Astrocytes and Astrocyte-Derived Extracellular Conduits in Opiate-Mediated Neurological Disorders
Abstract
1. Introduction
1.1. Opiates, Derivatives and Their Use
1.2. Opiate Epidemic
1.3. Opiates and Mode of Action
1.4. Physiological Consequences of Opioid Use
1.5. Involvement of Astrocytes in Opioid-Use-Disorder
1.6. Role of EVs in Opioid Mediated Neurological Disorders
2. Natural Opioids
2.1. Opium: Natural Origin of Narcotic Alkaloids
2.2. Morphine: Natural Opioid Analgesic
2.3. Codeine: Prodrug of Morphine
3. Semi-Synthetic Opioids
3.1. Heroin: A Semi-Synthetic Derivative of Morphine
3.2. Oxycodone: A Widely Used Painkiller
3.3. Hydrocodone: A Safer Alternative to Oxycodone
3.4. Oxymorphone: A Metabolite of Oxycodone
3.5. Hydromorphone: High-Potency Pain Reliever
3.6. Buprenorphine: Treatment for Opioid Addiction
4. Synthetic Opioids
4.1. Fentanyl: Major Contributor in the Opioid Crisis
4.2. Methadone: A Second Line Option for Neuropathic Pain
4.3. Tramadol: Centrally Acting Synthetic Opioid Analgesic
4.4. Carfentanil: An Ultra-Potent Synthetic Opioid
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pathan, H.; Williams, J. Basic opioid pharmacology: An update. Br. J. Pain 2012, 6, 11–16. [Google Scholar] [CrossRef]
- Cohen, B.; Ruth, L.J.; Preuss, C.V. Opioid Analgesics. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Wiffen, P.J.; Wee, B.; Derry, S.; Bell, R.F.; Moore, R.A. Opioids for cancer pain—An overview of Cochrane reviews. Cochrane Database Syst. Rev. 2017, 7, CD012592. [Google Scholar] [CrossRef]
- Cicero, T.J.; Ellis, M.S.; Kasper, Z.A. Increased use of heroin as an initiating opioid of abuse. Addict. Behav. 2017, 74, 63–66. [Google Scholar] [CrossRef]
- Benyamin, R.; Trescot, A.M.; Datta, S.; Buenaventura, R.; Adlaka, R.; Sehgal, N.; Glaser, S.E.; Vallejo, R. Opioid complications and side effects. Pain Physician 2008, 11, S105–S120. [Google Scholar] [CrossRef] [PubMed]
- Cicero, T.J.; Inciardi, J.A.; Munoz, A. Trends in abuse of Oxycontin and other opioid analgesics in the United States: 2002–2004. J. Pain 2005, 6, 662–672. [Google Scholar] [CrossRef]
- Marraffa, J.M. Drugs of Abuse. In Encyclopedia of Toxicology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 248–251. [Google Scholar] [CrossRef]
- Stanley, T.H. The fentanyl story. J. Pain 2014, 15, 1215–1226. [Google Scholar] [CrossRef]
- Medications for Opioid Use Disorder: For Healthcare and Addiction Professionals, Policymakers, Patients, and Families: Updated 2021; Treatment Improvement Protocol (TIP) Series; Substance Abuse and Mental Health Services Administration (SAMHSA): North Bethesda, MA, USA, 2018. Available online: https://www.ncbi.nlm.nih.gov/books/NBK574918/ (accessed on 3 December 2024).
- Shulman, M.; Wai, J.M.; Nunes, E.V. Buprenorphine Treatment for Opioid Use Disorder: An Overview. CNS Drugs 2019, 33, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Jones, E.B.; Einstein, E.B.; Wargo, E.M. Prevention and Treatment of Opioid Misuse and Addiction: A Review. JAMA Psychiatry 2019, 76, 208–216. [Google Scholar] [CrossRef]
- Englander, H.; Thakrar, A.P.; Bagley, S.M.; Rolley, T.; Dong, K.; Hyshka, E. Caring for Hospitalized Adults with Opioid Use Disorder in the Era of Fentanyl: A Review. JAMA Intern. Med. 2024, 184, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Spencer, M.R.; Minino, A.M.; Warner, M. Drug Overdose Deaths in the United States, 2001–2021. NCHS Data Brief. 2022, 457, 1–8. [Google Scholar]
- Truong, E.I.; Kishawi, S.K.; Ho, V.P.; Tadi, R.S.; Warner, D.F.; Claridge, J.A.; Tseng, E.S. Opioids and Injury Deaths: A population-based analysis of the United States from 2006 to 2017. Injury 2021, 52, 2194–2198. [Google Scholar] [CrossRef]
- CDC. Vital signs: Overdoses of prescription opioid pain relievers—United States, 1999–2008. MMWR Morb. Mortal. Wkly. Rep. 2011, 60, 1487–1492. [Google Scholar]
- Van Zee, A. The promotion and marketing of oxycontin: Commercial triumph, public health tragedy. Am. J. Public Health 2009, 99, 221–227. [Google Scholar] [CrossRef]
- Kolodny, A.; Courtwright, D.T.; Hwang, C.S.; Kreiner, P.; Eadie, J.L.; Clark, T.W.; Alexander, G.C. The prescription opioid and heroin crisis: A public health approach to an epidemic of addiction. Annu. Rev. Public Health 2015, 36, 559–574. [Google Scholar] [CrossRef]
- Rudd, R.A.; Aleshire, N.; Zibbell, J.E.; Gladden, R.M. Increases in Drug and Opioid Overdose Deaths—United States, 2000–2014. MMWR Morb. Mortal. Wkly. Rep. 2016, 64, 1378–1382. [Google Scholar] [CrossRef]
- Cicero, T.J.; Ellis, M.S.; Surratt, H.L.; Kurtz, S.P. The changing face of heroin use in the United States: A retrospective analysis of the past 50 years. JAMA Psychiatry 2014, 71, 821–826. [Google Scholar] [CrossRef]
- Peterson, A.B.; Gladden, R.M.; Delcher, C.; Spies, E.; Garcia-Williams, A.; Wang, Y.; Halpin, J.; Zibbell, J.; McCarty, C.L.; DeFiore-Hyrmer, J.; et al. Increases in Fentanyl-Related Overdose Deaths—Florida and Ohio, 2013–2015. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 844–849. [Google Scholar] [CrossRef]
- O’Donnell, J.K.; Halpin, J.; Mattson, C.L.; Goldberger, B.A.; Gladden, R.M. Deaths Involving Fentanyl, Fentanyl Analogs, and U-47700—10 States, July–December 2016. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.; Montero, F.; Bourgois, P.; Wahbi, R.; Dye, D.; Goodman-Meza, D.; Shover, C. Xylazine spreads across the US: A growing component of the increasingly synthetic and polysubstance overdose crisis. Drug Alcohol. Depend. 2022, 233, 109380. [Google Scholar] [CrossRef] [PubMed]
- Herlinger, K.; Lingford-Hughes, A. Opioid use disorder and the brain: A clinical perspective. Addiction 2022, 117, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.Z.; Duan, Y.L.; Chen, C.T.; Wang, Y.; Zhu, A.P. Advances in attenuating opioid-induced respiratory depression: A narrative review. Medicine 2024, 103, e38837. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhuang, Y.; DiBerto, J.F.; Zhou, X.E.; Schmitz, G.P.; Yuan, Q.; Jain, M.K.; Liu, W.; Melcher, K.; Jiang, Y.; et al. Structures of the entire human opioid receptor family. Cell 2023, 186, 413–427.e417. [Google Scholar] [CrossRef]
- Dhaliwal, A.; Gupta, M. Receptor. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Faouzi, A.; Varga, B.R.; Majumdar, S. Biased Opioid Ligands. Molecules 2020, 25, 4257. [Google Scholar] [CrossRef] [PubMed]
- Herman, T.F.; Cascella, M.; Muzio, M.R. Mu Receptors. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Reeves, K.C.; Shah, N.; Munoz, B.; Atwood, B.K. Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain. Front. Mol. Neurosci. 2022, 15, 919773. [Google Scholar] [CrossRef] [PubMed]
- North, R.A.; Williams, J.T. How do opiates inhibit neurotransmitter release? Trends Neurosci. 1983, 6, 337–339. [Google Scholar] [CrossRef]
- Pasternak, G.W.; Pan, Y.X. Mu opioids and their receptors: Evolution of a concept. Pharmacol. Rev. 2013, 65, 1257–1317. [Google Scholar] [CrossRef]
