Exploring the Immunological Landscape of Ischemia/Reperfusion Injury and Graft Rejection in Kidney Transplantation: Shared Mechanisms and Insights
Abstract
1. Introduction
2. The Role of Immunometabolism in IRI and Allograft Rejection
2.1. Cellular Changes During Ischemia/Reperfusion Injury
2.2. Metabolic Reprogramming of Immune Cells
3. Innate Immune Responses Involved in the Development of IRI and Rejection
3.1. Toll-like Receptors
3.2. Macrophages and Neutrophils
3.3. Natural Killer Cells
3.4. The Complement System
4. Dendritic Cells
5. Adaptive Immune Responses Involved in the Development of IRI and Rejection
5.1. T-Cells
5.2. B-Cells
6. Prevention of IRI and Treatment Strategies for Immunological Consequences
7. Summary and Future Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
AKI | Acute kidney injury |
AMR | Antibody-mediated rejection |
AP | Alternative pathway of the complement system |
APC | Antigen-presenting cell |
ATP | Adenosine triphosphate |
BCR | B-cell receptor |
CP | Classical pathway of the complement system |
CTL | Cytotoxic T-cell |
DAMP | Damaged-associated molecular pattern |
DC | Dendritic cell |
DGF | Delayed graft function |
DSA | Donor-specific antibody |
EC | Endothelial cell |
FAO | Fatty acid oxidation |
FB | Factor B of the complement system |
FOXP3 | Forkhead Box P3 |
HIF-1α | Hypoxia inducible factor 1α |
HLA | Human leukocyte antigen |
ICAM-1 | Intercellular adhesion molecule-1 |
INF-γ | Interferon-γ |
IPC | Ischemic preconditioning |
IRI | Ischemia/reperfusion Injury |
LP | Lectin pathway of the complement system |
MAC | Membrane attack complex |
NET | Neutrophil extracellular traps |
NF-kB | Nuclear factor kappa B |
NK | Natural killer cell |
OXPHOS | Oxidative phosphorylation |
REC | Renal endothelial cell |
ROS | Reactive oxygen species |
TCMR | T-cell-mediated rejection |
TCR | T-cell receptor |
TEC | Tubular epithelial cell |
TGFβ | Transforming growth factor β |
Th1 | T helper 1 cell |
Th17 | T helper 17 cell |
Th2 | T helper 2 cell |
TLRs | Toll-like receptors |
Tregs | Regulatory T-cells |
VCAM | Vascular cell-adhesion molecule 1 |
References
- Ahmad Khan, N.; Taufique Khan, T. Organ Donation: Demand and Supply. In Current Challenges and Advances in Organ Donation and Transplantation; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar] [CrossRef]
- European Commission Infographic on Organs, Blood, Tissues and Cells in the EU. Available online: https://health.ec.europa.eu/publications/infographic-organs-blood-tissues-and-cells-eu_en#x (accessed on 27 June 2024).
