Beneficial Handling of Molecular Chaperones (Chaperonotherapy) in Glioblastoma and Neuroblastoma: Novel Therapeutic Targets or Potential Agents?
Abstract
1. Introduction
2. Negative Chaperonotherapies Against GBM and NB
2.1. 90-kDa Heat Shock Protein Inhibition in GBM and NB
2.2. 70-kDa Heat Shock Proteins Inhibition in GBM and NB
2.3. 60-kDa Heat Shock Proteins Inhibition in GBM and NB2.1
2.4. 40-kDa Heat Shock Proteins Inhibition in GBM
2.5. Small Heat Shock Proteins Inhibition in GBM
3. Positive Chaperonotherapies Against NS Tumors
4. Immunotherapy Based on Molecular Chaperones
5. Pharmacological Chaperones and Chemical Chaperones
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
17-AAG | 17-allylamino-17-demethoxygeldanamycin |
αBc | αB-Crystallin |
AKT | Protein kinase B |
AMPK | AMP-activated protein kinase |
ccRCC | clear cell Renal Cell Carcinoma |
CCT | Chaperonin-containing tailless complex polypeptide 1 |
CMA | Chaperone-Mediated Autophagy |
CS | Chaperone System |
DC | Dendritic Cells |
EAD | Epoxyazadiradione |
EF-2 | Elongation factor-2 |
EMT | Epithelial–Mesenchymal Transition |
ER | Endoplasmic Reticulum |
GA | Geldanamycin |
GBM | Glioblastoma |
GRP78 | Glucose-regulating protein 78 |
HCC | Hepatocellular Carcinoma |
HIF | Hypoxia-inducible factor |
HSPs | Heat Shock Proteins |
HSP90 | 90 KDa Heat Shock Proteins |
HSP70 | 70 KDa Heat Shock Proteins |
HSP60 | 60 KDa Heat Shock Proteins |
HSP40 | 40 KDa Heat Shock Proteins |
HSPA5 | Heat Shock Protein A5 |
HSPCC-96 | Heat shock protein peptide complex 96 |
IFN | Interferon |
KRAS | Kirsten rat sarcoma virus |
LAMP-2A | Variant A of lysosome-associated membrane protein-2 |
LTS | Long-term survivor |
mTOR | mammalian Target of Rapamycin |
NGS | Next-Generation Sequencing |
NK | Natural Killer |
NO | Nitric Oxide |
NS | Nervous System |
OS | Overall survival |
PARP | Poly (ADP-ribose) polymerase |
PD-L1 | Programmed Death Ligand-1 |
PI3K | Phosphoinositide 3-kinases |
PFS | Progression-free survival |
Raf | Rapidly Accelerated Fibrosarcoma |
shRNA | short harpin RNA |
sgRNA | single guide RNA |
STS | Short-term survivor |
RA | Rosmarinic Acid |
RNA | Ribonucleic acid |
TCP1 | Tailless complex polypeptide 1 |
TCR | T cell receptor |
TLR | Toll-like Receptor |
TMZ | Temozolomide |
TRiC | Tailless Complex Polypeptide 1 Ring Complex |
TSIR | Tumor-Specific Immune Response |
UPR | Unfolded Protein Response |
VHL | von Hippel-Lindau |
YB-1 | Y-box-binding protein 1 |
References
- Fink, A.L. Chaperone-Mediated Protein Folding. Physiol. Rev. 1999, 79, 425–449. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.E.; Hipp, M.S.; Bracher, A.; Hayer-Hartl, M.; Hartl, F.U. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 2013, 82, 323–355. [Google Scholar] [CrossRef] [PubMed]
- Macario, A.J.L.; Conway de Macario, E. Chaperone Proteins and Chaperonopathies. In Stress: Physiology, Biochemistry, and Pathology Handbook of Stress Series; Fink, G., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 3, pp. 135–152. [Google Scholar]
- Henderson, B.; Lund, P.A.; Coates, A.R. Multiple moonlighting functions of mycobacterial molecular chaperones. Tuberculosis 2010, 90, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Macario, A.J.; Conway de Macario, E. Sick chaperones, cellular stress, and disease. N. Engl. J. Med. 2005, 353, 1489–1501. [Google Scholar] [CrossRef]
- Welch, W.J. Heat shock proteins functioning as molecular chaperones: Their roles in normal and stressed cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1993, 339, 327–333. [Google Scholar] [CrossRef]
- Yun, C.W.; Kim, H.J.; Lim, J.H.; Lee, S.H. Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in Anti-Cancer Therapy. Cells 2019, 9, 60. [Google Scholar] [CrossRef]
- Macario, A.J.L.; Conway de Macario, E. Chaperonopathies and chaperonotherapy. FEBS Lett. 2007, 581, 3681–3688. [Google Scholar] [CrossRef]
- Boliukh, I.; Rombel-Bryzek, A.; Radecka, B. Immunological aspects of heat shock protein functions and their significance in the development of cancer vaccines. Biuletyn Pol. Tow. Onkol. 2022, 7, 202–211. [Google Scholar] [CrossRef]
- Miller, K.D.; Ostrom, Q.T.; Kruchko, C.; Patil, N.; Tihan, T.; Cioffi, G.; Fuchs, H.E.; Waite, K.A.; Jemal, A.; Siegel, R.L.; et al. Brain and other central nervous system tumor statistics, 2021. CA Cancer J. Clin. 2021, 71, 381–406. [Google Scholar] [CrossRef]
- Brown, N.F.; Ottaviani, D.; Tazare, J.; Gregson, J.; Kitchen, N.; Brandner, S.; Fersht, N.; Mulholland, P. Survival Outcomes and Prognostic Factors in Glioblastoma. Cancers 2022, 14, 3161. [Google Scholar] [CrossRef]
- AlSamhori, J.F.; Khan, M.; Hamed, B.M.; Saleem, M.A.; Shahid, F.; Rath, S.; Nabi, W.; Aziz, N.; Shahnawaz, M.; Basharat, A.; et al. Understanding Glioblastoma Survival: A SEER-Based Study of Demographics and Treatment. JCO 2025, 43, e14027. [Google Scholar] [CrossRef]
- Liu, H.; Qiu, W.; Sun, T.; Wang, L.; Du, C.; Hu, Y.; Liu, W.; Feng, F.; Chen, Y.; Sun, H. Therapeutic strategies of glioblastoma (GBM): The current advances in the molecular targets and bioactive small molecule compounds. Acta Pharm. Sin. B 2022, 12, 1781–1804. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, J.; Yang, J. Promising Molecular Targets and Novel Therapeutic Approaches in Neuroblastoma. Curr. Pharmacol. Rep. 2023, 9, 43–58. [Google Scholar] [CrossRef]
- Virtuoso, A.; D’Amico, G.; Scalia, F.; De Luca, C.; Papa, M.; Maugeri, G.; D’Agata, V.; Caruso Bavisotto, C.; D’Amico, A.G. The Interplay between Glioblastoma Cells and Tumor Microenvironment: New Perspectives for Early Diagnosis and Targeted Cancer Therapy. Brain Sci. 2024, 14, 331. [Google Scholar] [CrossRef] [PubMed]
- Vitale, A.M.; Santonocito, R.; Vergilio, G.; Marino Gammazza, A.; Campanella, C.; Conway de Macario, E.; Bucchieri, F.; Macario, A.J.L.; Caruso Bavisotto, C. Brain Tumor-Derived Extracellular Vesicles as Carriers of Disease Markers: Molecular Chaperones and MicroRNAs. Appl. Sci. 2020, 10, 6961. [Google Scholar] [CrossRef]
- Nazaralieva, E.T.; Fedorov, V.S.; Zabrodskaya, Y.M.; Kim, A.V.; Djanaliev, B.R.; Shevtsov, M.A.; Samochernych, K.A. Heat Shock Proteins as Diagnostic and Prognostic Markers in Malignant Tumors of the Central Nervous System. Transl. Med. 2023, 9, 5–15. [Google Scholar] [CrossRef]
- Graner, M.W.; Cumming, R.I.; Bigner, D.D. The Heat Shock Response and Chaperones/Heat Shock Proteins in Brain Tumors: Surface Expression, Release, and Possible Immune Consequences. J. Neurosci. 2007, 27, 11214–11227. [Google Scholar] [CrossRef]
- Alexiou, G.A.; Karamoutsios, A.; Lallas, G.; Ragos, V.; Goussia, A.; Kyritsis, A.P.; Voulgaris, S.; Vartholomatos, G. Expression of Heat Shock Proteins in Brain Tumors. Turk. Neurosurg. 2014, 24, 745–749. [Google Scholar] [CrossRef]
- Cox, A.; Nierenberg, D.; Camargo, O.; Lee, E.; Khaled, A.S.; Mazar, J.; Boohaker, R.J.; Westmoreland, T.J.; Khaled, A.R. Chaperonin containing TCP-1 (CCT/TRiC) is a novel therapeutic and diagnostic target for neuroblastoma. Front. Oncol. 2022, 12, 975088. [Google Scholar] [CrossRef]