- Dowell, D.; Ragan, K.R.; Jones, C.M.; Baldwin, G.T.; Chou, R. CDC Clinical Practice Guideline for Prescribing Opioids for Pain—United States, 2022. MMWR Recomm. Rep. 2022, 71, 1–95. [Google Scholar] [CrossRef]
- Dowell, D.; Haegerich, T.M.; Chou, R. CDC Guideline for Prescribing Opioids for Chronic Pain—United States, 2016. JAMA 2016, 315, 1624–1645. [Google Scholar] [CrossRef]
- Al-Hasani, R.; Bruchas, M.R. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology 2011, 115, 1363–1381. [Google Scholar] [CrossRef]
- Listos, J.; Lupina, M.; Talarek, S.; Mazur, A.; Orzelska-Gorka, J.; Kotlinska, J. The Mechanisms Involved in Morphine Addiction: An Overview. Int. J. Mol. Sci. 2019, 20, 4302. [Google Scholar] [CrossRef]
- Badshah, I.; Anwar, M.; Murtaza, B.; Khan, M.I. Molecular mechanisms of morphine tolerance and dependence; novel insights and future perspectives. Mol. Cell. Biochem. 2024, 479, 1457–1485. [Google Scholar] [CrossRef] [PubMed]
- Coates, S.; Lazarus, P. Hydrocodone, Oxycodone, and Morphine Metabolism and Drug-Drug Interactions. J. Pharmacol. Exp. Ther. 2023, 387, 150–169. [Google Scholar] [CrossRef]
- Kosten, T.R.; George, T.P. The neurobiology of opioid dependence: Implications for treatment. Sci. Pract. Perspect. 2002, 1, 13–20. [Google Scholar] [CrossRef]
- Yang, W.; Wen, X.; Du, Z.; Yang, L.; Chen, Y.; Zhang, J.; Yuan, K.; Liu, J. Distinct insula subdivisions of resting-state functional connectivity in individuals with opioid and methamphetamine use disorders. Cereb. Cortex 2025, 35, bhaf014. [Google Scholar] [CrossRef]
- Gipson, C.D.; Rawls, S.; Scofield, M.D.; Siemsen, B.M.; Bondy, E.O.; Maher, E.E. Interactions of neuroimmune signaling and glutamate plasticity in addiction. J. Neuroinflammat. 2021, 18, 56. [Google Scholar] [CrossRef]
- Lacerte, M.; Hays Shapshak, A.; Mesfin, F.B. Hypoxic Brain Injury. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Pelletier, D.E.; Andrew, T.A. Common Findings and Predictive Measures of Opioid Overdoses. Acad. Forensic Pathol. 2017, 7, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Winstanley, E.L.; Mahoney, J.J., 3rd; Castillo, F.; Comer, S.D. Neurocognitive impairments and brain abnormalities resulting from opioid-related overdoses: A systematic review. Drug Alcohol Depend. 2021, 226, 108838. [Google Scholar] [CrossRef] [PubMed]
- Wahbeh, A.; Al-Ramahi, M.; El-Gayar, O.; Nasralah, T.; Elnoshokaty, A. Health Benefits and Adverse Effects of Kratom: A Social Media Text-Mining Approach. Informatics 2024, 11, 63. [Google Scholar] [CrossRef]
- Zhu, Y.; Yan, P.; Wang, R.; Lai, J.; Tang, H.; Xiao, X.; Yu, R.; Bao, X.; Zhu, F.; Wang, K.; et al. Opioid-induced fragile-like regulatory T cells contribute to withdrawal. Cell 2023, 186, 591–606. [Google Scholar] [CrossRef]
- Rademeyer, K.M.; Nass, S.R.; Jones, A.M.; Ohene-Nyako, M.; Hauser, K.F.; McRae, M. Fentanyl dysregulates neuroinflammation and disrupts blood-brain barrier integrity in HIV-1 Tat transgenic mice. J. Neurovirology 2024, 30, 1–21. [Google Scholar] [CrossRef]
- Zhang, H.; Largent-Milnes, T.M.; Vanderah, T.W. Glial neuroimmune signaling in opioid reward. Brain Res. Bull. 2020, 155, 102–111. [Google Scholar] [CrossRef]
- Tizabi, Y.; Getachew, B.; Hauser, S.R.; Tsytsarev, V.; Manhaes, A.C.; da Silva, V.D.A. Role of Glial Cells in Neuronal Function, Mood Disorders, and Drug Addiction. Brain Sci. 2024, 14, 558. [Google Scholar] [CrossRef]
- Niciu, M.J.; Henter, I.D.; Sanacora, G.; Zarate, C.A., Jr. Glial abnormalities in substance use disorders and depression: Does shared glutamatergic dysfunction contribute to comorbidity? World J. Biol. Psychiatry 2014, 15, 2–16. [Google Scholar] [CrossRef]
- Green, J.M.; Sundman, M.H.; Chou, Y.H. Opioid-induced microglia reactivity modulates opioid reward, analgesia, and behavior. Neurosci. Biobehav. Rev. 2022, 135, 104544. [Google Scholar] [CrossRef]
- Corkrum, M.; Rothwell, P.E.; Thomas, M.J.; Kofuji, P.; Araque, A. Opioid-Mediated Astrocyte-Neuron Signaling in the Nucleus Accumbens. Cells 2019, 8, 586. [Google Scholar] [CrossRef]
- Garcia-Perez, D.; Laorden, M.L.; Milanes, M.V. Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase beta/zeta, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration. Int. J. Neuropsychopharmacol. 2015, 19, pyv077. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Q.; Cui, Y.; Cui, Y.; Chen, Y.; Na, X.D.; Chen, F.Y.; Wei, X.H.; Li, Y.Y.; Liu, X.G.; Xin, W.J. Activation of p38 signaling in the microglia in the nucleus accumbens contributes to the acquisition and maintenance of morphine-induced conditioned place preference. Brain Behav. Immun. 2012, 26, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.; Niu, F.; Hu, G.; Buch, S. Morphine-mediated release of astrocyte-derived extracellular vesicle miR-23 a induces loss of pericyte coverage at the blood-brain barrier: Implications for neuroinflammation. Front. Cell Dev. Biol. 2022, 10, 984375. [Google Scholar] [CrossRef]
- Liao, K.; Niu, F.; Hu, G.; Yang, L.; Dallon, B.; Villarreal, D.; Buch, S. Morphine-mediated release of miR-138 in astrocyte-derived extracellular vesicles promotes microglial activation. J. Extracell. Vesicles 2020, 10, e12027. [Google Scholar] [CrossRef]
- Sil, S.; Singh, S.; Chemparathy, D.T.; Chivero, E.T.; Gordon, L.; Buch, S. Astrocytes & Astrocyte Derived Extracellular Vesicles in Morphine Induced Amyloidopathy: Implications for Cognitive Deficits in Opiate Abusers. Aging Dis. 2021, 12, 1389–1408. [Google Scholar] [CrossRef] [PubMed]
- Sil, S.; Periyasamy, P.; Guo, M.L.; Callen, S.; Buch, S. Morphine-Mediated Brain Region-Specific Astrocytosis Involves the ER Stress-Autophagy Axis. Mol. Neurobiol. 2018, 55, 6713–6733. [Google Scholar] [CrossRef]
- Allen, N.J.; Eroglu, C. Cell Biology of Astrocyte-Synapse Interactions. Neuron 2017, 96, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, S.; Gharagozloo, M.; Simard, C.; Gris, D. Astrocytes Maintain Glutamate Homeostasis in the CNS by Controlling the Balance Between Glutamate Uptake and Release. Cells 2019, 8, 184. [Google Scholar] [CrossRef]
- Parpura, V.; Verkhratsky, A. Homeostatic function of astrocytes: Ca2+ and Na+ signalling. Transl. Neurosci. 2012, 3, 334–344. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Parpura, V.; Li, B.; Scuderi, C. Astrocytes: The Housekeepers and Guardians of the CNS. Adv. Neurobiol. 2021, 26, 21–53. [Google Scholar] [CrossRef]
- Sidoryk-Wegrzynowicz, M.; Wegrzynowicz, M.; Lee, E.; Bowman, A.B.; Aschner, M. Role of astrocytes in brain function and disease. Toxicol. Pathol. 2011, 39, 115–123. [Google Scholar] [CrossRef]
- Naveed, M.; Smedlund, K.; Zhou, Q.G.; Cai, W.; Hill, J.W. Astrocyte involvement in metabolic regulation and disease. Trends Endocrinol. Metab. 2025, 36, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Noriega-Prieto, J.A.; Araque, A. Sensing and Regulating Synaptic Activity by Astrocytes at Tripartite Synapse. Neurochem. Res. 2021, 46, 2580–2585. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.G.; Lee, J.H.; Flausino, L.E.; Quintana, F.J. Neuroinflammation: An astrocyte perspective. Sci. Transl. Med. 2023, 15, eadi7828. [Google Scholar] [CrossRef]