- Wu, M.-Y.; Yiang, G.-T.; Liao, W.-T.; Tsai, A.P.-Y.; Cheng, Y.-L.; Cheng, P.-W.; Li, C.-Y.; Li, C.-J. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell. Physiol. Biochem. 2018, 46, 1650–1667. [Google Scholar] [CrossRef]
- Cowled, P.; Fitridge, R. Pathophysiology of Reperfusion Injury. In Mechanisms of Vascular Disease; Springer International Publishing: Cham, Switzerland, 2020; pp. 415–440. [Google Scholar] [CrossRef]
- Ponticelli, C.; Reggiani, F.; Moroni, G. Delayed Graft Function in Kidney Transplant: Risk Factors, Consequences and Prevention Strategies. J. Pers. Med. 2022, 12, 1557. [Google Scholar] [CrossRef]
- Li, M.T.; Ramakrishnan, A.; Yu, M.; Daniel, E.; Sandra, V.; Sanichar, N.; King, K.L.; Stevens, J.S.; Husain, S.A.; Mohan, S. Effects of Delayed Graft Function on Transplant Outcomes: A Meta-Analysis. Transpl. Direct 2023, 9, e1433. [Google Scholar] [CrossRef] [PubMed]
- Nishi, K.; Iwai, S.; Tajima, K.; Okano, S.; Sano, M.; Kobayashi, E. Prevention of Chronic Rejection of Marginal Kidney Graft by Using a Hydrogen Gas-Containing Preservation Solution and Adequate Immunosuppression in a Miniature Pig Model. Front. Immunol. 2021, 11, 626295. [Google Scholar] [CrossRef] [PubMed]
- Diebold, M.; Mayer, K.A.; Hidalgo, L.; Kozakowski, N.; Budde, K.; Böhmig, G.A. Chronic Rejection After Kidney Transplantation. Transplantation 2024, 109, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Noble, J.; Macek Jilkova, Z.; Aspord, C.; Malvezzi, P.; Fribourg, M.; Riella, L.V.; Cravedi, P. Harnessing Immune Cell Metabolism to Modulate Alloresponse in Transplantation. Transpl. Int. 2024, 37, 12330. [Google Scholar] [CrossRef]
- Zhou, M.; Yu, Y.; Luo, X.; Wang, J.; Lan, X.; Liu, P.; Feng, Y.; Jian, W. Myocardial Ischemia-Reperfusion Injury: Therapeutics from a Mitochondria-Centric Perspective. Cardiology 2021, 146, 781–792. [Google Scholar] [CrossRef]
- Fei, Q.; Liu, J.; Qiao, L.; Zhang, M.; Xia, H.; Lu, D.; Wu, D.; Wang, J.; Li, R.; Li, J.; et al. Mst1 Attenuates Myocardial Ischemia/Reperfusion Injury Following Heterotopic Heart Transplantation in Mice through Regulating Keap1/Nrf2 Axis. Biochem. Biophys. Res. Commun. 2023, 644, 140–148. [Google Scholar] [CrossRef]
- Eltzschig, H.K.; Eckle, T. Ischemia and Reperfusion—From Mechanism to Translation. Nat. Med. 2011, 17, 1391–1401. [Google Scholar] [CrossRef]
- Imahashi, K.; Mraiche, F.; Steenbergen, C.; Murphy, E.; Fliegel, L. Overexpression of the Na+/H+ Exchanger and Ischemia-Reperfusion Injury in the Myocardium. Am. J. Physiol.-Heart Circ. Physiol. 2007, 292, H2237–H2247. [Google Scholar] [CrossRef]
- Berna, N.; Arnould, T.; Remacle, J.; Michiels, C. Hypoxia-induced Increase in Intracellular Calcium Concentration in Endothelial Cells: Role of the Na + -glucose Cotransporter. J. Cell Biochem. 2002, 84, 115–131. [Google Scholar] [CrossRef] [PubMed]
- Dugbartey, G.J. Cellular and Molecular Mechanisms of Cell Damage and Cell Death in Ischemia–Reperfusion Injury in Organ Transplantation. Mol. Biol. Rep. 2024, 51, 473. [Google Scholar] [CrossRef]