- Uçar, E.Ö.; Şengelen, A.; Kamalı, E.M. HSP27, HSP60, HSP70, or HSP90 depletion enhances the antitumor effects of resveratrol via oxidative and ER stress response in human glioblastoma cells. Biochem. Pharmacol. 2023, 208, 115409. [Google Scholar] [CrossRef]
- Lobinger, D.; Gempt, J.; Sievert, W.; Barz, M.; Schmitt, S.; Nguyen, H.T.; Stangl, S.; Werner, C.; Wang, F.; Wu, Z.; et al. Potential Role of HSP70 and Activated NK Cells for Prediction of Prognosis in Glioblastoma Patients. Front. Mol. Biosci. 2021, 8, 669366. [Google Scholar] [CrossRef]
- Calderwood, S.K.; Gong, J. Heat Shock Proteins Promote Cancer: It’s a Protection Racket. Trends Biochem. Sci. 2016, 41, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Yamaki, H.; Nakajima, M.; Shimotohno, K.W.; Tanaka, N. Molecular basis for the actions of HSP90 inhibitors and cancer therapy. J. Antibiot. 2011, 64, 635–644. [Google Scholar] [CrossRef]
- Miyata, Y.; Nakamoto, H.; Neckers, L. The therapeutic target HSP90 and cancer hallmarks. Curr. Pharm. Des. 2013, 19, 347–365. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Hirano, A.; Kato, M.; Herz, F.; Ohama, E. Comparative study on the expression of stress-response protein (srp) 72, srp 27, alpha B-crystallin and ubiquitin in brain tumours. An immunohistochemical investigation. Neuropathol. Appl. Neurobiol. 1993, 19, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Hitotsumatsu, T.; Iwaki, T.; Fukui, M.; Tateishi, J. Distinctive immunohistochemical profiles of small heat shock proteins (heat shock protein 27 and alpha B-crystallin) in human brain tumors. Cancer 1996, 77, 352–361. [Google Scholar] [CrossRef]
- Takano, S.; Wadhwa, R.; Yoshii, Y.; Nose, T.; Kaul, S.C.; Mitsui, Y. Elevated levels of mortalin expression in human brain tumors. Exp. Cell Res. 1997, 237, 38–45. [Google Scholar] [CrossRef]
- Hermisson, M.; Strik, H.; Rieger, J.; Dichgans, J.; Meyermann, R.; Weller, M. Expression and functional activity of heat shock proteins in human glioblastoma multiforme. Neurology 2000, 54, 1357–1365. [Google Scholar] [CrossRef]
- Sun, H.; Zou, H.Y.; Cai, X.Y.; Zhou, H.F.; Li, X.Q.; Xie, W.J.; Xie, W.M.; Du, Z.P.; Xu, L.Y.; Li, E.M.; et al. Network Analyses of the Differential Expression of Heat Shock Proteins in Glioma. DNA Cell Biol. 2020, 39, 1228–1242. [Google Scholar] [CrossRef]
- Nomura, N.; Nomura, M.; Newcomb, E.W.; Zagzag, D. Geldanamycin induces G2 arrest in U87MG glioblastoma cells through downregulation of Cdc2 and cyclin B1. Biochem. Pharmacol. 2007, 73, 1528–1536. [Google Scholar] [CrossRef]
- Yang, J.; Yang, J.M.; Iannone, M.; Shih, W.J.; Lin, Y.; Hait, W.N. Disruption of the EF-2 kinase/HSP90 protein complex: A possible mechanism to inhibit glioblastoma by geldanamycin. Cancer Res. 2001, 61, 4010–4016. [Google Scholar]
- Zagzag, D.; Nomura, M.; Friedlander, D.R.; Blanco, C.Y.; Gagner, J.P.; Nomura, N.; Newcomb, E.W. Geldanamycin inhibits migration of glioma cells in vitro: A potential role for hypoxia-inducible factor (HIF-1alpha) in glioma cell invasion. J. Cell Physiol. 2003, 196, 394–402. [Google Scholar] [CrossRef]
- Newcomb, E.W.; Lukyanov, Y.; Schnee, T.; Esencay, M.; Fischer, I.; Hong, D.; Shao, Y.; Zagzag, D. The geldanamycin analogue 17-allylamino-17-demethoxygeldanamycin inhibits the growth of GL261 glioma cells in vitro and in vivo. Anticancer Drugs 2007, 18, 875–882. [Google Scholar] [CrossRef]
- Sauvageot, C.M.; Weatherbee, J.L.; Kesari, S.; Winters, S.E.; Barnes, J.; Dellagatta, J.; Ramakrishna, N.R.; Stiles, C.D.; Kung, A.L.; Kieran, M.W.; et al. Efficacy of the HSP90 inhibitor 17-AAG in human glioma cell lines and tumorigenic glioma stem cells. Neuro Oncol. 2009, 11, 109–121. [Google Scholar] [CrossRef]
- Belkacemi, L.; Hebb, M.O. HSP27 knockdown produces synergistic induction of apoptosis by HSP90 and kinase inhibitors in glioblastoma multiforme. Anticancer Res. 2014, 34, 4915–4927. [Google Scholar]
- Pastvova, N.; Dolezel, P.; Mlejnek, P. Heat Shock Protein Inhibitor 17-Allyamino-17-Demethoxygeldanamycin, a Potent Inductor of Apoptosis in Human Glioma Tumor Cell Lines, Is a Weak Substrate for ABCB1 and ABCG2 Transporters. Pharmaceuticals 2021, 14, 107. [Google Scholar] [CrossRef]
- Dungey, F.A.; Caldecott, K.W.; Chalmers, A.J. Enhanced radiosensitization of human glioma cells by combining inhibition of poly (ADP-ribose) polymerase with inhibition of heat shock protein 90. Mol. Cancer Ther. 2009, 8, 2243–2254. [Google Scholar] [CrossRef]
- Ohba, S.; Hirose, Y.; Yoshida, K.; Yazaki, T.; Kawase, T. Inhibition of 90-kD heat shock protein potentiates the cytotoxicity of chemotherapeutic agents in human glioma cells. J. Neurosurg. 2010, 112, 33–42. [Google Scholar] [CrossRef]
- Kang, J.; Kamal, A.; Burrows, F.J.; Evers, B.M.; Chung, D.H. Inhibition of neuroblastoma xenograft growth by HSP90 inhibitors. Anticancer Res. 2006, 26, 1903–1908. [Google Scholar]
- Hanna, R.; Abdallah, J.; Abou-Antoun, T. A Novel Mechanism of 17-AAG Therapeutic Efficacy on HSP90 Inhibition in MYCN-Amplified Neuroblastoma Cells. Front. Oncol. 2021, 10, 624560. [Google Scholar] [CrossRef]
- Zhu, H.; Woolfenden, S.; Bronson, R.T.; Jaffer, Z.M.; Barluenga, S.; Winssinger, N.; Rubenstein, A.E.; Chen, R.; Charest, A. The novel HSP90 inhibitor NXD30001 induces tumor regression in a genetically engineered mouse model of glioblastoma multiforme. Mol. Cancer Ther. 2010, 9, 2618–2626. [Google Scholar] [CrossRef]
- Chen, H.; Gong, Y.; Ma, Y.; Thompson, R.C.; Wang, J.; Cheng, Z.; Xue, L. A Brain-Penetrating HSP90 Inhibitor NXD30001 Inhibits Glioblastoma as a Monotherapy or in Combination with Radiation. Front. Pharmacol. 2020, 11, 974. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; He, L.; Xiang, Y.; Tian, C.; Li, C.; Tan, P.; Jing, J.; Tian, Y.; Du, L.; et al. Discovery of Small-Molecule Inhibitors of the HSP90-Calcineurin-NFAT Pathway against Glioblastoma. Cell Chem. Biol. 2019, 26, 352–365.e7. [Google Scholar] [CrossRef]
- Ho, K.T.; Chen, P.F.; Chuang, J.Y.; Gean, P.W.; Hsueh, Y.S. A heat shock protein 90 inhibitor reduces oncoprotein expression and induces cell death in heterogeneous glioblastoma cells with EGFR, PDGFRA, CDK4, and NF1 aberrations. Life Sci. 2022, 288, 120176. [Google Scholar] [CrossRef]
- Milanović, D.; Firat, E.; Grosu, A.L.; Niedermann, G. Increased radiosensitivity and radiothermosensitivity of human pancreatic MIA PaCa-2 and U251 glioblastoma cell lines treated with the novel HSP90 inhibitor NVP-HSP990. Radiat. Oncol. 2013, 8, 42. [Google Scholar] [CrossRef]
- Wachsberger, P.R.; Lawrence, Y.R.; Liu, Y.; Rice, B.; Feo, N.; Leiby, B.; Dicker, A.P. HSP90 inhibition enhances PI-3 kinase inhibition and radiosensitivity in glioblastoma. J. Cancer Res. Clin. Oncol. 2014, 140, 573–582. [Google Scholar] [CrossRef]