- Stoklund Dittlau, K.; Freude, K. Astrocytes: The Stars in Neurodegeneration? Biomolecules 2024, 14, 289. [Google Scholar] [CrossRef]
- Morris, D.C.; Zacharek, A.; Zhang, Z.G.; Chopp, M. Extracellular vesicles—Mediators of opioid use disorder? Addict. Biol. 2023, 28, e13353. [Google Scholar] [CrossRef]
- Vujic, T.; Schvartz, D.; Furlani, I.L.; Meister, I.; Gonzalez-Ruiz, V.; Rudaz, S.; Sanchez, J.C. Oxidative Stress and Extracellular Matrix Remodeling Are Signature Pathways of Extracellular Vesicles Released upon Morphine Exposure on Human Brain Microvascular Endothelial Cells. Cells 2022, 11, 3926. [Google Scholar] [CrossRef]
- Stiene-Martin, A.; Mattson, M.P.; Hauser, K.F. Opiates selectively increase intracellular calcium in developing type-1 astrocytes: Role of calcium in morphine-induced morphologic differentiation. Brain Res. Dev. Brain Res. 1993, 76, 189–196. [Google Scholar] [CrossRef]
- Spencer, A.C.; Surnar, B.; Kolishetti, N.; Toborek, M.; Dhar, S. Restoring the neuroprotective capacity of glial cells under opioid addiction. Addict. Neurosci. 2022, 4, 100027. [Google Scholar] [CrossRef]
- Hauser, K.F.; Harris-White, M.E.; Jackson, J.A.; Opanashuk, L.A.; Carney, J.M. Opioids disrupt Ca2+ homeostasis and induce carbonyl oxyradical production in mouse astrocytes in vitro: Transient increases and adaptation to sustained exposure. Exp. Neurol. 1998, 151, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Mikati, M.O.; Klein, R.S. Fragile-like regulatory T cells modulate opioid withdrawal in humans and mice. Immunity 2023, 56, 237–239. [Google Scholar] [CrossRef]
- Linker, K.E.; Cross, S.J.; Leslie, F.M. Glial mechanisms underlying substance use disorders. Eur. J. Neurosci. 2019, 50, 2574–2589. [Google Scholar] [CrossRef]
- Wiese, S.; Karus, M.; Faissner, A. Astrocytes as a source for extracellular matrix molecules and cytokines. Front. Pharmacol. 2012, 3, 120. [Google Scholar] [CrossRef] [PubMed]
- Albini, M.; Krawczun-Rygmaczewska, A.; Cesca, F. Astrocytes and brain-derived neurotrophic factor (BDNF). Neurosci. Res. 2023, 197, 42–51. [Google Scholar] [CrossRef]
- Ludwin, S.K.; Rao, V.; Moore, C.S.; Antel, J.P. Astrocytes in multiple sclerosis. Mult. Scler. 2016, 22, 1114–1124. [Google Scholar] [CrossRef]
- Rizor, A.; Pajarillo, E.; Johnson, J.; Aschner, M.; Lee, E. Astrocytic Oxidative/Nitrosative Stress Contributes to Parkinson’s Disease Pathogenesis: The Dual Role of Reactive Astrocytes. Antioxidants 2019, 8, 265. [Google Scholar] [CrossRef]
- Correale, J.; Farez, M.F. The Role of Astrocytes in Multiple Sclerosis Progression. Front. Neurol. 2015, 6, 180. [Google Scholar] [CrossRef] [PubMed]
- Liddelow, S.A.; Barres, B.A. Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity 2017, 46, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Cragnolini, A.B.; Lampitella, G.; Virtuoso, A.; Viscovo, I.; Panetsos, F.; Papa, M.; Cirillo, G. Regional brain susceptibility to neurodegeneration: What is the role of glial cells? Neural Regen. Res. 2020, 15, 838–842. [Google Scholar] [CrossRef]
- Ding, Z.B.; Song, L.J.; Wang, Q.; Kumar, G.; Yan, Y.Q.; Ma, C.G. Astrocytes: A double-edged sword in neurodegenerative diseases. Neural Regen. Res. 2021, 16, 1702–1710. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.M.; Schardien, K.; Wigdahl, B.; Nonnemacher, M.R. Roles of neuropathology-associated reactive astrocytes: A systematic review. Acta Neuropathol. Commun. 2023, 11, 42. [Google Scholar] [CrossRef]
- Upadhya, R.; Zingg, W.; Shetty, S.; Shetty, A.K. Astrocyte-derived extracellular vesicles: Neuroreparative properties and role in the pathogenesis of neurodegenerative disorders. J. Control. Release 2020, 323, 225–239. [Google Scholar] [CrossRef]
- Phillips, W.; Willms, E.; Hill, A.F. Understanding extracellular vesicle and nanoparticle heterogeneity: Novel methods and considerations. Proteomics 2021, 21, e2000118. [Google Scholar] [CrossRef]
- Del Vecchio, F.; Martinez-Rodriguez, V.; Schukking, M.; Cocks, A.; Broseghini, E.; Fabbri, M. Professional killers: The role of extracellular vesicles in the reciprocal interactions between natural killer, CD8+ cytotoxic T-cells and tumour cells. J. Extracell. Vesicles 2021, 10, e12075. [Google Scholar] [CrossRef]
- Hu, G.; Liao, K.; Niu, F.; Yang, L.; Dallon, B.W.; Callen, S.; Tian, C.; Shu, J.; Cui, J.; Sun, Z.; et al. Astrocyte EV-Induced lincRNA-Cox2 Regulates Microglial Phagocytosis: Implications for Morphine-Mediated Neurodegeneration. Mol. Ther. Nucleic Acids 2018, 13, 450–463. [Google Scholar] [CrossRef]
- Kumar, M.; Saha, A.; Rameau, A.A.; Sil, S.; Buch, S. Role of EV-mediated neurodegeneration in substance use disorders. Curr. Opin. Physiol. 2025, 44, 100826. [Google Scholar] [CrossRef]
- Odegaard, K.E.; Chand, S.; Wheeler, S.; Tiwari, S.; Flores, A.; Hernandez, J.; Savine, M.; Gowen, A.; Pendyala, G.; Yelamanchili, S.V. Role of Extracellular Vesicles in Substance Abuse and HIV-Related Neurological Pathologies. Int. J. Mol. Sci. 2020, 21, 6765. [Google Scholar] [CrossRef]
- Withey, S.L.; Willis, G.R. Time to think small: Using extracellular vesicles to assess the effects of long-term opioid use. EBioMedicine 2021, 64, 103210. [Google Scholar] [CrossRef]
- Chivero, E.T.; Dagur, R.S.; Peeples, E.S.; Sil, S.; Liao, K.; Ma, R.; Chen, L.; Gurumurthy, C.B.; Buch, S.; Hu, G. Biogenesis, physiological functions and potential applications of extracellular vesicles in substance use disorders. Cell. Mol. Life Sci. 2021, 78, 4849–4865. [Google Scholar] [CrossRef]
- Valle-Tamayo, N.; Perez-Gonzalez, R.; Chiva-Blanch, G.; Belbin, O.; Serrano-Requena, S.; Sirisi, S.; Cervantes Gonzalez, A.; Giro, O.; Sanchez-Aced, E.; Dols-Icardo, O.; et al. Enrichment of Astrocyte-Derived Extracellular Vesicles from Human Plasma. J. Vis. Exp. 2022, e64107. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Yao, H.; Chaudhuri, A.D.; Duan, M.; Yelamanchili, S.V.; Wen, H.; Cheney, P.D.; Fox, H.S.; Buch, S. Exosome-mediated shuttling of microRNA-29 regulates HIV Tat and morphine-mediated neuronal dysfunction. Cell Death Dis. 2012, 3, e381. [Google Scholar] [CrossRef] [PubMed]
- UNODC. World Drug Report 2023; UNODC: New York, NY, USA, 2023. [Google Scholar]
- Mohammadi, N.; Alimohammadian, M.; Feizesani, A.; Poustchi, H.; Alizadeh, A.; Yaseri, M.; Mansournia, M.A.; Sadjadi, A. The marginal causal effect of opium consumption on the upper gastrointestinal cancer death using parametric g-formula: An analysis of 49,946 cases in the Golestan Cohort Study, Iran. PLoS ONE 2021, 16, e0246004. [Google Scholar] [CrossRef]
- Khalili, P.; Ayoobi, F.; Mohamadi, M.; Jamalizadeh, A.; La Vecchia, C.; Esmaeili-Nadimi, A. Effect of opium consumption on cardiovascular diseases—A cross- sectional study based on data of Rafsanjan cohort study. BMC Cardiovasc. Disord. 2021, 21, 2. [Google Scholar] [CrossRef] [PubMed]