- Liu, G.-Y.; Xie, W.-L.; Wang, Y.-T.; Chen, L.; Xu, Z.-Z.; Lv, Y.; Wu, Q.-P. Calpain: The Regulatory Point of Myocardial Ischemia-Reperfusion Injury. Front. Cardiovasc. Med. 2023, 10, 1194402. [Google Scholar] [CrossRef]
- Danese, A.; Leo, S.; Rimessi, A.; Wieckowski, M.R.; Fiorica, F.; Giorgi, C.; Pinton, P. Cell Death as a Result of Calcium Signaling Modulation: A Cancer-Centric Prospective. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2021, 1868, 119061. [Google Scholar] [CrossRef]
- O-Uchi, J.; Jhun, B.S.; Sheu, S.-S. Structural and Molecular Bases of Mitochondrial Ion Channel Function. In Cardiac Electrophysiology: From Cell to Bedside; Elsevier: Amsterdam, The Netherlands, 2014; pp. 71–84. [Google Scholar] [CrossRef]
- Nakamura, E.; Aoki, T.; Endo, Y.; Kazmi, J.; Hagiwara, J.; Kuschner, C.E.; Yin, T.; Kim, J.; Becker, L.B.; Hayashida, K. Organ-Specific Mitochondrial Alterations Following Ischemia–Reperfusion Injury in Post-Cardiac Arrest Syndrome: A Comprehensive Review. Life 2024, 14, 477. [Google Scholar] [CrossRef]
- Batool, M.; Fayyaz, H.; Alam, M.R. Asymmetric Opening of Mitochondrial Permeability Transition Pore in Mouse Brain Hemispheres: A Link to the Mitochondrial Calcium Uniporter Complex. Braz. J. Pharm. Sci. 2022, 58, e191142. [Google Scholar] [CrossRef]
- Weinberg, J.M.; Venkatachalam, M.A.; Roeser, N.F.; Nissim, I. Mitochondrial Dysfunction during Hypoxia/Reoxygenation and Its Correction by Anaerobic Metabolism of Citric Acid Cycle Intermediates. Proc. Natl. Acad. Sci. USA 2000, 97, 2826–2831. [Google Scholar] [CrossRef]
- Walkon, L.L.; Strubbe-Rivera, J.O.; Bazil, J.N. Calcium Overload and Mitochondrial Metabolism. Biomolecules 2022, 12, 1891. [Google Scholar] [CrossRef]
- Salahudeen, A.K.; Huang, H.; Joshi, M.; Moore, N.A.; Jenkins, J.K. Involvement of the Mitochondrial Pathway in Cold Storage and Rewarming-Associated Apoptosis of Human Renal Proximal Tubular Cells. Am. J. Transplant. 2003, 3, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, N.; Shrum, S.; Tobacyk, J.; Harb, A.; Arthur, J.M.; MacMillan-Crow, L.A. Renal Cold Storage Followed by Transplantation Impairs Expression of Key Mitochondrial Fission and Fusion Proteins. PLoS ONE 2017, 12, e0185542. [Google Scholar] [CrossRef] [PubMed]
- Kula-Alwar, D.; Prag, H.A.; Krieg, T. Targeting Succinate Metabolism in Ischemia/Reperfusion Injury. Circulation 2019, 140, 1968–1970. [Google Scholar] [CrossRef]
- Paradies, G.; Petrosillo, G.; Pistolese, M.; Di Venosa, N.; Serena, D.; Ruggiero, F.M. Lipid Peroxidation and Alterations to Oxidative Metabolism in Mitochondria Isolated from Rat Heart Subjected to Ischemia and Reperfusion. Free Radic. Biol. Med. 1999, 27, 42–50. [Google Scholar] [CrossRef]
- Pearce, E.L.; Poffenberger, M.C.; Chang, C.-H.; Jones, R.G. Fueling Immunity: Insights into Metabolism and Lymphocyte Function. Science 2013, 342, 1242454. [Google Scholar] [CrossRef]
- Jacobs, S.R.; Herman, C.E.; MacIver, N.J.; Wofford, J.A.; Wieman, H.L.; Hammen, J.J.; Rathmell, J.C. Glucose Uptake Is Limiting in T Cell Activation and Requires CD28-Mediated Akt-Dependent and Independent Pathways. J. Immunol. 2008, 180, 4476–4486. [Google Scholar] [CrossRef] [PubMed]