- Orth, M.; Albrecht, V.; Seidl, K.; Kinzel, L.; Unger, K.; Hess, J.; Kreutzer, L.; Sun, N.; Stegen, B.; Nieto, A.; et al. Inhibition of HSP90 as a Strategy to Radiosensitize Glioblastoma: Targeting the DNA Damage Response and Beyond. Front. Oncol. 2021, 11, 612354. [Google Scholar] [CrossRef]
- Kaplan, Ö.; Gökşen Tosun, N. Molecular pathway of anticancer effect of next-generation HSP90 inhibitors XL-888 and Debio0932 in neuroblastoma cell line. Med. Oncol. 2024, 41, 194. [Google Scholar] [CrossRef]
- Chandel, S.; Bhattacharya, A.; Gautam, A.; Zeng, W.; Alka, O.; Sachsenberg, T.; Gupta, G.D.; Narang, R.K.; Ravichandiran, V.; Singh, R. Investigation of the anti-cancer potential of epoxyazadiradione in neuroblastoma: Experimental assays and molecular analysis. J. Biomol. Struct. Dyn. 2024, 42, 11377–11395. [Google Scholar] [CrossRef]
- Lee, H.K.; Xiang, C.; Cazacu, S.; Finniss, S.; Kazimirsky, G.; Lemke, N.; Lehman, N.L.; Rempel, S.A.; Mikkelsen, T.; Brodie, C. GRP78 is overexpressed in glioblastomas and regulates glioma cell growth and apoptosis. Neuro Oncol. 2008, 10, 236–243. [Google Scholar] [CrossRef]
- Pyrko, P.; Schönthal, A.H.; Hofman, F.M.; Chen, T.C.; Lee, A.S. The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res. 2007, 67, 9809–9816. [Google Scholar] [CrossRef]
- Booth, L.; Cazanave, S.C.; Hamed, H.A.; Yacoub, A.; Ogretmen, B.; Chen, C.S.; Grant, S.; Dent, P. OSU-03012 suppresses GRP78/BiP expression that causes PERK-dependent increases in tumor cell killing. Cancer Biol. Ther. 2012, 13, 224–236. [Google Scholar] [CrossRef]
- Dadey, D.Y.A.; Kapoor, V.; Hoye, K.; Khudanyan, A.; Collins, A.; Thotala, D.; Hallahan, D.E. Antibody Targeting GRP78 Enhances the Efficacy of Radiation Therapy in Human Glioblastoma and Non-Small Cell Lung Cancer Cell Lines and Tumor Models. Clin. Cancer Res. 2017, 23, 2556–2564. [Google Scholar] [CrossRef]
- Zhu, H.; Cao, X.; Cai, X.; Tian, Y.; Wang, D.; Qi, J.; Teng, Z.; Lu, G.; Ni, Q.; Wang, S.; et al. Pifithrin-μ incorporated in gold nanoparticle amplifies pro-apoptotic unfolded protein response cascades to potentiate synergistic glioblastoma therapy. Biomaterials 2020, 232, 119677. [Google Scholar] [CrossRef]
- Silva, A.G.; Lopes, C.F.B.; Júnior, C.G.C.; Thomé, R.G.; dos Santos, H.B.; Reis, R.; Ribeiro, R.I.M.D.A. WIN55,212-2 induces caspase-independent apoptosis on human glioblastoma cells by regulating HSP70, p53 and Cathepsin D. Toxicol. Vitr. 2019, 57, 233–243. [Google Scholar] [CrossRef]
- Lazarev, V.F.; Sverchinsky, D.V.; Mikhaylova, E.R.; Semenyuk, P.I.; Komarova, E.Y.; Niskanen, S.A.; Nikotina, A.D.; Burakov, A.V.; Kartsev, V.G.; Guzhova, I.V.; et al. Sensitizing tumor cells to conventional drugs: HSP70 chaperone inhibitors, their selection and application in cancer models. Cell Death Dis. 2018, 9, 41. [Google Scholar] [CrossRef]
- Shevtsov, M.; Bobkov, D.; Yudintceva, N.; Likhomanova, R.; Kim, A.; Fedorov, E.; Fedorov, V.; Mikhailova, N.; Oganesyan, E.; Shabelnikov, S.; et al. Membrane-bound Heat Shock Protein mHSP70 Is Required for Migration and Invasion of Brain Tumors. Cancer Res. Commun. 2024, 4, 2025–2044. [Google Scholar] [CrossRef]
- Antonoff, M.B.; Chugh, R.; Borja-Cacho, D.; Dudeja, V.; Clawson, K.A.; Skube, S.J.; Sorenson, B.S.; Saltzman, D.A.; Vickers, S.M.; Saluja, A.K. Triptolide therapy for neuroblastoma decreases cell viability in vitro and inhibits tumor growth in vivo. Surgery 2009, 146, 282–290. [Google Scholar] [CrossRef]
- Antonoff, M.B.; Chugh, R.; Skube, S.J.; Dudeja, V.; Borja-Cacho, D.; Clawson, K.A.; Vickers, S.M.; Saluja, A.K. Role of Hsp-70 in triptolide-mediated cell death of neuroblastoma. J. Surg. Res. 2010, 163, 72–78. [Google Scholar] [CrossRef]
- Jakubowicz-Gil, J.; Langner, E.; Bądziul, D.; Wertel, I.; Rzeski, W. Apoptosis induction in human glioblastoma multiforme T98G cells upon temozolomide and quercetin treatment. Tumor Biol. 2013, 34, 2367–2378. [Google Scholar] [CrossRef]
- Jakubowicz-Gil, J.; Langner, E.; Bądziul, D.; Wertel, I.; Rzeski, W. Silencing of HSP27 and HSP72 in glioma cells as a tool for programmed cell death induction upon temozolomide and quercetin treatment. Toxicol. Appl. Pharmacol. 2013, 273, 580–589. [Google Scholar] [CrossRef]
- Polson, E.S.; Kuchler, V.B.; Abbosh, C.; Ross, E.M.; Mathew, R.K.; Beard, H.A.; da Silva, B.; Holding, A.N.; Ballereau, S.; Chuntharpursat-Bon, E.; et al. KHS101 disrupts energy metabolism in human glioblastoma cells and reduces tumor growth in mice. Sci. Transl. Med. 2018, 10, eaar2718. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Li, J.; Liu, X.; Wang, G.; Luo, M.; Deng, H. Down-regulation of HSP60 Suppresses the Proliferation of Glioblastoma Cells via the ROS/AMPK/mTOR Pathway. Sci. Rep. 2016, 6, 28388. [Google Scholar] [CrossRef] [PubMed]
- Bi, F.; Wang, J.; Zheng, X.; Xiao, J.; Zhi, C.; Gu, J.; Zhang, Y.; Li, J.; Miao, Z.; Wang, Y.; et al. HSP60 participates in the anti-glioma effects of curcumin. Exp. Ther. Med. 2021, 21, 204. [Google Scholar] [CrossRef] [PubMed]
- Caruso Bavisotto, C.; Marino Gammazza, A.; Lo Cascio, F.; Mocciaro, E.; Vitale, A.M.; Vergilio, G.; Pace, A.; Cappello, F.; Campanella, C.; Palumbo Piccionello, A. Curcumin Affects HSP60 Folding Activity and Levels in Neuroblastoma Cells. Int. J. Mol. Sci. 2020, 21, 661. [Google Scholar] [CrossRef]
- Qiu, X.; He, X.; Huang, Q.; Liu, X.; Sun, G.; Guo, J.; Yuan, D.; Yang, L.; Ban, N.; Fan, S.; et al. Overexpression of CCT8 and its significance for tumor cell proliferation, migration and invasion in glioma. Pathol. Res. Pract. 2015, 211, 717–725. [Google Scholar] [CrossRef]
- Zhao, F.; Yao, Z.; Li, Y.; Zhao, W.; Sun, Y.; Yang, X.; Zhao, Z.; Huang, B.; Wang, J.; Li, X.; et al. Targeting the molecular chaperone CCT2 inhibits GBM progression by influencing KRAS stability. Cancer Lett. 2024, 590, 216844. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, L.; Wu, X.; Chen, Y.; Ge, J.; Li, Q.; Xue, Z. Silencing CCT6A suppresses cell migration and invasion in glioblastoma in vitro. Int. J. Clin. Exp. Med. 2017, 10, 13263–13271. [Google Scholar]
- Zhao, D.; Jiang, X.; Yao, C.; Zhang, L.; Liu, H.; Xia, H.; Wang, Y. Heat shock protein 47 regulated by miR-29a to enhance glioma tumor growth and invasion. J. Neurooncol 2014, 118, 39–47. [Google Scholar] [CrossRef]
- Wu, Z.B.; Cai, L.; Lin, S.J.; Leng, Z.G.; Guo, Y.H.; Yang, W.L.; Chu, Y.W.; Yang, S.H.; Zhao, W.G. Heat Shock Protein 47 Promotes Glioma Angiogenesis. Brain Pathol. 2016, 26, 31–42. [Google Scholar] [CrossRef]
- Sang, D.P.; Li, R.J.; Lan, Q. Quercetin sensitizes human glioblastoma cells to temozolomide in vitro via inhibition of HSP27. Acta Pharmacol. Sin. 2014, 35, 832–838. [Google Scholar] [CrossRef]
- Li, J.; Tang, C.; Li, L.; Li, R.; Fan, Y. Quercetin blocks t-AUCB-induced autophagy by HSP27 and Atg7 inhibition in glioblastoma cells in vitro. J. Neurooncol. 2016, 129, 39–45. [Google Scholar] [CrossRef]
- Li, J.; Hu, W.; Lan, Q. The apoptosis-resistance in t-AUCB-treated glioblastoma cells depends on activation of HSP27. J. Neurooncol 2012, 110, 187–194. [Google Scholar] [CrossRef]