- Beyrer, C. The Golden Crescent and HIV/AIDS in Central Asia: Deadly interactions. Glob. Public Health 2011, 6, 570–576. [Google Scholar] [CrossRef]
- Mardi, P. Opium abuse and stroke in Iran: A systematic review and meta-analysis. Front. Neurol. 2022, 13, 855578. [Google Scholar] [CrossRef]
- Rahi, E.; Baneshi, M.R.; Mirkamandar, E.; Haji Maghsoudi, S.; Rastegari, A. A Comparison Between APGAR Scores and Birth Weight in Infants of Addicted and Non-Addicted Mothers. Addict. Health 2011, 3, 61–67. [Google Scholar] [PubMed]
- Abbasi, E.; Mirzaei, F.; Mashayekhi, S.; Khodadadi, I.; Komaki, A.; Faraji, N.; Vafaii, S.A. Effects of opium on hippocampal-dependent memory, antioxidant enzyme levels, oxidative stress markers, and histopathological changes of rat hippocampus. Biochem. Biophys. Rep. 2025, 42, 101993. [Google Scholar] [CrossRef]
- Ardani, A.R.; Nahidi, M.; Norouzi, H.; Nasseri, S.; Momennezhad, M.; Layegh, P.; Mohammadi, I. Assessment of brain structural changes in patients with opium dependence disorder on Methadone Maintenance Treatment, Opium Tincture Treatment and healthy individuals. J. Fundam. Ment. Health 2020, 22, 77–82. [Google Scholar] [CrossRef]
- Purohit, P.; Roy, D.; Dwivedi, S.; Nebhinani, N.; Sharma, P. Association of miR-155, miR-187 and Inflammatory Cytokines IL-6, IL-10 and TNF-alpha in Chronic Opium Abusers. Inflammation 2022, 45, 554–566. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, Y.; Chen, T.; Peng, L.; Wang, C.; Xue, G.; Yu, S. DJ-1 regulates astrocyte activation through miR-155/SHP-1 signaling in cerebral ischemia/reperfusion injury. J. Neurochem. 2025, 169, e16230. [Google Scholar] [CrossRef]
- Thome, A.D.; Harms, A.S.; Volpicelli-Daley, L.A.; Standaert, D.G. microRNA-155 Regulates Alpha-Synuclein-Induced Inflammatory Responses in Models of Parkinson Disease. J. Neurosci. 2016, 36, 2383–2390. [Google Scholar] [CrossRef]
- Hu, X.; Xu, M.X.; Zhou, H.; Cheng, S.; Li, F.; Miao, Y.; Wang, Z. Tumor necrosis factor-alpha aggravates gliosis and inflammation of activated retinal Muller cells. Biochem. Biophys. Res. Commun. 2020, 531, 383–389. [Google Scholar] [CrossRef]
- Bras, J.P.; Bravo, J.; Freitas, J.; Barbosa, M.A.; Santos, S.G.; Summavielle, T.; Almeida, M.I. TNF-alpha-induced microglia activation requires miR-342: Impact on NF-kB signaling and neurotoxicity. Cell Death Dis. 2020, 11, 415. [Google Scholar] [CrossRef]
- Rastegar-Moghaddam, S.H.; Ebrahimzadeh-Bideskan, A.; Shahba, S.; Malvandi, A.M.; Mohammadipour, A. Roles of the miR-155 in Neuroinflammation and Neurological Disorders: A Potent Biological and Therapeutic Target. Cell. Mol. Neurobiol. 2023, 43, 455–467. [Google Scholar] [CrossRef]
- Olmos, G.; Llado, J. Tumor necrosis factor alpha: A link between neuroinflammation and excitotoxicity. Mediat. Inflamm. 2014, 2014, 861231. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, P.; Sripada, L.; Singh, K.; Bhatelia, K.; Singh, R.; Singh, R. TNF-alpha regulates miRNA targeting mitochondrial complex-I and induces cell death in dopaminergic cells. Biochim. Biophys. Acta 2015, 1852, 451–461. [Google Scholar] [CrossRef]
- Bakhshayesh, A.; Eslami Farsani, R.; Seyedebrahimi, R.; Ababzadeh, S.; Heidari, F.; Eslami Farsani, M. Evaluation of the Negative Effects of Opium Tincture on Memory and Hippocampal Neurons in the Presence of Chicory Extract. Adv. Biomed. Res. 2023, 12, 23. [Google Scholar] [CrossRef]
- Severino, A.L.; Mittal, N.; Hakimian, J.K.; Velarde, N.; Minasyan, A.; Albert, R.; Torres, C.; Romaneschi, N.; Johnston, C.; Tiwari, S.; et al. μ-Opioid Receptors on Distinct Neuronal Populations Mediate Different Aspects of Opioid Reward-Related Behaviors. eNeuro 2020, 7. [Google Scholar] [CrossRef]
- Buchanan, W.W.; Rainsford, K.D.; Kean, C.A.; Kean, W.F. Narcotic analgesics. Inflammopharmacology 2024, 32, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Fillingim, R.B.; Ness, T.J.; Glover, T.L.; Campbell, C.M.; Hastie, B.A.; Price, D.D.; Staud, R. Morphine responses and experimental pain: Sex differences in side effects and cardiovascular responses but not analgesia. J. Pain 2005, 6, 116–124. [Google Scholar] [CrossRef]
- Brazile, C., Jr.; Fan, R.; Benoit, B.; Arnold, T.; Korneeva, N. Differential Effect of Chronic Morphine on Neuronal Degeneration in Male vs. Female Mice. Pathophysiology 2024, 31, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Doyle, H.H.; Eidson, L.N.; Sinkiewicz, D.M.; Murphy, A.Z. Sex Differences in Microglia Activity within the Periaqueductal Gray of the Rat: A Potential Mechanism Driving the Dimorphic Effects of Morphine. J. Neurosci. 2017, 37, 3202–3214. [Google Scholar] [CrossRef]
- International Narcotics Control Board. Report of the International Narcotics Control Board Report for 2021; INCB: Vienna, Austria, 2022. [Google Scholar]
- International Narcotics Control Board. Comments on the Reported Statistics on Narcotic Drugs (INCB); INCB: Vienna, Austria, 2021. [Google Scholar]
- O’Donnell, J.; Gladden, R.M.; Kariisa, M.; Mattson, C.L. Using death scene and toxicology evidence to define involvement of heroin, pharmaceutical morphine, illicitly manufactured fentanyl and pharmaceutical fentanyl in opioid overdose deaths, 38 states and the District of Columbia, January 2018–December 2019. Addiction 2022, 117, 1483–1490. [Google Scholar] [CrossRef]
- Solgama, J.P.; Liu, E.; Davis, M.; Graham, J.; McCall, K.L.; Piper, B.J. State-level variation in distribution of oxycodone and opioid-related deaths from 2000 to 2021: An ecological study of ARCOS and CDC WONDER data in the USA. BMJ Open 2024, 14, e073765. [Google Scholar] [CrossRef] [PubMed]
- Harada, S.; Nakamoto, K.; Tokuyama, S. The involvement of midbrain astrocyte in the development of morphine tolerance. Life Sci. 2013, 93, 573–578. [Google Scholar] [CrossRef]
- Shen, N.; Mo, L.Q.; Hu, F.; Chen, P.X.; Guo, R.X.; Feng, J.Q. A novel role of spinal astrocytic connexin 43: Mediating morphine antinociceptive tolerance by activation of NMDA receptors and inhibition of glutamate transporter-1 in rats. CNS Neurosci. Ther. 2014, 20, 728–736. [Google Scholar] [CrossRef]
- Skupio, U.; Tertil, M.; Bilecki, W.; Barut, J.; Korostynski, M.; Golda, S.; Kudla, L.; Wiktorowska, L.; Sowa, J.E.; Siwiec, M.; et al. Astrocytes determine conditioned response to morphine via glucocorticoid receptor-dependent regulation of lactate release. Neuropsychopharmacology 2020, 45, 404–415. [Google Scholar] [CrossRef]
- Avdoshina, V.; Biggio, F.; Palchik, G.; Campbell, L.A.; Mocchetti, I. Morphine induces the release of CCL5 from astrocytes: Potential neuroprotective mechanism against the HIV protein gp120. Glia 2010, 58, 1630–1639. [Google Scholar] [CrossRef]
- Ma, R.; Kutchy, N.A.; Wang, Z.; Hu, G. Extracellular vesicle-mediated delivery of anti-miR-106 b inhibits morphine-induced primary ciliogenesis in the brain. Mol. Ther. 2023, 31, 1332–1345. [Google Scholar] [CrossRef]