- Carr, E.L.; Kelman, A.; Wu, G.S.; Gopaul, R.; Senkevitch, E.; Aghvanyan, A.; Turay, A.M.; Frauwirth, K.A. Glutamine Uptake and Metabolism Are Coordinately Regulated by ERK/MAPK during T Lymphocyte Activation. J. Immunol. 2010, 185, 1037–1044. [Google Scholar] [CrossRef]
- Kornberg, M.D. The Immunologic Warburg Effect: Evidence and Therapeutic Opportunities in Autoimmunity. WIREs Syst. Biol. Med. 2020, 12, e1486. [Google Scholar] [CrossRef]
- Macintyre, A.N.; Gerriets, V.A.; Nichols, A.G.; Michalek, R.D.; Rudolph, M.C.; Deoliveira, D.; Anderson, S.M.; Abel, E.D.; Chen, B.J.; Hale, L.P.; et al. The Glucose Transporter Glut1 Is Selectively Essential for CD4 T Cell Activation and Effector Function. Cell Metab. 2014, 20, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Cheung, J.; Zahorowska, B.; Suranyi, M.; Wong, J.K.W.; Diep, J.; Spicer, S.T.; Verma, N.D.; Hodgkinson, S.J.; Hall, B.M. CD4+CD25+ T Regulatory Cells in Renal Transplantation. Front. Immunol. 2022, 13, 1017683. [Google Scholar] [CrossRef]
- Troise, D.; Infante, B.; Mercuri, S.; Catalano, V.; Ranieri, E.; Stallone, G. Dendritic Cells: A Bridge between Tolerance Induction and Cancer Development in Transplantation Setting. Biomedicines 2024, 12, 1240. [Google Scholar] [CrossRef]
- Møller, S.H.; Wang, L.; Ho, P.-C. Metabolic Programming in Dendritic Cells Tailors Immune Responses and Homeostasis. Cell Mol. Immunol. 2022, 19, 370–383. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.-S.; Wang, H.; Li, X.; Chao, T.; Teav, T.; Christen, S.; Di Conza, G.; Cheng, W.-C.; Chou, C.-H.; Vavakova, M.; et al. α-Ketoglutarate Orchestrates Macrophage Activation through Metabolic and Epigenetic Reprogramming. Nat. Immunol. 2017, 18, 985–994. [Google Scholar] [CrossRef]
- Troise, D.; Infante, B.; Mercuri, S.; Netti, G.S.; Ranieri, E.; Gesualdo, L.; Stallone, G.; Pontrelli, P. Hypoxic State of Cells and Immunosenescence: A Focus on the Role of the HIF Signaling Pathway. Biomedicines 2023, 11, 2163. [Google Scholar] [CrossRef]
- Fan, H.; Liu, J.; Sun, J.; Feng, G.; Li, J. Advances in the Study of B-cells in Renal Ischemia-Reperfusion Injury. Front. Immunol. 2023, 14, 1216094. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, L.; Yu, B.; Xu, D.; Chu, Y. Immunometabolism Shapes B-cell Fate and Functions. Immunology 2022, 166, 444–457. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.J.; Riffelmacher, T.; Braas, D.; Cornall, R.J.; Simon, A.K. B1a B Cells Require Autophagy for Metabolic Homeostasis and Self-Renewal. J. Exp. Med. 2018, 215, 399–413. [Google Scholar] [CrossRef]
- Caro-Maldonado, A.; Wang, R.; Nichols, A.G.; Kuraoka, M.; Milasta, S.; Sun, L.D.; Gavin, A.L.; Abel, E.D.; Kelsoe, G.; Green, D.R.; et al. Metabolic Reprogramming Is Required for Antibody Production That Is Suppressed in Anergic but Exaggerated in Chronically BAFF-Exposed B Cells. J. Immunol. 2014, 192, 3626–3636. [Google Scholar] [CrossRef] [PubMed]
- Waters, L.R.; Ahsan, F.M.; Wolf, D.M.; Shirihai, O.; Teitell, M.A. Initial B Cell Activation Induces Metabolic Reprogramming and Mitochondrial Remodeling. iScience 2018, 5, 99–109. [Google Scholar] [CrossRef]