- Şengelen, A.; Önay-Uçar, E. Rosmarinic acid and siRNA combined therapy represses HSP27 (HSPB1) expression and induces apoptosis in human glioma cells. Cell Stress Chaperones 2018, 23, 885–896. [Google Scholar] [CrossRef]
- Önay-Uçar, E.; Şengelen, A. Resveratrol and siRNA in combination reduces HSP27 expression and induces caspase-3 activity in human glioblastoma cells. Cell Stress Chaperones 2019, 24, 763–775. [Google Scholar] [CrossRef]
- Yuan, F.; Sun, Q.; Zhang, S.; Ye, L.; Xu, Y.; Xu, Z.; Liu, B.; Zhang, S.; Chen, Q. HSP27 protects against ferroptosis of glioblastoma cells. Hum. Cell 2022, 35, 238–249. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, Y.; Chen, G.; Wang, H.; Liu, Y.; Zhou, Y. Heat shock protein 27 deficiency promotes ferrous ion absorption and enhances acyl-Coenzyme A synthetase long-chain family member 4 stability to promote glioblastoma cell ferroptosis. Cancer Cell Int. 2023, 23, 5. [Google Scholar] [CrossRef]
- Goplen, D.; Bougnaud, S.; Rajcevic, U.; Bøe, S.O.; Skaftnesmo, K.O.; Voges, J.; Enger, P.Ø.; Wang, J.; Tysnes, B.B.; Laerum, O.D.; et al. αB-crystallin is elevated in highly infiltrative apoptosis-resistant glioblastoma cells. Am. J. Pathol. 2010, 177, 1618–1628. [Google Scholar] [CrossRef] [PubMed]
- Hostein, I.; Robertson, D.; DiStefano, F.; Workman, P.; Clarke, P.A. Inhibition of signal transduction by the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res. 2001, 61, 4003–4009. [Google Scholar] [PubMed]
- Dias, S.; Shmelkov, S.V.; Lam, G.; Rafii, S. VEGF (165) promotes survival of leukemic cells by HSP90-mediated induction of Bcl-2 expression and apoptosis inhibition. Blood 2002, 99, 2532–2540. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Kostic, M.; Dyson, H.J. Dynamic Interaction of HSP90 with Its Client Protein p53. J. Mol. Biol. 2011, 411, 158–173. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, J.; Mikami, I.; Tominaga, Y.; Kuchenbecker, K.M.; Lin, Y.C.; Bravo, D.T.; Clement, G.; Yagui-Beltran, A.; Ray, M.R.; Koizumi, K.; et al. Inhibition of HSP90 leads to cell cycle arrest and apoptosis in human malignant pleural mesothelioma. J. Thorac. Oncol. 2008, 3, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Stebbins, C.E.; Russo, A.A.; Schneider, C.; Rosen, N.; Hartl, F.U.; Pavletich, N.P. Crystal structure of an HSP90-geldanamycin complex: Targeting of a protein chaperone by an antitumor agent. Cell 1997, 89, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Roe, S.M.; Prodromou, C.; O’Brien, R.; Ladbury, J.E.; Piper, P.W.; Pearl, L.H. Structural basis for inhibition of the HSP90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem. 1999, 42, 260–266. [Google Scholar] [CrossRef]
- Samuni, Y.; Ishii, H.; Hyodo, F.; Samuni, U.; Krishna, M.C.; Goldstein, S.; Mitchell, J.B. Reactive oxygen species mediate hepatotoxicity induced by the HSP90 inhibitor geldanamycin and its analogs. Free Radic. Biol. Med. 2010, 48, 1559–1563. [Google Scholar] [CrossRef]
- Page, J.; Heath, J.; Fulton, R.; Yalkowsky, E.; Tabibi, E.; Tomaszewski, J.; Smith, A.; Rodman, L. Comparison of geldanamycin (NSC-122750) and 17-allylaminogeldanamycin (NSC-330507D) toxicity in rats. Proc. Am. Assoc. Cancer Res. 1997, 38, 308. [Google Scholar]
- Premkumar, D.R.; Arnold, B.; Pollack, I.F. Cooperative inhibitory effect of ZD1839 (Iressa) in combination with 17-AAG on glioma cell growth. Mol. Carcinog. 2006, 45, 288–301. [Google Scholar] [CrossRef]
- Wang, J.; Lee, J.; Liem, D.; Ping, P. HSPA5 Gene encoding HSP70 chaperone BiP in the endoplasmic reticulum. Gene 2017, 618, 14–23. [Google Scholar] [CrossRef]
- Wen, X.; Chen, X.; Chen, X. Increased Expression of GRP78 Correlates with Adverse Outcome in Recurrent Glioblastoma Multiforme Patients. Turk. Neurosurg. 2020, 30, 11–16. [Google Scholar] [CrossRef]
- Thorsteinsdottir, J.; Stangl, S.; Fu, P.; Guo, K.; Albrecht, V.; Eigenbrod, S.; Erl, J.; Gehrmann, M.; Tonn, J.C.; Multhoff, G.; et al. Overexpression of cytosolic, plasma membrane bound and extracellular heat shock protein 70 (HSP70) in primary glioblastomas. J. Neurooncol. 2017, 135, 443–452. [Google Scholar] [CrossRef]
- Stangl, S.; Gehrmann, M.; Riegger, J.; Kuhs, K.; Riederer, I.; Sievert, W.; Hube, K.; Mocikat, R.; Dressel, R.; Kremmer, E.; et al. Targeting membrane heat-shock protein 70 (HSP70) on tumors by cmHSP70.1 antibody. Proc. Natl. Acad. Sci. USA 2011, 108, 733–738. [Google Scholar] [CrossRef]
- Rérole, A.L.; Gobbo, J.; De Thonel, A.; Schmitt, E.; Pais de Barros, J.P.; Hammann, A.; Lanneau, D.; Fourmaux, E.; Demidov, O.N.; Micheau, O.; et al. Peptides and aptamers targeting HSP70: A novel approach for anticancer chemotherapy. Cancer Res. 2011, 71, 484–495, Erratum in Cancer Res. 2015, 75, 902. https://doi.org/10.1158/0008-5472.CAN-15-0042. [Google Scholar] [CrossRef]
- Friedrich, L.; Kornberger, P.; Mendler, C.T.; Multhoff, G.; Schwaiger, M.; Skerra, A. Selection of an Anticalin® against the membrane form of HSP70 via bacterial surface display and its theranostic application in tumour models. Biol. Chem. 2018, 399, 235–252. [Google Scholar] [CrossRef]
- Markouli, M.; Skouras, P.; Piperi, C. Impact of cuproptosis in gliomas pathogenesis with targeting options. Chem. Biol. Interact. 2025, 408, 111394. [Google Scholar] [CrossRef]
- Qin, Z.; Yang, B.; Jin, X.; Zhao, H.; Liu, N. Cuproptosis in glioblastoma: Unveiling a novel prognostic model and therapeutic potential. Front. Oncol. 2024, 14, 1359778. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Li, S.; Fan, H.; An, J.; Peng, C.; Peng, F. Regulated cell death in glioma: Promising targets for natural small-molecule compounds. Front. Oncol. 2024, 14, 1273841. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Zhou, P.; Lyu, L.; Jiang, S. Systematic analysis based on the cuproptosis-related genes identifies ferredoxin 1 as an immune regulator and therapeutic target for glioblastoma. BMC Cancer 2023, 23, 1249. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Gao, M.; Li, Q.; Shu, L.; Wang, P.; Hao, G. Machine learning predicts cuproptosis-related lncRNAs and survival in glioma patients. Sci. Rep. 2024, 14, 22. [Google Scholar] [CrossRef]
- Yu, W.; Yin, S.; Tang, H.; Li, H.; Zhang, Z.; Yang, K. PER2 interaction with HSP70 promotes cuproptosis in oral squamous carcinoma cells by decreasing AKT stability. Cell Death Dis. 2025, 16, 19. [Google Scholar] [CrossRef]
- David, S.; Vitale, A.M.; Fucarino, A.; Scalia, F.; Vergilio, G.; Conway de Macario, E.; Macario, A.J.L.; Caruso Bavisotto, C.; Pitruzzella, A. The Challenging Riddle about the Janus-Type Role of HSP60 and Related Extracellular Vesicles and miRNAs in Carcinogenesis and the Promises of Its Solution. Appl. Sci. 2021, 11, 1175. [Google Scholar] [CrossRef]
- Sun, B.; Li, G.; Yu, Q.; Liu, D.; Tang, X. HSP60 in cancer: A promising biomarker for diagnosis and a potentially useful target for treatment. J. Drug Target. 2022, 30, 31–45. [Google Scholar] [CrossRef]