- Peechakara, B.V.; Tharp, J.G.; Eriator, I.I.; Gupta, M. Codeine. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- An, T.J.; Lee, Y.H.; Joh, J.S.; Myong, J.P. Nationwide study of chronic codeine use and its impact on cough related diseases in South Korea. Sci. Rep. 2024, 14, 30225. [Google Scholar] [CrossRef]
- United Nations—International Narcotics Control Board. International Narcotics Control Board Report 2023—Press Material; United Nations: Vienna, Austria, 2023. [Google Scholar]
- Wu, Y.; Ma, X.; Zhou, Z.; Yan, J.; Xu, S.; Li, M.; Fang, J.; Li, G.; Zeng, S.; Lin, C.; et al. Functional connectome-based biomarkers predict chronic codeine-containing cough syrup dependent. J. Psychiatr. Res. 2020, 130, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Khatmi, A.; Eskandarian Boroujeni, M.; Ezi, S.; Mirbehbahani, S.H.; Aghajanpour, F.; Soltani, R.; Meftahi, G.H.; Abdollahifar, M.A.; Hassani Moghaddam, M.; Toreyhi, H.; et al. Combined molecular, structural and memory data unravel the destructive effect of tramadol on hippocampus. Neurosci. Lett. 2022, 771, 136418. [Google Scholar] [CrossRef] [PubMed]
- Ezi, S.; Boroujeni, M.E.; Khatmi, A.; Vakili, K.; Fathi, M.; Abdollahifar, M.A.; Aghajanpour, F.; Soltani, R.; Mirbehbahani, S.H.; Khodagholi, F.; et al. Chronic Exposure to Tramadol Induces Neurodegeneration in the Cerebellum of Adult Male Rats. Neurotox. Res. 2021, 39, 1134–1147. [Google Scholar] [CrossRef]
- Archibong, V.B.; Ekanem, T.B.; Igiri, A.O.; Lemuel, A.M.; Usman, I.M.; Okesina, A.A.; Obosi, N.J. Immunohistochemical studies of codeine medication on the prefrontal cortex and cerebellum of adult Wistar rats. Cogent Med. 2020, 7, 1824390. [Google Scholar] [CrossRef]
- Johnson, J.L.; Rolan, P.E.; Johnson, M.E.; Bobrovskaya, L.; Williams, D.B.; Johnson, K.; Tuke, J.; Hutchinson, M.R. Codeine-induced hyperalgesia and allodynia: Investigating the role of glial activation. Transl. Psychiatry 2014, 4, e482. [Google Scholar] [CrossRef]
- Archibong, V.B.; Ekanem, T.; Igiri, A.; Ofutet, E.O.; Ifie, J.E. The effect of codeine administration on oxidative stress biomarkers and the expression of the neuron-specific enolase in the brain of Wistar rats. Naunyn Schmiedebergs Arch. Pharmacol. 2021, 394, 1665–1673. [Google Scholar] [CrossRef] [PubMed]
- National Institute on Drug Abuse (NIDA). What Is the Scope of Heroin Use in the United States? National Institute on Drug Abuse: North Bethesda, MD, USA, 2023. [Google Scholar]
- Substance Abuse and Mental Health Services Administration (SAMHSA). Highlights for the 2022 National Survey on Drug Use and Health; Substance Abuse and Mental Health Services Administration (SAMHSA): North Bethesda, MA, USA, 2022. [Google Scholar]
- Garnett, M.F.; Miniño, A.M. Drug Overdose Deaths in the United States, 2003–2023; National Center for Health Statistics: Hyattsville, MD, USA, 2024. [Google Scholar]
- Wang, X.; Sun, L.; Zhou, Y.; Su, Q.J.; Li, J.L.; Ye, L.; Liu, M.Q.; Zhou, W.; Ho, W.Z. Heroin Abuse and/or HIV Infection Dysregulate Plasma Exosomal miRNAs. J. Neuroimmune Pharmacol. 2020, 15, 400–408. [Google Scholar] [CrossRef]
- Chen, F.; Xu, Y.; Shi, K.; Zhang, Z.; Xie, Z.; Wu, H.; Ma, Y.; Zhou, Y.; Chen, C.; Yang, J.; et al. Multi-omics study reveals associations among neurotransmitter, extracellular vesicle-derived microRNA and psychiatric comorbidities during heroin and methamphetamine withdrawal. Biomed. Pharmacother. 2022, 155, 113685. [Google Scholar] [CrossRef] [PubMed]
- Hynes, T.; Fouyssac, M.; Puaud, M.; Joshi, D.; Chernoff, C.; Stiebahl, S.; Michaud, L.; Belin, D. Pan-striatal reduction in the expression of the astrocytic dopamine transporter precedes the development of dorsolateral striatum dopamine-dependent incentive heroin seeking habits. Eur. J. Neurosci. 2024, 59, 2502–2521. [Google Scholar] [CrossRef] [PubMed]
- Parekh, S.V.; Adams, L.O.; Barkell, G.A.; Paniccia, J.E.; Reissner, K.J.; Lysle, D.T. Dorsal hippocampal astrocytes mediate the development of heroin withdrawal-enhanced fear learning. Psychopharmacology 2024, 241, 1265–1275. [Google Scholar] [CrossRef]
- Siemsen, B.M.; Denton, A.R.; Parrila-Carrero, J.; Hooker, K.N.; Carpenter, E.A.; Prescot, M.E.; Brock, A.G.; Westphal, A.M.; Leath, M.N.; McFaddin, J.A.; et al. Heroin Self-Administration and Extinction Increase Prelimbic Cortical Astrocyte-Synapse Proximity and Alter Dendritic Spine Morphometrics That Are Reversed by N-Acetylcysteine. Cells 2023, 12, 1812. [Google Scholar] [CrossRef]
- Kim, R.; Testen, A.; Harder, E.V.; Brown, N.E.; Witt, E.A.; Bellinger, T.J.; Franklin, J.P.; Reissner, K.J. Abstinence-Dependent Effects of Long-Access Cocaine Self-Administration on Nucleus Accumbens Astrocytes Are Observed in Male, But Not Female, Rats. eNeuro 2022, 9. [Google Scholar] [CrossRef]
- Kruyer, A.; Angelis, A.; Garcia-Keller, C.; Li, H.; Kalivas, P.W. Plasticity in astrocyte subpopulations regulates heroin relapse. Sci. Adv. 2022, 8, eabo7044. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, H.; Peng, Q.; Xie, Z.; Chen, F.; Ma, Y.; Zhang, Y.; Zhou, Y.; Yang, J.; Chen, C.; et al. Integration of Molecular Inflammatory Interactome Analyses Reveals Dynamics of Circulating Cytokines and Extracellular Vesicle Long Non-Coding RNAs and mRNAs in Heroin Addicts During Acute and Protracted Withdrawal. Front. Immunol. 2021, 12, 730300. [Google Scholar] [CrossRef]
- Kalso, E. Oxycodone. J. Pain Symptom Manag. 2005, 29, S47–S56. [Google Scholar] [CrossRef]
- van den Beuken-van Everdingen, M.H.; Hochstenbach, L.M.; Joosten, E.A.; Tjan-Heijnen, V.C.; Janssen, D.J. Update on Prevalence of Pain in Patients with Cancer: Systematic Review and Meta-Analysis. J. Pain Symptom Manag. 2016, 51, 1070–1090. [Google Scholar] [CrossRef]
- Kibaly, C.; Alderete, J.A.; Liu, S.H.; Nasef, H.S.; Law, P.Y.; Evans, C.J.; Cahill, C.M. Oxycodone in the Opioid Epidemic: High ‘Liking’, ‘Wanting’, and Abuse Liability. Cell. Mol. Neurobiol. 2021, 41, 899–926. [Google Scholar] [CrossRef] [PubMed]
- Banei, F.; Aliaghaei, A.; Meftahi, G.H. The effect of chronic administration of oxycodone on the behavioral functions and histopathology in the cerebellum and striatum of adult male rats. 3 Biotech 2024, 14, 225. [Google Scholar] [CrossRef]
- Pergolizzi, J.; Boger, R.H.; Budd, K.; Dahan, A.; Erdine, S.; Hans, G.; Kress, H.G.; Langford, R.; Likar, R.; Raffa, R.B.; et al. Opioids and the management of chronic severe pain in the elderly: Consensus statement of an International Expert Panel with focus on the six clinically most often used World Health Organization Step III opioids (buprenorphine, fentanyl, hydromorphone, methadone, morphine, oxycodone). Pain Pract. 2008, 8, 287–313. [Google Scholar] [CrossRef]
- Umukoro, N.N.; Aruldhas, B.W.; Rossos, R.; Pawale, D.; Renschler, J.S.; Sadhasivam, S. Pharmacogenomics of oxycodone: A narrative literature review. Pharmacogenomics 2021, 22, 275–290. [Google Scholar] [CrossRef]