- Silvis, M.J.M.; Kaffka genaamd Dengler, S.E.; Odille, C.A.; Mishra, M.; van der Kaaij, N.P.; Doevendans, P.A.; Sluijter, J.P.G.; de Kleijn, D.P.V.; de Jager, S.C.A.; Bosch, L.; et al. Damage-Associated Molecular Patterns in Myocardial Infarction and Heart Transplantation: The Road to Translational Success. Front. Immunol. 2020, 11, 599511. [Google Scholar] [CrossRef]
- Todd, J.L.; Palmer, S.M. Danger Signals in Regulating the Immune Response to Solid Organ Transplantation. J. Clin. Investig. 2017, 127, 2464–2472. [Google Scholar] [CrossRef]
- Sepe, V.; Libetta, C.; Gregorini, M.; Rampino, T. The Innate Immune System in Human Kidney Inflammaging. J. Nephrol. 2022, 35, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Mertowski, S.; Lipa, P.; Morawska, I.; Niedźwiedzka-Rystwej, P.; Bębnowska, D.; Hrynkiewicz, R.; Grywalska, E.; Roliński, J.; Załuska, W. Toll-Like Receptor as a Potential Biomarker in Renal Diseases. Int. J. Mol. Sci. 2020, 21, 6712. [Google Scholar] [CrossRef]
- Holle, J.U.; Windmoller, M.; Lange, C.; Gross, W.L.; Herlyn, K.; Csernok, E. Toll-like Receptor TLR2 and TLR9 Ligation Triggers Neutrophil Activation in Granulomatosis with Polyangiitis. Rheumatology 2013, 52, 1183–1189. [Google Scholar] [CrossRef]
- Gill, R.; Tsung, A.; Billiar, T. Linking Oxidative Stress to Inflammation: Toll-like Receptors. Free Radic. Biol. Med. 2010, 48, 1121–1132. [Google Scholar] [CrossRef]
- Aderem, A.; Ulevitch, R.J. Toll-like Receptors in the Induction of the Innate Immune Response. Nature 2000, 406, 782–787. [Google Scholar] [CrossRef]
- Zhao, H.; Perez, J.S.; Lu, K.; George, A.J.T.; Ma, D. Role of Toll-like Receptor-4 in Renal Graft Ischemia-Reperfusion Injury. Am. J. Physiol.-Ren. Physiol. 2014, 306, F801–F811. [Google Scholar] [CrossRef]
- Wolfs, T.G.A.M.; Buurman, W.A.; van Schadewijk, A.; de Vries, B.; Daemen, M.A.R.C.; Hiemstra, P.S.; van ’t Veer, C. In Vivo Expression of Toll-Like Receptor 2 and 4 by Renal Epithelial Cells: IFN-γ and TNF-α Mediated Up-Regulation During Inflammation. J. Immunol. 2002, 168, 1286–1293. [Google Scholar] [CrossRef] [PubMed]
- BEG, A. Endogenous Ligands of Toll-like Receptors: Implications for Regulating Inflammatory and Immune Responses. Trends Immunol. 2002, 23, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Krüger, B.; Krick, S.; Dhillon, N.; Lerner, S.M.; Ames, S.; Bromberg, J.S.; Lin, M.; Walsh, L.; Vella, J.; Fischereder, M.; et al. Donor Toll-like Receptor 4 Contributes to Ischemia and Reperfusion Injury Following Human Kidney Transplantation. Proc. Natl. Acad. Sci. USA 2009, 106, 3390–3395. [Google Scholar] [CrossRef] [PubMed]
- Shigeoka, A.A.; Holscher, T.D.; King, A.J.; Hall, F.W.; Kiosses, W.B.; Tobias, P.S.; Mackman, N.; McKay, D.B. TLR2 Is Constitutively Expressed within the Kidney and Participates in Ischemic Renal Injury through Both MyD88-Dependent and -Independent Pathways. J. Immunol. 2007, 178, 6252–6258. [Google Scholar] [CrossRef]
- Mannon, R.B. Delayed Graft Function: The AKI of Kidney Transplantation. Nephron 2018, 140, 94–98. [Google Scholar] [CrossRef]