- Graziano, F.; Iacopino, D.G.; Cammarata, G.; Scalia, G.; Campanella, C.; Giannone, A.G.; Porcasi, R.; Florena, A.M.; Conway de Macario, E.; Macario, A.J.L.; et al. The Triad Hsp60-miRNAs-Extracellular Vesicles in Brain Tumors: Assessing Its Components for Understanding Tumorigenesis and Monitoring Patients. Appl. Sci. 2021, 11, 2867. [Google Scholar] [CrossRef]
- Marino Gammazza, A.; Campanella, C.; Barone, R.; Caruso Bavisotto, C.; Gorska, M.; Wozniak, M.; Carini, F.; Cappello, F.; D’Anneo, A.; Lauricella, M.; et al. Doxorubicin anti-tumor mechanisms include HSP60 post-translational modifications leading to the HSP60/p53 complex dissociation and instauration of replicative senescence. Cancer Lett. 2017, 385, 75–86. [Google Scholar] [CrossRef]
- Guo, J.; Li, X.; Zhang, W.; Chen, Y.; Zhu, S.; Chen, L.; Xu, R.; Lv, Y.; Wu, D.; Guo, M.; et al. HSP60-regulated Mitochondrial Proteostasis and Protein Translation Promote Tumor Growth of Ovarian Cancer. Sci. Rep. 2019, 9, 12628. [Google Scholar] [CrossRef]
- Kumar, S.; O’Malley, J.; Chaudhary, A.K.; Inigo, J.R.; Yadav, N.; Kumar, R.; Chandra, D. HSP60 and IL-8 axis promotes apoptosis resistance in cancer. Br. J. Cancer 2019, 121, 934–943. [Google Scholar] [CrossRef]
- Wu, X.; Guo, J.; Chen, Y.; Liu, X.; Yang, G.; Wu, Y.; Tian, Y.; Liu, N.; Yang, L.; Wei, S.; et al. The 60-kDa heat shock protein regulates energy rearrangement and protein synthesis to promote proliferation of multiple myeloma cells. Br. J. Haematol. 2020, 190, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhu, S.; Deng, H.; Xu, R. HSP60-knockdown suppresses proliferation in colorectal cancer cells via activating the adenine/AMPK/mTOR signaling pathway. Oncol. Lett. 2021, 22, 630. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, J.C.; Dohi, T.; Kang, B.H.; Altieri, D.C. HSP60 regulation of tumor cell apoptosis. J. Biol. Chem. 2008, 283, 5188–5194. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Guo, X.; Liu, X.M.; Liu, L.; Weng, Q.F.; Dong, S.J.; Knowlton, A.A.; Yuan, W.J.; Lin, L. Extracellular HSP60 induces inflammation through activating and up-regulating TLRs in cardiomyocytes. Cardiovasc. Res. 2013, 98, 391–401. [Google Scholar] [CrossRef]
- Kim, W.; Ryu, J.; Kim, J.E. CCAR2/DBC1 and HSP60 Positively Regulate Expression of Survivin in Neuroblastoma Cells. Int. J. Mol. Sci. 2019, 20, 131. [Google Scholar] [CrossRef]
- Lewis, V.A.; Hynes, G.M.; Zheng, D.; Saibil, H.; Willison, K. T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol. Nature 1992, 358, 249–252. [Google Scholar] [CrossRef]
- Hallal, S.; Russell, B.P.; Wei, H.; Lee, M.Y.T.; Toon, C.W.; Sy, J.; Shivalingam, B.; Buckland, M.E.; Kaufman, K.L. Extracellular Vesicles from Neurosurgical Aspirates Identifies Chaperonin Containing TCP1 Subunit 6A as a Potential Glioblastoma Biomarker with Prognostic Significance. Proteomics 2019, 19, e1800157. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Z.; Zhu, H.; You, P.; Liu, H.; Wang, W.K.; Fan, X.; Yang, Y.; Xu, K.; Zhu, Y.; Li, Q.; et al. Upregulated YB-1 protein promotes glioblastoma growth through a YB-1/CCT4/mLST8/mTOR pathway. J. Clin. Investig. 2022, 132, e146536. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhou, T.; Wang, Z.; Qi, B.; Xia, H. HSP47 Promotes Glioblastoma Stemlike Cell Survival by Modulating Tumor Microenvironment Extracellular Matrix through TGF-β Pathway. ACS Chem. Neurosci. 2017, 8, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, A.; Steiger, R.H.; Fröhli, E.; Schäfer, R.; von Deimling, A.; Wiestler, O.D.; Klemenz, R. Expression of alpha B-crystallin in human brain tumors. Int. J. Cancer 1993, 55, 760–764. [Google Scholar] [CrossRef]
- Zhang, R.; Tremblay, T.L.; McDermid, A.; Thibault, P.; Stanimirovic, D. Identification of differentially expressed proteins in human glioblastoma cell lines and tumors. Glia 2003, 42, 194–208. [Google Scholar] [CrossRef]
- Concannon, C.G.; Gorman, A.M.; Samali, A. On the role of HSP27 in regulating apoptosis. Apoptosis 2003, 8, 61–70. [Google Scholar] [CrossRef]
- Heinrich, J.C.; Donakonda, S.; Haupt, V.J.; Lennig, P.; Zhang, Y.; Schroeder, M. New HSP27 inhibitors efficiently suppress drug resistance development in cancer cells. Oncotarget 2016, 7, 68156–68169. [Google Scholar] [CrossRef]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef]
- Noch, E.K.; Ramakrishna, R.; Magge, R. Challenges in the Treatment of Glioblastoma: Multisystem Mechanisms of Therapeutic Resistance. World Neurosurg. 2018, 116, 505–517. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, T.; Zhao, S.; Liu, H.; Han, D.; Zhen, Y.; Xu, D.; Wang, Y.; Yang, H.; Zhang, G.; et al. Inhibition of heat shock protein response enhances PS-341-mediated glioma cell death. Ann. Surg. Oncol. 2012, 19 (Suppl. S3), S421–S429. [Google Scholar] [CrossRef]
- Macario, A.J.L.; Conway de Macario, E. Chaperonins in Cancer: Expression, Function, and Migration in Extracellular Vesicles. Semin. Cancer Biol. 2022, 86, 26–35. [Google Scholar] [CrossRef]
- Gu, J.; He, Y.; He, C.; Zhang, Q.; Huang, Q.; Bai, S.; Wang, R.; You, Q.; Wang, L. Advances in the structures, mechanisms and targeting of molecular chaperones. Signal Transduct. Target. Ther. 2025, 10, 84, Erratum in Signal Transduct Target Ther. 2025, 10, 117. https://doi.org/10.1038/s41392-025-02215-w. [Google Scholar] [CrossRef] [PubMed]
- Assaye, M.A.; Gizaw, S.T. Chaperone-Mediated Autophagy and Its Implications for Neurodegeneration and Cancer. Int. J. Gen. Med. 2022, 15, 5635–5649. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.; Cuervo, A.M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 2018, 19, 365–381. [Google Scholar] [CrossRef] [PubMed]
- Hubert, V.; Weiss, S.; Rees, A.J.; Kain, R. Modulating Chaperone-Mediated Autophagy and Its Clinical Applications in Cancer. Cells 2022, 11, 2562. [Google Scholar] [CrossRef]
- Li, W.; Dou, J.; Yang, J.; Xu, H.; She, H. Targeting Chaperone-Mediated Autophagy for Disease Therapy. Curr. Pharmacol. Rep. 2018, 4, 261–275. [Google Scholar] [CrossRef]
- Heritz, J.A.; Backe, S.J.; Mollapour, M. Molecular Chaperones: Guardians of Tumor Suppressor Stability and Function. Oncotarget 2024, 15, 679–696. [Google Scholar] [CrossRef]
- Melville, M.W.; McClellan, A.J.; Meyer, A.S.; Darveau, A.; Frydman, J. The HSP70 and TRiC/CCT Chaperone Systems Cooperate In Vivo To Assemble the Von Hippel-Lindau Tumor Suppressor Complex. Mol. Cell Biol. 2003, 23, 3141–3151. [Google Scholar] [CrossRef]
- Shmueli, M.D.; Schnaider, L.; Rosenblum, D.; Herzog, G.; Gazit, E.; Segal, D. Structural Insights into the Folding Defects of Oncogenic pVHL Lead to Correction of Its Function In Vitro. PLoS ONE 2013, 8, e66333. [Google Scholar] [CrossRef]
- Li, Z.; Bao, S.; Wu, Q.; Wang, H.; Eyler, C.; Sathornsumetee, S.; Shi, Q.; Cao, Y.; Lathia, J.; McLendon, R.E.; et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell. 2009, 15, 501–513. [Google Scholar] [CrossRef]