- Zhou, L.; Fan, L.; Kong, C.; Miao, F.; Wu, Y.; Wang, T. Oxycodone suppresses the lipopolysaccharide-induced neuroinflammation by downregulating nuclear factor-kappaB in hippocampal astrocytes of Sprague-Dawley rats. Neuroreport 2020, 31, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kim, S.; Su, Y.; Sharma, M.; Kumar, P.; Singh, S.; Lee, J.; Furdui, C.M.; Singh, R.; Hsu, F.C.; et al. Brain cell-derived exosomes in plasma serve as neurodegeneration biomarkers in male cynomolgus monkeys self-administrating oxycodone. EBioMedicine 2021, 63, 103192. [Google Scholar] [CrossRef]
- Dye, C.N.; Webb, A.I.; Fankhauser, M.P.; Singleton, J.J.; Kalathil, A.; Ringland, A.; Leuner, B.; Lenz, K.M. Peripartum buprenorphine and oxycodone exposure impair maternal behavior and increase neuroinflammation in new mother rats. Brain Behav. Immun. 2025, 124, 264–279. [Google Scholar] [CrossRef]
- Micheli, L.; Lucarini, E.; Toti, A.; Ferrara, V.; Ciampi, C.; Parisio, C.; Bartolucci, G.; Di Cesare Mannelli, L.; Ghelardini, C. Effects of Ultramicronized N-Palmitoylethanolamine Supplementation on Tramadol and Oxycodone Analgesia and Tolerance Prevention. Pharmaceutics 2022, 14, 403. [Google Scholar] [CrossRef]
- Yang, P.P.; Yeh, G.C.; Huang, E.Y.; Law, P.Y.; Loh, H.H.; Tao, P.L. Effects of dextromethorphan and oxycodone on treatment of neuropathic pain in mice. J. Biomed. Sci. 2015, 22, 81. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Zhao, X.; Wang, F.; Tan, R.; Wang, J.; Li, X.; Chen, C.; An, J.; Lu, H. Short term exposure to oxycodone alters the survival, proliferation and differentiation of rat embryonic neural stem cell in vitro. Brain Res. Bull. 2018, 143, 66–72. [Google Scholar] [CrossRef]
- Weiner, S.G.; Hendricks, M.A.; El Ibrahimi, S.; Ritter, G.A.; Hallvik, S.E.; Hildebran, C.; Weiss, R.D.; Boyer, E.W.; Flores, D.P.; Nelson, L.S.; et al. Opioid-related overdose and chronic use following an initial prescription of hydrocodone versus oxycodone. PLoS ONE 2022, 17, e0266561. [Google Scholar] [CrossRef]
- Cardia, L.; Calapai, G.; Quattrone, D.; Mondello, C.; Arcoraci, V.; Calapai, F.; Mannucci, C.; Mondello, E. Preclinical and Clinical Pharmacology of Hydrocodone for Chronic Pain: A Mini Review. Front. Pharmacol. 2018, 9, 1122. [Google Scholar] [CrossRef]
- Le, H.; Hong, H.; Ge, W.; Francis, H.; Lyn-Cook, B.; Hwang, Y.T.; Rogers, P.; Tong, W.; Zou, W. A systematic analysis and data mining of opioid-related adverse events submitted to the FAERS database. Exp. Biol. Med. 2023, 248, 1944–1951. [Google Scholar] [CrossRef]
- Wong, W.; Sari, Y. Effects of Hydrocodone Overdose and Ceftriaxone on Astrocytic Glutamate Transporters and Glutamate Receptors, and Associated Signaling in Nucleus Accumbens as well as Locomotor Activity in C57/BL Mice. Brain Sci. 2024, 14, 361. [Google Scholar] [CrossRef]
- Wong, W.; Sari, Y. Effects of Chronic Hydrocodone Exposure and Ceftriaxone on the Expression of Astrocytic Glutamate Transporters in Mesocorticolimbic Brain Regions of C57/BL Mice. Toxics 2023, 11, 870. [Google Scholar] [CrossRef] [PubMed]
- Chamberlin, K.W.; Cottle, M.; Neville, R.; Tan, J. Oral oxymorphone for pain management. Ann. Pharmacother. 2007, 41, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- Mayyas, F.; Fayers, P.; Kaasa, S.; Dale, O. A systematic review of oxymorphone in the management of chronic pain. J. Pain Symptom Manag. 2010, 39, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Lynch, W.B.; Miracle, S.A.; Goldstein, S.I.; Beierle, J.A.; Bhandari, R.; Gerhardt, E.T.; Farnan, A.; Nguyen, B.M.; Wingfield, K.K.; Kazerani, I.; et al. Validation studies and multiomics analysis of Zhx2 as a candidate quantitative trait gene underlying brain oxycodone metabolite (oxymorphone) levels and behavior. J. Pharmacol. Exp. Ther. 2025, 392, 103557. [Google Scholar] [CrossRef]
- Stannard, C.; Gaskell, H.; Derry, S.; Aldington, D.; Cole, P.; Cooper, T.E.; Knaggs, R.; Wiffen, P.J.; Moore, R.A. Hydromorphone for neuropathic pain in adults. Cochrane Database Syst. Rev. 2016, 2016, CD011604. [Google Scholar] [CrossRef]
- Guay, D.R. Oral hydromorphone extended-release. Consult. Pharm. 2010, 25, 816–828. [Google Scholar] [CrossRef]
- Gregory, T.B. Hydromorphone: Evolving to meet the challenges of today’s health care environment. Clin. Ther. 2013, 35, 2007–2027. [Google Scholar] [CrossRef]
- Sarhill, N.; Walsh, D.; Nelson, K.A. Hydromorphone: Pharmacology and clinical applications in cancer patients. Support. Care Cancer 2001, 9, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Goforth, H.W. Hydromorphone-OROS formulation. Expert Opin. Pharmacother. 2010, 11, 1207–1214. [Google Scholar] [CrossRef]
- Abi-Aad, K.R.; Derian, A. Hydromorphone. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Volpe, D.A.; McMahon Tobin, G.A.; Mellon, R.D.; Katki, A.G.; Parker, R.J.; Colatsky, T.; Kropp, T.J.; Verbois, S.L. Uniform assessment and ranking of opioid mu receptor binding constants for selected opioid drugs. Regul. Toxicol. Pharmacol. 2011, 59, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Shea, J.L. A case of fatal overdose involving both hydromorphone and kratom. J. Forensic Sci. 2024, 69, 355–358. [Google Scholar] [CrossRef]
- Murray, A.; Hagen, N.A. Hydromorphone. J. Pain Symptom Manag. 2005, 29, 57–66. [Google Scholar] [CrossRef]
- Mazer-Amirshahi, M.; Ladkany, D.; Mullins, P.M.; Motov, S.; Perrone, J.; Nelson, L.S.; Pines, J.M. Trends in and predictors of hydromorphone administration in US emergency departments (2007–2014). J. Opioid Manag. 2018, 14, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Mahadeo, S.; Lui, B.; Khusid, E.; Weber, M.; Jotwani, R.; Hoyler, M.; White, R.S. Economic losses resulting from opioid overdose deaths in the United States between 2018 and 2020: By opioid type. J. Opioid Manag. 2024, 20, 375–381. [Google Scholar] [CrossRef]
- Wallage, H.R.; Palmentier, J.P. Hydromorphone-related fatalities in ontario. J. Anal. Toxicol. 2006, 30, 202–209. [Google Scholar] [CrossRef]
- United Nations—International Narcotics Control Board. Report of the International Narcotics Control Board for 2024; United Nations: Vienna, Austria, 2025. [Google Scholar]
- Lee, C.H.; Park, Y.C.; Kim, J.H.; Kim, W.Y.; Lee, Y.S.; Kim, Y.H.; Min, T.J. The effects of hydromorphone on astrocytic responses in cerebral ischemia. Anesth. Pain Med. 2016, 11, 23–27. [Google Scholar] [CrossRef]
- Davis, M. Buprenorphine Pharmacodynamics: A Bridge to Understanding Buprenorphine Clinical Benefits. Drugs 2025, 85, 215–230. [Google Scholar] [CrossRef]
- United Nations—International Narcotics Control Board. Buprenorphine: Reporting Consumption as a First Step Towards Availability; International Narcotics Control Board: Vienna, Austria, 2018. [Google Scholar]
- Buprenorphine Dispensing Rate Maps. Available online: https://www.cdc.gov/overdose-prevention/data-research/facts-stats/buprenorphine-dispensing-maps.html (accessed on 12 August 2025).
