiwara, H. Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harb. Perspect. Biol. 2011, 3, a005124. [Google Scholar] [CrossRef]
- Newman, A.C.; Nakatsu, M.N.; Chou, W.; Gershon, P.D.; Hughes, C.C.W. The requirement for fibroblasts in angiogenesis: Fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol. Biol. Cell 2011, 22, 3791–3800. [Google Scholar] [CrossRef]
- Ito, T.K.; Ishii, G.; Chiba, H.; Ochiai, A. The VEGF angiogenic switch of fibroblasts is regulated by MMP-7 from cancer cells. Oncogene 2007, 26, 7194–7203. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. Fact and Fiction About Fibroblast to Endothelium Conversion. Circulation 2020, 142, 1663–1666. [Google Scholar] [CrossRef]
- Cho, S.; Aakash, P.; Lee, S.; Yoon, Y. Endothelial cell direct reprogramming: Past, present, and future. J. Mol. Cell. Cardiol. 2023, 180, 22–32. [Google Scholar] [CrossRef]
- Ginsberg, M.; James, D.; Ding, B.S.; Nolan, D.; Geng, F.; Butler, J.M.; Schachterle, W.; Pulijaal, V.R.; Mathew, S.; Chasen, S.T.; et al. Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFβ suppression. Cell 2012, 151, 559–575. [Google Scholar] [CrossRef]
- Han, J.K.; Chang, S.H.; Cho, H.J.; Choi, S.B.; Ahn, H.S.; Lee, J.; Jeong, H.; Youn, S.W.; Lee, H.J.; Kwon, Y.W.; et al. Direct conversion of adult skin fibroblasts to endothelial cells by defined factors. Circulation 2014, 130, 1168–1178. [Google Scholar] [CrossRef]
- Junker, J.P.E.; Lönnqvist, S.; Rakar, J.; Karlsson, L.K.; Grenegård, M.; Kratz, G. Differentiation of human dermal fibroblasts towards endothelial cells. Differentiation 2013, 85, 67–77. [Google Scholar] [CrossRef]
- Lee, S.; Park, C.; Han, J.W.; Kim, J.Y.; Cho, K.; Kim, E.J.; Kim, S.; Lee, S.J.; Oh, S.Y.; Tanaka, Y.; et al. Direct Reprogramming of Human Dermal Fibroblasts into Endothelial Cells Using ER71/ETV2. Circ. Res. 2017, 120, 848–861. [Google Scholar] [CrossRef]
- Meng, S.; Lv, J.; Chanda, P.K.; Owusu, I.; Chen, K.; Cooke, J.P. Reservoir of fibroblasts promotes recovery from limb ischemia. Circulation 2020, 142, 1647–1662. [Google Scholar] [CrossRef]
- Roy, B.; Yuan, L.; Lee, Y.; Bharti, A.; Mitra, A.; Shivashankar, G.V. Fibroblast rejuvenation by mechanical reprogramming and redifferentiation. Proc. Natl. Acad. Sci. USA 2020, 117, 10131–10141. [Google Scholar] [CrossRef]
- Ubil, E.; Duan, J.; Pillai, I.C.L.; Rosa-Garrido, M.; Wu, Y.; Bargiacchi, F.; Lu, Y.; Stanbouly, S.; Huang, J.; Rojas, M.; et al. Mesenchymal–endothelial transition contributes to cardiac neovascularization. Nature 2014, 514, 585–590. [Google Scholar] [CrossRef]
- Pasut, A.; Becker, L.M.; Cuypers, A.; Carmeliet, P. Endothelial cell plasticity at the single-cell level. Angiogenesis 2021, 24, 311–326. [Google Scholar] [CrossRef]
- Yin, H.; Duo, H.; Li, S.; Qin, D.; Xie, L.; Xiao, Y.; Sun, J.; Tao, J.; Zhang, X.; Li, Y.; et al. Unlocking biological insights from differentially expressed genes: Concepts, methods, and future perspectives. J. Adv. Res. 2024, in press. [CrossRef]
- Chen, H.; Chen, Y.; Yang, J.; Yang, P.; Cheng, H.; Guo, X. Decoding mechanosensitive genes in cardiac fibroblasts via 3D hydrogel models of fibrosis. Sci. Rep. 2025, 15, 30484. [Google Scholar] [CrossRef]
- Jafari, L.; Wiedenroth, C.B.; Kriechbaum, S.D.; Grün, D.; Chelladurai, P.; Guenther, S.; Kuenne, C.; Späth, A.M.; Cherian, A.V.; Troidl, C.; et al. Transcriptional changes of the extracellular matrix in chronic thromboembolic pulmonary hypertension govern right ventricle remodeling and recovery. Nat. Cardiovasc. Res. 2025, 4, 857–875. [Google Scholar] [CrossRef]
- Tseligka, E.D.; Rova, A.; Amanatiadou, E.P.; Calabrese, G.; Tsibouklis, J.; Fatouros, D.G.; Vizirianakis, I.S. Pharmacological Development of Target-Specific Delocalized Lipophilic Cation-Functionalized Carboranes for Cancer Therapy. Pharm. Res. 2016, 33, 1945–1958. [Google Scholar] [CrossRef]
- Medina-Leyte, D.J.; Domínguez-Pérez, M.; Mercado, I.; Villarreal-Molina, M.T.; Jacobo-Albavera, L. Use of Human Umbilical Vein Endothelial Cells (HUVEC) as a Model to Study Cardiovascular Disease: A Review. Appl. Sci. 2020, 10, 938. [Google Scholar] [CrossRef]
- Islam, S.; Flaherty, P. Assay Methods Protocol: Endothelial Cell Tube Formation Assay. Corning Life Sciences. 2013. Available online: https://www.corning.com/catalog/cls/documents/protocols/protocol_DL_030_Endothelial_Cell_Tube_Formation_Assay.pdf (accessed on 9 November 2020).