- Chandra, D.; Choy, G.; Tang, D.G. Cytosolic accumulation of HSP60 during apoptosis with or without apparent mitochondrial release: Evidence that its pro-apoptotic or pro-survival functions involve differential interactions with caspase-3. J. Biol. Chem. 2007, 282, 31289–31301. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, X.; Chang, H.; Huang, X.; Guo, X.; Du, X.; Tian, S.; Wang, L.; Lyv, Y.; Yuan, P.; et al. HSP60 Exerts a Tumor Suppressor Function by Inducing Cell Differentiation and Inhibiting Invasion in Hepatocellular Carcinoma. Oncotarget 2016, 7, 68976–68989. [Google Scholar] [CrossRef]
- Tang, H.; Chen, Y.; Liu, X.; Wang, S.; Lv, Y.; Wu, D.; Wang, Q.; Luo, M.; Deng, H. Downregulation of HSP60 Disrupts Mitochondrial Proteostasis to Promote Tumorigenesis and Progression in Clear Cell Renal Cell Carcinoma. Oncotarget 2016, 7, 38822–38834. [Google Scholar] [CrossRef] [PubMed]
- Alhasan, B.; Mikeladze, M.; Guzhova, I.; Margulis, B. Autophagy, Molecular Chaperones, and Unfolded Protein Response as Promoters of Tumor Recurrence. Cancer Metastasis Rev. 2023, 42, 217–254. [Google Scholar] [CrossRef]
- Ling, S.P.; Ming, L.C.; Dhaliwal, J.S.; Gupta, M.; Ardianto, C.; Goh, K.W.; Hussain, Z.; Shafqat, N. Role of Immunotherapy in the Treatment of Cancer: A Systematic Review. Cancers 2022, 14, 5205. [Google Scholar] [CrossRef] [PubMed]
- Murshid, A.; Gong, J.; Stevenson, M.A.; Calderwood, S.K. Heat Shock Proteins and Cancer Vaccines: Developments in the Past Decade and Chaperoning in the Decade to Come. Expert. Rev. Vaccines 2011, 10, 1553–1568. [Google Scholar] [CrossRef] [PubMed]
- Murshid, A.; Theriault, J.; Gong, J.; Calderwood, S.K. Investigating receptors for extracellular heat shock proteins. Methods Mol. Biol. 2011, 787, 289–302. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Udono, H. Heat Shock Protein-Peptide Complexes in Cancer Immunotherapy. Curr. Opin. Immunol. 1994, 6, 728–732. [Google Scholar] [CrossRef]
- Tsan, M.-F.; Gao, B. Cytokine Function of Heat Shock Proteins. Am. J. Physiol. Cell Physiol. 2004, 286, C739–C744. [Google Scholar] [CrossRef]
- Panjwani, N.N.; Popova, L.; Srivastava, P.K. Heat Shock Proteins Gp96 and HSP70 Activate the Release of Nitric Oxide by APCs. J. Immunol. 2002, 168, 2997–3003. [Google Scholar] [CrossRef]
- Mrugala, M.M. Advances and Challenges in the Treatment of Glioblastoma: A Clinician’s Perspective. Discov. Med. 2013, 15, 221–230. [Google Scholar]
- Calderwood, S.K. Chaperones and Slow Death—A Recipe for Tumor Immunotherapy. Trends Biotechnol. 2005, 23, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Graner, M.W.; Katsanis, E. Chaperone Proteins/Heat Shock Proteins as Anticancer Vaccines. In Handbook of Cancer Vaccines; Morse, M.A., Clay, T.M., Lyerly, H.K., Eds.; Humana Press: Totowa, NJ, USA, 2004; pp. 297–316. [Google Scholar]
- Graner, M.W.; Bigner, D.D. Chaperone Proteins and Brain Tumors: Potential Targets and Possible Therapeutics. Neuro Oncol. 2005, 7, 260–278. [Google Scholar] [CrossRef] [PubMed]
- Suto, R.; Srivastava, P.K. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 1995, 269, 1585–1588. [Google Scholar] [CrossRef] [PubMed]
- Tamura, Y.; Peng, P.; Liu, K.; Daou, M.; Srivastava, P.K. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 1997, 278, 117–120. [Google Scholar] [CrossRef]
- Crane, C.A.; Han, S.J.; Ahn, B.; Oehlke, J.; Kivett, V.; Fedoroff, A.; Butowski, N.; Chang, S.M.; Clarke, J.; Berger, M.S.; et al. Individual Patient-Specific Immunity against High-Grade Glioma after Vaccination with Autologous Tumor Derived Peptides Bound to the 96 KD Chaperone Protein. Clin. Cancer Res. 2013, 19, 205–214. [Google Scholar] [CrossRef]
- Bloch, O.; Crane, C.A.; Fuks, Y.; Kaur, R.; Aghi, M.K.; Berger, M.S.; Butowski, N.A.; Chang, S.M.; Clarke, J.L.; McDermott, M.W.; et al. Heat-Shock Protein Peptide Complex–96 Vaccination for Recurrent Glioblastoma: A Phase II, Single-Arm Trial. Neuro Oncol. 2014, 16, 274–279. [Google Scholar] [CrossRef]
- Bloch, O.; Lim, M.; Sughrue, M.E.; Komotar, R.J.; Abrahams, J.M.; O’Rourke, D.M.; D’Ambrosio, A.; Bruce, J.N.; Parsa, A.T. Autologous Heat Shock Protein Peptide Vaccination for Newly Diagnosed Glioblastoma: Impact of Peripheral PD-L1 Expression on Response to Therapy. Clin. Cancer Res. 2017, 23, 3575–3584. [Google Scholar] [CrossRef]
- Ji, N.; Zhang, Y.; Liu, Y.; Xie, J.; Wang, Y.; Hao, S.; Gao, Z. Heat shock protein peptide complex-96 vaccination for newly diagnosed glioblastoma: A phase I, single-arm trial. JCI Insight 2018, 3, e99145. [Google Scholar] [CrossRef]
- Zhang, Y.; Mudgal, P.; Wang, L.; Wu, H.; Huang, N.; Alexander, P.B.; Gao, Z.; Ji, N.; Li, Q.J. T Cell Receptor Repertoire as a Prognosis Marker for Heat Shock Protein Peptide Complex-96 Vaccine Trial against Newly Diagnosed Glioblastoma. OncoImmunology 2020, 9, 1749476. [Google Scholar] [CrossRef] [PubMed]
- Shevtsov, M.A.; Nikolaev, B.P.; Yakovleva, L.Y.; Parr, M.A.; Marchenko, Y.Y.; Eliseev, I.; Yudenko, A.; Dobrodumov, A.V.; Zlobina, O.; Zhakhov, A.; et al. 70-kDa Heat Shock Protein Coated Magnetic Nanocarriers as a Nanovaccine for Induction of Anti-Tumor Immune Response in Experimental Glioma. J. Control. Release 2015, 220, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Shevtsov, M.A.; Nikolaev, B.P.; Ryzhov, V.A.; Yakovleva, L.Y.; Marchenko, Y.Y.; Parr, M.A.; Rolich, V.I.; Mikhrina, A.L.; Dobrodumov, A.V.; Pitkin, E.; et al. Ionizing radiation improves glioma-specific targeting of superparamagnetic iron oxide nanoparticles conjugated with cmHSP70.1 monoclonal antibodies (SPION-cmHSP70.1). Nanoscale 2015, 7, 20652–20664. [Google Scholar] [CrossRef] [PubMed]
- Shevtsov, M.; Stangl, S.; Nikolaev, B.; Yakovleva, L.; Marchenko, Y.; Tagaeva, R.; Sievert, W.; Pitkin, E.; Mazur, A.; Tolstoy, P.; et al. Granzyme B Functionalized Nanoparticles Targeting Membrane HSP70-Positive Tumors for Multimodal Cancer Theranostics. Small 2019, 15, e1900205. [Google Scholar] [CrossRef]
- Shevtsov, M.A.; Pozdnyakov, A.V.; Mikhrina, A.L.; Yakovleva, L.Y.; Nikolaev, B.P.; Dobrodumov, A.V.; Komarova, E.Y.; Meshalkina, D.A.; Ischenko, A.M.; Pitkin, E.; et al. Effective Immunotherapy of Rat Glioblastoma with Prolonged Intratumoral Delivery of Exogenous Heat Shock Protein HSP70. Int. J. Cancer 2014, 135, 2118–2128. [Google Scholar] [CrossRef]
- Shevtsov, M.; Kim, A.; Samochernych, A.; Romanova, I.; Margulis, B.; Yakovenko, I.; Ischenko, A.; Khachatryan, W.; Guzhova, I. Pilot Study of Intratumoral Injection of Recombinant Heat Shock Protein 70 in the Treatment of Malignant Brain Tumors in Children. Onco Targets Ther. 2014, 2014, 1071–1081. [Google Scholar] [CrossRef]
- Wu, Z.B.; Cai, L.; Qiu, C.; Zhang, A.L.; Lin, S.J.; Yao, Y.; Xu, J.; Zhou, L.F. CTL responses to HSP47 associated with the prolonged survival of patients with glioblastomas. Neurology 2014, 82, 1261–1265. [Google Scholar] [CrossRef]
- Back, J.F.; Oakenfull, D.; Smith, M.B. Increased Thermal Stability of Proteins in the Presence of Sugars and Polyols. Biochemistry 1979, 18, 5191–5196. [Google Scholar] [CrossRef]