- Goetzl, L.; Thompson-Felix, T.; Darbinian, N.; Merabova, N.; Merali, S.; Merali, C.; Sanserino, K.; Tatevosian, T.; Fant, B.; Wimmer, M.E. Novel biomarkers to assess in utero effects of maternal opioid use: First steps toward understanding short- and long-term neurodevelopmental sequelae. Genes Brain Behav. 2019, 18, e12583. [Google Scholar] [CrossRef] [PubMed]
- Niebergall, E.B.; Weekley, D.; Mazur, A.; Olszewski, N.A.; DeSchepper, K.M.; Radant, N.; Vijay, A.S.; Risher, W.C. Abnormal Morphology and Synaptogenic Signaling in Astrocytes Following Prenatal Opioid Exposure. Cells 2024, 13, 837. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Tao, P.L.; Tsay, H.J.; Chiang, Y.C.; Chang, W.T.; Ho, I.K.; Shie, F.S. Dextromethorphan Dampens Neonatal Astrocyte Activation and Endoplasmic Reticulum Stress Induced by Prenatal Exposure to Buprenorphine. Behav. Neurol. 2021, 2021, 6301458. [Google Scholar] [CrossRef]
- Han, Y.; Yan, W.; Zheng, Y.; Khan, M.Z.; Yuan, K.; Lu, L. The rising crisis of illicit fentanyl use, overdose, and potential therapeutic strategies. Transl. Psychiatry 2019, 9, 282. [Google Scholar] [CrossRef]
- Ciccarone, D. The rise of illicit fentanyls, stimulants and the fourth wave of the opioid overdose crisis. Curr. Opin. Psychiatry 2021, 34, 344–350. [Google Scholar] [CrossRef]
- Singh, J.A.; Cleveland, J.D. National U.S. time-trends in opioid use disorder hospitalizations and associated healthcare utilization and mortality. PLoS ONE 2020, 15, e0229174. [Google Scholar] [CrossRef]
- Arendt, F. The Opioid-Overdose Crisis and Fentanyl: The Role of Online Information Seeking via Internet Search Engines. Health Commun. 2021, 36, 1148–1154. [Google Scholar] [CrossRef]
- Comer, S.D.; Cahill, C.M. Fentanyl: Receptor pharmacology, abuse potential, and implications for treatment. Neurosci. Biobehav. Rev. 2019, 106, 49–57. [Google Scholar] [CrossRef]
- Suzuki, J.; El-Haddad, S. A review: Fentanyl and non-pharmaceutical fentanyls. Drug Alcohol Depend. 2017, 171, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Incze, M.A.; Simon, C.; Suen, L.W. Methadone’s Moment. JAMA 2024, 332, 1969–1970. [Google Scholar] [CrossRef]
- Kuczynska, K.; Grzonkowski, P.; Kacprzak, L.; Zawilska, J.B. Abuse of fentanyl: An emerging problem to face. Forensic Sci. Int. 2018, 289, 207–214. [Google Scholar] [CrossRef]
- Lam, D.; Sebastian, A.; Bogguri, C.; Hum, N.R.; Ladd, A.; Cadena, J.; Valdez, C.A.; Fischer, N.O.; Loots, G.G.; Enright, H.A. Dose-dependent consequences of sub-chronic fentanyl exposure on neuron and glial co-cultures. Front. Toxicol. 2022, 4, 983415. [Google Scholar] [CrossRef]
- Burns, G.; DeRienz, R.T.; Baker, D.D.; Casavant, M.; Spiller, H.A. Could chest wall rigidity be a factor in rapid death from illicit fentanyl abuse? Clin. Toxicol. 2016, 54, 420–423. [Google Scholar] [CrossRef]
- Green, T.C.; Gilbert, M. Counterfeit Medications and Fentanyl. JAMA Intern. Med. 2016, 176, 1555–1557. [Google Scholar] [CrossRef]
- Carranza-Aguilar, C.J.; Hernandez-Mendoza, A.; Mejias-Aponte, C.; Rice, K.C.; Morales, M.; Gonzalez-Espinosa, C.; Cruz, S.L. Morphine and Fentanyl Repeated Administration Induces Different Levels of NLRP3-Dependent Pyroptosis in the Dorsal Raphe Nucleus of Male Rats via Cell-Specific Activation of TLR4 and Opioid Receptors. Cell. Mol. Neurobiol. 2022, 42, 677–694. [Google Scholar] [CrossRef]
- Yarotskyy, V.; Nass, S.R.; Hahn, Y.K.; Contois, L.; McQuiston, A.R.; Knapp, P.E.; Hauser, K.F. Sustained fentanyl exposure inhibits neuronal activity in dissociated striatal neuronal-glial cocultures through actions independent of opioid receptors. J. Neurophysiol. 2024, 132, 1056–1073. [Google Scholar] [CrossRef]
- Angeli, A.; Micheli, L.; Turnaturi, R.; Pasquinucci, L.; Parenti, C.; Alterio, V.; Di Fiore, A.; De Simone, G.; Monti, S.M.; Carta, F.; et al. Discovery of a novel series of potent carbonic anhydrase inhibitors with selective affinity for mu Opioid receptor for Safer and long-lasting analgesia. Eur. J. Med. Chem. 2023, 260, 115783. [Google Scholar] [CrossRef]
- Peter, M.; Heja, L. High-Frequency Imaging Reveals Synchronised Delta- and Theta-Band Ca2+ Oscillations in the Astrocytic Soma In Vivo. Int. J. Mol. Sci. 2024, 25, 8911. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zheng, H.; Loh, H.H.; Law, P.Y. Morphine Promotes Astrocyte-Preferential Differentiation of Mouse Hippocampal Progenitor Cells via PKCepsilon-Dependent ERK Activation and TRBP Phosphorylation. Stem Cells 2015, 33, 2762–2772. [Google Scholar] [CrossRef]
- Zheng, H.; Chu, J.; Zeng, Y.; Loh, H.H.; Law, P.Y. Yin Yang 1 phosphorylation contributes to the differential effects of mu-opioid receptor agonists on microRNA-190 expression. J. Biol. Chem. 2010, 285, 21994–22002. [Google Scholar] [CrossRef]
- Sahid, A.S.; Bebbington, M.J.; Marcus, A.; Baracz, S.J.; Zimmermann, K.S.; Oei, J.; Ward, M.C.; Clemens, K.J. Perinatal exposure to methadone or buprenorphine impairs hippocampal-dependent cognition and brain development in juvenile rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 2025, 137, 111255. [Google Scholar] [CrossRef]
- Gibson, J.M.; Chu, T.; Zeng, W.; Wethall, A.C.; Kong, M.; Mellen, N.; Devlin Phinney, L.A.; Cai, J. Perinatal methadone exposure attenuates myelination and induces oligodendrocyte apoptosis in neonatal rat brain. Exp. Biol. Med. 2022, 247, 1067–1079. [Google Scholar] [CrossRef] [PubMed]
- Kreutzwiser, D.; Tawfic, Q.A. Methadone for Pain Management: A Pharmacotherapeutic Review. CNS Drugs 2020, 34, 827–839. [Google Scholar] [CrossRef]
- Suarez, E.A.; Huybrechts, K.F.; Straub, L.; Hernandez-Diaz, S.; Jones, H.E.; Connery, H.S.; Davis, J.M.; Gray, K.J.; Lester, B.; Terplan, M.; et al. Buprenorphine Versus Methadone for Opioid Use Disorder in Pregnancy. N. Engl. J. Med. 2022, 387, 2033–2044. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Yao, H.; Dwivedi, I.; Negraes, P.D.; Zhao, H.W.; Wang, J.; Trujillo, C.A.; Muotri, A.R.; Haddad, G.G. Methadone Suppresses Neuronal Function and Maturation in Human Cortical Organoids. Front. Neurosci. 2020, 14, 593248. [Google Scholar] [CrossRef]
- Navaei, F.; Fathabadi, F.F.; Moghaddam, M.H.; Fathi, M.; Vakili, K.; Abdollahifar, M.A.; Boroujeni, M.E.; Zamani, N.; Zamani, N.; Norouzian, M.; et al. Chronic exposure to methadone impairs memory, induces microgliosis, astrogliosis and neuroinflammation in the hippocampus of adult male rats. J. Chem. Neuroanat. 2022, 125, 102139. [Google Scholar] [CrossRef]
- Zamani, N.; Osgoei, L.T.; Aliaghaei, A.; Zamani, N.; Hassanian-Moghaddam, H. Chronic exposure to methadone induces activated microglia and astrocyte and cell death in the cerebellum of adult male rats. Metab. Brain Dis. 2023, 38, 323–338. [Google Scholar] [CrossRef]
- Ramos-Miguel, A.; Garcia-Fuster, M.J.; Callado, L.F.; La Harpe, R.; Meana, J.J.; Garcia-Sevilla, J.A. Phosphorylation of FADD (Fas-associated death domain protein) at serine 194 is increased in the prefrontal cortex of opiate abusers: Relation to mitogen activated protein kinase, phosphoprotein enriched in astrocytes of 15 kDa, and Akt signaling pathways involved in neuroplasticity. Neuroscience 2009, 161, 23–38. [Google Scholar] [CrossRef]
- De Gregorio, C.; Gallardo, J.; Berrios-Carcamo, P.; Handy, A.; Santapau, D.; Gonzalez-Madrid, A.; Ezquer, M.; Morales, P.; Luarte, A.; Corvalan, D.; et al. Methadone directly impairs central nervous system cells in vitro. Sci. Rep. 2024, 14, 16978. [Google Scholar] [CrossRef]