- Zinn, D.A.; Mehner, C.; Patel, T. Protocol for generation of multicellular spheroids through reduced gravity. STAR Protoc. 2023, 4, 102264. [Google Scholar] [CrossRef]
- Promega Corporation. Total RNA Isolation from 3D Cell Cultures or Cells in Matrigel® Matrix Using the ReliaPrep™ miRNA Cell and Tissue Miniprep System, pp. 18–19. (Application note). Available online: https://www.promega.com/-/media/files/resources/application-notes/rna-purification/total-rna-isolation-fr-3d-cultures-or-cells-in-matrigel-using-reliaprep-mirna-cell-tissue-miniprep.pdf (accessed on 9 November 2020).
- Carpentier, G.; Berndt, S.; Ferratge, S.; Rasband, W.; Cuendet, M.; Uzan, G.; Albanese, P. Angiogenesis Analyzer for ImageJ—A comparative morphometric analysis of “Endothelial Tube Formation Assay” and “Fibrin Bead Assay”. Sci. Rep. 2020, 10, 11568. [Google Scholar] [CrossRef]
- Tevis, K.M.; Colson, Y.L.; Grinstaff, M.W. Embedded Spheroids as Models of the Cancer Microenvironment. Adv. Biosyst. 2017, 1, 1700083. [Google Scholar] [CrossRef]
- Kumar, R.; Harris-Hooker, S.; Kumar, R.; Sanford, G. Co-culture of Retinal and Endothelial Cells Results in the Modulation of Genes Critical to Retinal Neovascularization. Vasc. Cell 2011, 3, 27. [Google Scholar] [CrossRef]
- Fois, M.G.; Tahmasebi Birgani, Z.N.; López-Iglesias, C.; Knoops, K.; van Blitterswijk, C.; Giselbrecht, S.; Habibović, P.; Truckenmüller, R.K. In vitro vascularization of 3D cell aggregates in microwells with integrated vascular beds. Mater. Today Bio 2024, 29, 101260. [Google Scholar] [CrossRef] [PubMed]
- Alysandratos, K.-D.; Herriges, M.J.; Kotton, D.N. Epithelial Stem and Progenitor Cells in Lung Repair and Regeneration. Annu. Rev. Physiol. 2021, 83, 529–550. [Google Scholar] [CrossRef] [PubMed]
- Little, D.R.; Gerner-Mauro, K.N.; Flodby, P.; Crandall, E.D.; Borok, Z.; Akiyama, H.; Kimura, S.; Ostrin, E.J.; Chen, J. Transcriptional control of lung alveolar type 1 cell development and maintenance by NK homeobox 2-1. Proc. Natl. Acad. Sci. USA 2019, 116, 20545–20555. [Google Scholar] [CrossRef]
- McElroy, M.C.; Kasper, M. The use of alveolar epithelial type I cell-selective markers to investigate lung injury and repair. Eur. Respir. J. 2004, 24, 664–673. [Google Scholar] [CrossRef]
- Olajuyin, A.M.; Zhang, X.; Ji, H.L. Alveolar type 2 progenitor cells for lung injury repair. Cell Death Discov. 2019, 5, 63. [Google Scholar] [CrossRef]
- Yang, J.; Hernandez, B.J.; Alanis, D.M.; del Pilar, O.N.; Vila-Ellis, L.; Akiyama, H.; Evans, S.E.; Ostrin, E.J.; Chen, J. The development and plasticity of alveolar type 1 cells. Development 2016, 143, 54–65. [Google Scholar] [CrossRef]
- Kon, K.; Fujiwara, T. Transformation of fibroblasts into endothelial cells during angiogenesis. Cell Tissue Res. 1994, 278, 625–628. [Google Scholar] [CrossRef]
- Passaniti, A.; Kleinman, H.K.; Martin, G.R. Matrigel: History/background, uses, and future applications. J. Cell Commun. Signal. 2022, 16, 621–626. [Google Scholar] [CrossRef]
- Li, J.; Li, J.J.; Wei, X.; Li, J.; Zhang, S.; Jia, W.; Chen, Z.; Sun, L.; Zhang, W.; Bai, X.; et al. Fibroblast Plasticity and the Potential for Direct Reprogramming into Endothelial Cells. Stem Cell Res. Ther. 2013, 4, 123. [Google Scholar] [CrossRef]
- Yamada, K.M.; Doyle, A.D.; Lu, J. Cell–3D Matrix Interactions: Recent Advances and Opportunities. HHS Public Access Resource. Available online: https://bmbase.manchester.ac.uk/ (accessed on 9 November 2020).