- Henle, K.J.; Peck, J.W.; Higashikubo, R. Protection against Heat-Induced Cell Killing by Polyols In Vitro. Cancer Res. 1983, 43, 1624–1627. [Google Scholar]
- Pinard, M.; Dastpeyman, S.; Poitras, C.; Bernard, G.; Gauthier, M.S.; Coulombe, B. Riluzole Partially Restores RNA Polymerase III Complex Assembly in Cells Expressing the Leukodystrophy-Causative Variant POLR3B R103H. Mol. Brain 2022, 15, 98. [Google Scholar] [CrossRef]
- Scafuri, B.; Verdino, A.; D’Arminio, N.; Marabotti, A. Computational Methods to Assist in the Discovery of Pharmacological Chaperones for Rare Diseases. Briefings Bioinform. 2022, 23, bbac198. [Google Scholar] [CrossRef] [PubMed]
- Liguori, L.; Monticelli, M.; Allocca, M.; Hay Mele, B.; Lukas, J.; Cubellis, M.V.; Andreotti, G. Pharmacological Chaperones: A Therapeutic Approach for Diseases Caused by Destabilizing Missense Mutations. IJMS 2020, 21, 489. [Google Scholar] [CrossRef] [PubMed]
- Morello, J.P.; Salahpour, A.; Laperrière, A.; Bernier, V.; Arthus, M.F.; Lonergan, M.; Petäjä-Repo, U.; Angers, S.; Morin, D.; Bichet, D.G.; et al. Pharmacological Chaperones Rescue Cell-Surface Expression and Function of Misfolded V2 Vasopressin Receptor Mutants. J. Clin. Investig. 2000, 105, 887–895. [Google Scholar] [CrossRef]
- Ringe, D.; Petsko, G.A. What Are Pharmacological Chaperones and Why Are They Interesting? J. Biol. 2009, 8, 80. [Google Scholar] [CrossRef] [PubMed]
- Rajan, R.S.; Tsumoto, K.; Tokunaga, M.; Tokunaga, H.; Kita, Y.; Arakawa, T. Chemical and Pharmacological Chaperones: Application for Recombinant Protein Production and Protein Folding Diseases. Curr. Med. Chem. 2011, 18, 1–15. [Google Scholar] [CrossRef]
- Perlmutter, D.H. Chemical Chaperones: A Pharmacological Strategy for Disorders of Protein Folding and Trafficking. Pediatr. Res. 2002, 52, 832–836. [Google Scholar] [CrossRef]
- Diamant, S.; Eliahu, N.; Rosenthal, D.; Goloubinoff, P. Chemical Chaperones Regulate Molecular Chaperones In Vitro and in Cells under Combined Salt and Heat Stresses*. J. Biol. Chem. 2001, 276, 39586–39591. [Google Scholar] [CrossRef]
- Bai, C.; Biwersi, J.; Verkman, A.S.; Matthay, M.A. A Mouse Model to Test the in Vivo Efficacy of Chemical Chaperones. J. Pharmacol. Toxicol. Methods 1998, 40, 39–45. [Google Scholar] [CrossRef]
- Lin, P.S.; Kwock, L.; Hefter, K. Protection of Heat Induced Cytoxicity by Glycerol. J. Cell Physiol. 1981, 108, 439–443. [Google Scholar] [CrossRef]
- Leandro, P.; Gomes, C.M. Protein Misfolding in Conformational Disorders: Rescue of Folding Defects and Chemical Chaperoning. Mini Rev. Med. Chem. 2008, 8, 901–911. [Google Scholar] [CrossRef]
- Betancor-Fernández, I.; Timson, D.J.; Salido, E.; Pey, A.L. Natural (and Unnatural) Small Molecules as Pharmacological Chaperones and Inhibitors in Cancer. In Targeting Trafficking in Drug Development; Ulloa-Aguirre, A., Tao, Y.X., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 245, pp. 155–190. [Google Scholar]
- Medina-Carmona, E.; Palomino-Morales, R.J.; Fuchs, J.E.; Padín-Gonzalez, E.; Mesa-Torres, N.; Salido, E.; Timson, D.J.; Pey, A.L. Conformational Dynamics Is Key to Understanding Loss-of-Function of NQO1 Cancer-Associated Polymorphisms and Its Correction by Pharmacological Ligands. Sci. Rep. 2016, 6, 20331. [Google Scholar] [CrossRef]
- Nolan, K.A.; Scott, K.A.; Barnes, J.; Doncaster, J.; Whitehead, R.C.; Stratford, I.J. Pharmacological Inhibitors of NAD(P)H Quinone Oxidoreductase, NQO1: Structure/Activity Relationships and Functional Activity in Tumour Cells. Biochem. Pharmacol. 2010, 80, 977–981. [Google Scholar] [CrossRef]
- Papp, E.; Csermely, P. Chemical Chaperones: Mechanisms of Action and Potential Use. In Molecular Chaperones in Health and Disease; Starke, K., Gaestel, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 172, pp. 405–416. [Google Scholar]
- Issaeva, N.; Friedler, A.; Bozko, P.; Wiman, K.G.; Fersht, A.R.; Selivanova, G. Rescue of Mutants of the Tumor Suppressor P53 in Cancer Cells by a Designed Peptide. Proc. Natl. Acad. Sci. USA 2003, 100, 13303–13307. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Rastinejad, F.; El-Deiry, W.S. Restoring P53-Dependent Tumor Suppression. Cancer Biol. Ther. 2003, 2, S55–S63. [Google Scholar] [CrossRef][Green Version]
- Pujols, J.; Peña-Díaz, S.; Pallarès, I.; Ventura, S. Chemical Chaperones as Novel Drugs for Parkinson’s Disease. Trends Mol. Med. 2020, 26, 408–421. [Google Scholar] [CrossRef]
- Tao, Y.X.; Conn, P.M. Pharmacoperones as Novel Therapeutics for Diverse Protein Conformational Diseaes. Physiol. Rev. 2018, 98, 697–725. [Google Scholar] [CrossRef]
Targeted Molecular Chaperones | Therapeutic Agent | Sample(s) | Effects | Reference(s) |
---|---|---|---|---|
HSP90 | Geldanamycin | Glioma cell lines | Induced cell cycle arrest and reduced cell proliferation and migration by disrupting the interaction with the substrate proteins Cdc2, EF-2 and HIF-1alpha | [31,32,33] |
17-AAG | Glioma cell lines | Arrested cell growth and proliferation, and induced apoptosis by inhibiting some HSP90′s client proteins | [32,34,35,36,37] | |
Orthotopic glioma mouse models | Inhibited tumor growth | [32,34,35] | ||
Glioma cell lines and glioma mouse models | Enhanced the effects of chemo-radiotherapy | [35,38,39] | ||
Human NB xenografts | Inhibited tumor growth and induced apoptosis by decreasing Raf-1 and increasing protein expression of cleaved PARP | [40] | ||
NB cell lines | Reduced cell proliferation, viability, and migration/invasion, and induced apoptosis by interfering with different HSP90-dependent molecular pathways | [41] | ||
NXD30001 | GBM cells and GBM mouse models | Inhibited tumor growth by targeting the EGFR-PI3K-AKT axis and increased radiosensitivity | [42,43] | |
YZ129 and its derivatives | GBM cells | Induced GBM cell-cycle arrest at the G2/M phase, promoted cells apoptosis and inhibited cells proliferation and migration by targeting the calcineurin-NFAT pathway and the PI3K/AKT/mTOR signaling axis | [44] | |
AUY922 | Immortalized and patient-derived GBM cell lines | Decreased cell viability and induced cell death by reducing some oncoproteins expression | [45] | |
HSP990 | GBM cell lines and GBM-bearing mice | Induced GBM cells cell-cycle arrest at the G2/M phase and death by suppressing the AKT signaling, and increased radiosensitivity | [46,47] | |
NW457 | GBM cell lines and the orthotopic GBM mouse model | Reduced tumor cell proliferation and tumor progression, and increased radiosensitivity | [48] | |
Small interfering RNA | GBM cells | Made cells more sensitive to apoptosis upon resveratrol treatment by inducing ER stress and UPR cascades | [21] | |
XL-888 and Debio0932 | NB cell line | Affected different cancer-related processes, including tumor growth, cell proliferation, migration, invasion, metastasis, angiogenesis, and apoptosis | [49] | |
EAD | NB cell line | Suppressed cell proliferation, enhanced the rate of apoptosis, and arrested cell cycle at the SubG0 and G2/M phases | [50] | |