- Porta-Sales, J.; Garzon-Rodriguez, C.; Villavicencio-Chavez, C.; Llorens-Torrome, S.; Gonzalez-Barboteo, J. Efficacy and Safety of Methadone as a Second-Line Opioid for Cancer Pain in an Outpatient Clinic: A Prospective Open-Label Study. Oncologist 2016, 21, 981–987. [Google Scholar] [CrossRef]
- Grond, S.; Sablotzki, A. Clinical pharmacology of tramadol. Clin. Pharmacokinet. 2004, 43, 879–923. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpaa, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef]
- Stamer, U.M.; Stuber, F.; Muders, T.; Musshoff, F. Respiratory depression with tramadol in a patient with renal impairment and CYP2 D6 gene duplication. Anesth. Analg. 2008, 107, 926–929. [Google Scholar] [CrossRef]
- Reeves, R.R.; Burke, R.S. Tramadol: Basic pharmacology and emerging concepts. Drugs Today 2008, 44, 827–836. [Google Scholar] [CrossRef]
- Spencer, M.R.; Garnett, M.; Miniño, A.M.; Center for Disease Control, National Center for Health Statistics. Drug Overdose Deaths in the United States, 2002–2022; NCHS Data Brief No. 491; Center for Disease Control, National Center for Health Statistics: Hyattsville, MD, USA, 2024. [Google Scholar]
- Sarhan, N.R.; Taalab, Y.M. Oxidative stress/PERK/apoptotic pathways interaction contribute to tramadol neurotoxicity in rat cerebral and cerebellar cortex and thyme enhances the antioxidant defense system: Histological, immunohistochemical and ultrastructural study. Int. J. Sci. Rep. 2018, 4, 124–141. [Google Scholar] [CrossRef]
- Bekheet, E.A. Role of Melatonin in Ameliorating the Harmful Effects of Tramadol on the Frontal Cortex of Adult Male Albino Rat (Histological and Immunohistochemical Study). Egypt. J. Histol. 2024, 47, 838–849. [Google Scholar] [CrossRef]
- Sohrabi, K.; Mohammadzadeh, I.; Kiaeipour Siahkal, S.M.S.; Ebrahimi, M.J.; Moafi, M.; Adimi, N.; Dolatshahi, S.; Beirami, A.; Hasanzadeh, M.; Joudaki, A.; et al. The neuroprotective effect of elderberry diet on the tramadol-induced toxicity in the hippocampus of adult male rats. Tissue Cell 2025, 93, 102757. [Google Scholar] [CrossRef] [PubMed]
- Sakakiyama, M.; Maeda, S.; Isami, K.; Asakura, K.; So, K.; Shirakawa, H.; Nakagawa, T.; Kaneko, S. Preventive and alleviative effect of tramadol on neuropathic pain in rats: Roles of α2-adrenoceptors and spinal astrocytes. J. Pharmacol. Sci. 2014, 124, 244–257. [Google Scholar] [CrossRef] [PubMed]
- Gladden, R.M.; Martinez, P.; Seth, P. Fentanyl Law Enforcement Submissions and Increases in Synthetic Opioid-Involved Overdose Deaths—27 States, 2013–2014. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 837–843. [Google Scholar] [CrossRef]
- Pardo, B.; Taylor, J.; Caulkins, J.P.; Kilmer, B.; Reuter, P.; Stein, B.D. The Future of Fentanyl and Other Synthetic Opioids; RAND Corporation: Santa Monica, CA, USA, 2019. [Google Scholar]
- Tanz, L.J.; Stewart, A.; Gladden, R.M.; Ko, J.Y.; Owens, L.; O’Donnell, J. Detection of Illegally Manufactured Fentanyls and Carfentanil in Drug Overdose Deaths—United States, 2021–2024. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Ringuette, A.E.; Spock, M.; Lindsley, C.W.; Bender, A.M. DARK Classics in Chemical Neuroscience: Carfentanil. ACS Chem. Neurosci. 2020, 11, 3955–3967. [Google Scholar] [CrossRef]
- Vardanyan, R.S.; Hruby, V.J. Fentanyl-related compounds and derivatives: Current status and future prospects for pharmaceutical applications. Future Med. Chem. 2014, 6, 385–412. [Google Scholar] [CrossRef]
- Armenian, P.; Vo, K.T.; Barr-Walker, J.; Lynch, K.L. Fentanyl, fentanyl analogs and novel synthetic opioids: A comprehensive review. Neuropharmacology 2018, 134, 121–132. [Google Scholar] [CrossRef]
- Lent, E.M.; Maistros, K.J.; Oyler, J.M. In vitro dermal absorption of carfentanil. Toxicol. Vitr. 2020, 62, 104696. [Google Scholar] [CrossRef] [PubMed]
- Moss, M.J.; Warrick, B.J.; Nelson, L.S.; McKay, C.A.; Dube, P.A.; Gosselin, S.; Palmer, R.B.; Stolbach, A.I. ACMT and AACT Position Statement: Preventing Occupational Fentanyl and Fentanyl Analog Exposure to Emergency Responders. J. Med. Toxicol. 2017, 13, 347–351. [Google Scholar] [CrossRef]
- George, A.V.; Lu, J.J.; Pisano, M.V.; Metz, J.; Erickson, T.B. Carfentanil—An ultra potent opioid. Am. J. Emerg. Med. 2010, 28, 530–532. [Google Scholar] [CrossRef]
- Shi, Z.; Li, X.; Todaro, D.R.; Cao, W.; Lynch, K.G.; Detre, J.A.; Loughead, J.; Langleben, D.D.; Wiers, C.E. Medial prefrontal neuroplasticity during extended-release naltrexone treatment of opioid use disorder—A longitudinal structural magnetic resonance imaging study. Transl. Psychiatry 2024, 14, 360. [Google Scholar] [CrossRef]
- Turton, S.; Paterson, L.M.; Myers, J.F.; Mick, I.; Lan, C.C.; McGonigle, J.; Bowden-Jones, H.; Clark, L.; Nutt, D.J.; Lingford-Hughes, A.R. Exploratory study of associations between monetary reward anticipation brain responses and mu-opioid signalling in alcohol dependence, gambling disorder and healthy controls. Neuroimage Rep. 2024, 4, 100211. [Google Scholar] [CrossRef] [PubMed]
- Prossin, A.R.; E Koch, A.; Campbell, P.L.; Barichello, T.; Zalcman, S.S.; Zubieta, J.-K. Acute experimental changes in mood state regulate immune function in relation to central opioid neurotransmission: A model of human CNS-peripheral inflammatory interaction. Mol. Psychiatry 2015, 21, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.A.; Nutt, D.J.; Tyacke, R.J. Imidazoline-I2 PET Tracers in Neuroimaging. Int. J. Mol. Sci. 2023, 24, 9787. [Google Scholar] [CrossRef]
- Song, D.; Vigliaturo, J.; Gebo, A.; Burroughs, D.; Birnbaum, A.; Pravetoni, M. The Effect of a Multivalent Vaccine on the Pharmacokinetics of Opioids in a Polydrug Scenario in Rats. J. Pharmacol. Exp. Ther. 2024, 389, 287. [Google Scholar] [CrossRef]
- Schwartz, E.K.C.; De Aquino, J.P.; Sofuoglu, M. Glial modulators as novel therapeutics for comorbid pain and opioid use disorder. Br. J. Clin. Pharmacol. 2024, 90, 3054–3066. [Google Scholar] [CrossRef]
- Jones, J.D. Potential of Glial Cell Modulators in the Management of Substance Use Disorders. CNS Drugs 2020, 34, 697–722. [Google Scholar] [CrossRef]
- Guo, M.L.; Roodsari, S.K.; Cheng, Y.; Dempsey, R.E.; Hu, W. Microglia NLRP3 Inflammasome and Neuroimmune Signaling in Substance Use Disorders. Biomolecules 2023, 13, 922. [Google Scholar] [CrossRef] [PubMed]
- Stein, C. The control of pain in peripheral tissue by opioids. N. Engl. J. Med. 1995, 332, 1685–1690. [Google Scholar] [CrossRef]
- Yaksh, T.W.M. Opioids, analgesia, and pain management. In Goodman & Gilman’s: The Pharmacological Basis of Therapeutics, 13th ed.; Brunton, L., Knollmann, B., Hilal-Dandan, R., Eds.; McGraw-Hill Education: New York, NY, USA, 2017; pp. 255–286. [Google Scholar]
- Chu Sin Chung, P.; Kieffer, B.L. Delta opioid receptors in brain function and diseases. Pharmacol. Ther. 2013, 140, 112–120. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ray, S.; Datta, S.; Saha, A.; Sil, S. Astrocytes and Astrocyte-Derived Extracellular Conduits in Opiate-Mediated Neurological Disorders. Cells 2025, 14, 1454. https://doi.org/10.3390/cells14181454
Ray S, Datta S, Saha A, Sil S. Astrocytes and Astrocyte-Derived Extracellular Conduits in Opiate-Mediated Neurological Disorders. Cells. 2025; 14(18):1454. https://doi.org/10.3390/cells14181454
Chicago/Turabian StyleRay, Sudipta, Souvik Datta, Arnab Saha, and Susmita Sil. 2025. "Astrocytes and Astrocyte-Derived Extracellular Conduits in Opiate-Mediated Neurological Disorders" Cells 14, no. 18: 1454. https://doi.org/10.3390/cells14181454
APA StyleRay, S., Datta, S., Saha, A., & Sil, S. (2025). Astrocytes and Astrocyte-Derived Extracellular Conduits in Opiate-Mediated Neurological Disorders. Cells, 14(18), 1454. https://doi.org/10.3390/cells14181454