- Zhou, L.; Sun, L.; Lin, S.; Fang, D.; Zhao, R.; Zhu, J.; Liu, J.; Chen, L.; Shi, W.; Yuan, S.; et al. Inhibition of angiogenic activity of hypoxic fibroblast cell line MRC-5 in vitro by topotecan. Med. Oncol. 2011, 28 (Suppl. S1), 653–659. [Google Scholar] [CrossRef]
- Menicacci, B.; Margheri, F.; Laurenzana, A.; Chillà, A.; del Rosso, M.; Giovannelli, L.; Fibbi, G.; Mocali, A. Chronic resveratrol treatment reduces the proangiogenic effect of human fibroblast “Senescent-Associated Secretory Phenotype” on endothelial colony-forming cells: The role of IL8. J. Gerontol. A 2019, 74, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, L.K.; Junker, J.P.E.; Grenegård, M.; Kratz, G. Human Dermal Fibroblasts: A Potential Cell Source for Endothelialization of Vascular Grafts. Ann. Vasc. Surg. 2009, 23, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Korff, T.; Augustin, H.G. Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J. Cell Sci. 1999, 112, 3249–3258. [Google Scholar] [CrossRef]
- Loganathan, R.; Little, C.D.; Rongish, B.J. Extracellular matrix dynamics in tubulogenesis. Cell. Signal. 2020, 72, 109619. [Google Scholar] [CrossRef]
- Marthandan, S.; Priebe, S.; Baumgart, M.; Groth, M.; Cellerino, A.; Guthke, R.; Hemmerich, P.; Diekmann, S. Similarities in Gene Expression Profiles during In Vitro Aging of Primary Human Embryonic Lung and Foreskin Fibroblasts. BioMed Res. Int. 2015, 2015, 731938. [Google Scholar] [CrossRef]
- Attieh, Y.; Clark, A.G.; Grass, C.; Richon, S.; Pocard, M.; Mariani, P.; Elkhatib, N.; Betz, T.; Gurchenkov, B.; Vignjevic, D.M. Cancer-associated fibroblasts lead tumor invasion through integrin-β3-dependent fibronectin assembly. J. Cell Biol. 2017, 216, 3509–3520. [Google Scholar] [CrossRef]
- World Health Organization. WHO Expert Committee on Biological Standardization, Annex 3: Recommendations for the Evaluation of Animal Cell Cultures as Substrates for the Manufacture of Biological Medicinal Products and for the Characterization of Cell Banks; WHO Technical Report Series No. 978; Geneva, Switzerland; 2013; pp. 79–187. Available online: https://cdn.who.int/media/docs/default-source/biologicals/documents/trs_978_annex_3.pdf (accessed on 9 November 2020).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theodoroula, N.F.; Giannopoulos-Dimitriou, A.; Saiti, A.; Papadimitriou-Tsantarliotou, A.; Miliotou, A.N.; Vatsellas, G.; Sarigiannis, Y.; Galatou, E.; Petrou, C.; Fatouros, D.G.; et al. Matrix-Guided Vascular-like Cord Formation by MRC-5 Lung Fibroblasts: Evidence of Structural and Transcriptional Plasticity. Cells 2025, 14, 1519. https://doi.org/10.3390/cells14191519
Theodoroula NF, Giannopoulos-Dimitriou A, Saiti A, Papadimitriou-Tsantarliotou A, Miliotou AN, Vatsellas G, Sarigiannis Y, Galatou E, Petrou C, Fatouros DG, et al. Matrix-Guided Vascular-like Cord Formation by MRC-5 Lung Fibroblasts: Evidence of Structural and Transcriptional Plasticity. Cells. 2025; 14(19):1519. https://doi.org/10.3390/cells14191519
Chicago/Turabian StyleTheodoroula, Nikoleta F., Alexandros Giannopoulos-Dimitriou, Aikaterini Saiti, Aliki Papadimitriou-Tsantarliotou, Androulla N. Miliotou, Giannis Vatsellas, Yiannis Sarigiannis, Eleftheria Galatou, Christos Petrou, Dimitrios G. Fatouros, and et al. 2025. "Matrix-Guided Vascular-like Cord Formation by MRC-5 Lung Fibroblasts: Evidence of Structural and Transcriptional Plasticity" Cells 14, no. 19: 1519. https://doi.org/10.3390/cells14191519
APA StyleTheodoroula, N. F., Giannopoulos-Dimitriou, A., Saiti, A., Papadimitriou-Tsantarliotou, A., Miliotou, A. N., Vatsellas, G., Sarigiannis, Y., Galatou, E., Petrou, C., Fatouros, D. G., & Vizirianakis, I. S. (2025). Matrix-Guided Vascular-like Cord Formation by MRC-5 Lung Fibroblasts: Evidence of Structural and Transcriptional Plasticity. Cells, 14(19), 1519. https://doi.org/10.3390/cells14191519