EC5 | Human NB xenografts | Inhibited tumor growth and induced apoptosis by decreasing Raf-1 and increasing protein expression of cleaved PARP | [40] | |
HSPA5/GRP78/Bip (HSP70 family) | Small interfering RNA | GBM cell lines | Inhibited glioma cells’ growth and increased their sensitivity to various chemotherapeutics | [51,52] |
OSU-03012 | GBM cells and GBM-bearing mice | Induced cell death, suppressed tumor growth, and enhanced radiation efficacy | [53] | |
Anti-HSPA5 antibody | GBM cells and the heterotopic tumor mouse model | Suppressed cell proliferation and induced apoptosis by inhibiting the PI3K/AKT/mTOR signaling pathway, and delayed tumor growth in vivo in combination with radiation | [54] | |
Pifithrin-μ | GBM-bearing mice | Inhibited tumor progression by activating pro-apoptotic UPR cascades | [55] | |
HSP70 | WIN55-212-2 | GBM cell lines | Inhibited cell migration, invasion, and clonogenicity | [56] |
AEC | GBM cells | Sensitized cells to doxorubicin, inducing cell death | [57] | |
pifithrin-μ/PES and JG98 | Immortalized glioma cell lines, neuro-oncologic patient-derived cells and orthotopic brain tumor model | Reduced cell migration and invasiveness, delayed brain tumor progression and increased overall survival | [58] | |
Small interfering RNA | GBM cells | Made cells more sensitive to apoptosis upon resveratrol treatment by inducing ER stress and UPR cascades | [21] | |
Triptolide | NB cells and NB orthotopic mouse model | Decreased cell viability and reduced tumor growth in vivo | [59,60] | |
HSP72 (HSP70 family) | Quercetin | GBM cells | Sensitized cells to temozolomide and promoted apoptosis by activating caspase 3 and 9, inducing cytochrome c release, and decreasing the mitochondrial membrane potential | [61] |
Small interfering RNA | Glioma cells | Sensitized cells to temozolomide and quercetin and induced apoptosis by decreasing mitochondrial membrane potential, increasing the release of cytochrome c, and activating caspase 3 and caspase 9 | [62] | |
HSP60 | Synthetic molecule KHS101 | Patient-derived GBM cell lines and xenograft tumor-bearing mice | Disrupted mitochondrial-dependent energy metabolism, reduced tumor growth, and increased survival | [63] |
Anti-HSP60 shRNA | GBM cell line | Inhibited cell proliferation by activating the ROS-AMPK-mTOR pathway | [64] | |
Small interfering RNA | GBM cells | Made cells more sensitive to apoptosis upon resveratrol treatment by inducing ER stress and UPR cascades | [21] | |
Curcumin | Glioma cells | Blocked the inflammatory HSP60/TLR-4 signaling pathway and promoted tumor cell apoptosis | [65] | |
NB cells | Promoted cancer cells death | [66] | ||
CCT8 | Small interfering RNA | GBM cell lines | Decreased cell proliferation, migration, and invasion capacity and made | [67] |
CCT2 | Dihydroartemisinin | GBM cell lines and GBM animal models | Inhibited the proliferative activity, invasion, and migration ability of GBM by targeting the CCT2-KRAS axis | [68] |
CT20p | NB cell lines | Reduced cell viability and migration | [20] | |
CCT6A | Small interfering RNA | GBM cell lines | Reduced cell migratory and invasive capacity | [69] |
HSP47 | Small interfering RNA | Glioma cells | Reduced cell viability, growth, migration, and invasion | [70,71] |
Small interfering RNA and anti-HSP47 shRNA | Glioma xenograft mouse model | Reduced tumor growth and angiogenesis | [70,71] | |
HSP27 | Quercetin | GBM cells | Sensitized cells to temozolomide and promoted apoptosis by activating caspase 3 and 9, inducing cytochrome c release, and decreasing the mitochondrial membrane potential | [61,72] |
Induced cell death by blocking autophagy and strengthening the cytotoxic effect of the epoxide t-AUCB | [73] | |||
KRIBB3 | GBM cells | Potentiated the cytotoxic effect of t-AUCB and induced cell apoptosis by increasing caspase-3 activity | [74] | |
Small interfering RNA | Glioma cells | Sensitized cells to temozolomide, quercetin, resveratrol, rosmarinic acid, and staurosporine, and induced apoptosis | [21,36,62,75,76] | |
Rosmarinic acid | Glioma cells | Induced cell death by activating caspase 3 | [75] | |
Anti-HSP27 sgRNA and shRNA | GBM cells | Promoted erastin-induced ferroptosis | [77,78] | |
αB-Crystallin | Small interfering RNA | GBM cells | Reduced the cells’ migratory ability and sensitized them to various apoptotic inducers | [79] |
Involved Molecular Chaperones | Therapeutic Agent and Mechanism of Action | Model(s) | Systemic Effect(s) | Reference(s) |
---|---|---|---|---|
HSP96 | Autologous polyvalent vaccine, consisting of antigenic peptides bound to HSP96 (HSPCC-96) → increased IFNγ and cytotoxic T lymphocytes and reduced regulatory T lymphocytes | Phase I/II clinical trials in patients with newly diagnosed and recurrent GBM | Proinflammatory response against the tumor and improved PFS and OS | [147,148,149,150,151,152,153] |
HSP70 | HSP70 conjugated to superparamagnetic iron oxide nanoparticles (SPIONs) → stimulation of a tumor-specific CD8+ cytotoxic T cell response | C6 GBM cells/C6 glioma-bearing rats/U87 glioma cells | Proinflammatory response against the tumor, delayed tumor progression and increased OS | [154,155,156] |
Local administration of HSP70 → infiltration by immune cells | GBM bearing rats/Clinical trial in pediatric patients with newly diagnosed brain tumors | Antitumor immune response, tumor growth inhibition and prolonged survival | [157,158] | |
HSP47 | Novel glioma-associated antigen → GBM patients with a positive CTL response to HSP47 | Primary GBM tissues | Longer PFS and OS | [159] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augello, M.A.; Shadan, N.; D’Amico, G.; Barone, R.; Caruso Bavisotto, C.; Scalia, F.; Vitale, A.M. Beneficial Handling of Molecular Chaperones (Chaperonotherapy) in Glioblastoma and Neuroblastoma: Novel Therapeutic Targets or Potential Agents? Cells 2025, 14, 1447. https://doi.org/10.3390/cells14181447
Augello MA, Shadan N, D’Amico G, Barone R, Caruso Bavisotto C, Scalia F, Vitale AM. Beneficial Handling of Molecular Chaperones (Chaperonotherapy) in Glioblastoma and Neuroblastoma: Novel Therapeutic Targets or Potential Agents? Cells. 2025; 14(18):1447. https://doi.org/10.3390/cells14181447
Chicago/Turabian StyleAugello, Maria Antonella, Nima Shadan, Giuseppa D’Amico, Rosario Barone, Celeste Caruso Bavisotto, Federica Scalia, and Alessandra Maria Vitale. 2025. "Beneficial Handling of Molecular Chaperones (Chaperonotherapy) in Glioblastoma and Neuroblastoma: Novel Therapeutic Targets or Potential Agents?" Cells 14, no. 18: 1447. https://doi.org/10.3390/cells14181447
APA StyleAugello, M. A., Shadan, N., D’Amico, G., Barone, R., Caruso Bavisotto, C., Scalia, F., & Vitale, A. M. (2025). Beneficial Handling of Molecular Chaperones (Chaperonotherapy) in Glioblastoma and Neuroblastoma: Novel Therapeutic Targets or Potential Agents? Cells, 14(18), 1447. https://doi.org/10.3390/cells14181447