- Pandey, S.; Kawai, T.; Akira, S. Microbial Sensing by Toll-Like Receptors and Intracellular Nucleic Acid Sensors. Cold Spring Harb. Perspect. Biol. 2015, 7, a016246. [Google Scholar] [CrossRef]
- Palmer, S.M.; Burch, L.H.; Mir, S.; Smith, S.R.; Kuo, P.C.; Herczyk, W.F.; Reinsmoen, N.L.; Schwartz, D.A. Donor Polymorphisms in Toll-like Receptor-4 Influence the Development of Rejection after Renal Transplantation. Clin. Transplant. 2006, 20, 30–36. [Google Scholar] [CrossRef]
- Vallés, P.G.; Gil Lorenzo, A.F.; Garcia, R.D.; Cacciamani, V.; Benardon, M.E.; Costantino, V.V. Toll-like Receptor 4 in Acute Kidney Injury. Int. J. Mol. Sci. 2023, 24, 1415. [Google Scholar] [CrossRef]
- Keshavarz, Z.; Zareei, N.; Afshari, A.; Karimi, M.H.; Yaghobi, R.; Malekhosseini, S.A. TLR2 and TLR4 MRNA Expression Levels in Liver Transplant Patients with Acute Rejection. Immunobiology 2021, 226, 152107. [Google Scholar] [CrossRef]
- Li, L.; Okusa, M.D. Macrophages, Dendritic Cells, and Kidney Ischemia-Reperfusion Injury. Semin. Nephrol. 2010, 30, 268–277. [Google Scholar] [CrossRef]
- Rossi, M.; Korpak, K.; Doerfler, A.; Zouaoui Boudjeltia, K. Deciphering the Role of Heme Oxygenase-1 (HO-1) Expressing Macrophages in Renal Ischemia-Reperfusion Injury. Biomedicines 2021, 9, 306. [Google Scholar] [CrossRef]
- Tan, L.; Guo, Y.; Feng, C.; Hou, Y.; Xie, X.; Zhao, Y. The Dual Regulatory Roles of Macrophages in Acute Allogeneic Organ Graft Rejection. Engineering 2022, 10, 21–29. [Google Scholar] [CrossRef]
- Einecke, G.; Mengel, M.; Hidalgo, L.; Allanach, K.; Famulski, K.S.; Hallorana, P.F. The Early Course of Kidney Allograft Rejection: Defining the Time When Rejection Begins. Am. J. Transplant. 2009, 9, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Bergler, T.; Jung, B.; Bourier, F.; Kühne, L.; Banas, M.C.; Rümmele, P.; Wurm, S.; Banas, B. Infiltration of Macrophages Correlates with Severity of Allograft Rejection and Outcome in Human Kidney Transplantation. PLoS ONE 2016, 11, e0156900. [Google Scholar] [CrossRef] [PubMed]
- Lackner, K.; Ebner, S.; Watschinger, K.; Maglione, M. Multiple Shades of Gray—Macrophages in Acute Allograft Rejection. Int. J. Mol. Sci. 2023, 24, 8257. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Friday, A.J.; Abou-Daya, K.I.; Williams, A.L.; Mortin-Toth, S.; Nicotra, M.L.; Rothstein, D.M.; Shlomchik, W.D.; Matozaki, T.; Isenberg, J.S.; et al. Donor SIRPα Polymorphism Modulates the Innate Immune Response to Allogeneic Grafts. Sci. Immunol. 2017, 2, eaam6202. [Google Scholar] [CrossRef]
- Ikezumi, Y.; Suzuki, T.; Yamada, T.; Hasegawa, H.; Kaneko, U.; Hara, M.; Yanagihara, T.; Nikolic-Paterson, D.J.; Saitoh, A. Alternatively Activated Macrophages in the Pathogenesis of Chronic Kidney Allograft Injury. Pediatr. Nephrol. 2015, 30, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β: The Master Regulator of Fibrosis. Nat. Rev. Nephrol. 2016, 12, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Kitchens, W.H.; Chase, C.M.; Uehara, S.; Cornell, L.D.; Colvin, R.B.; Russell, P.S.; Madsen, J.C. Macrophage Depletion Suppresses Cardiac Allograft Vasculopathy in Mice. Am. J. Transplant. 2007, 7, 2675–2682. [Google Scholar] [CrossRef] [PubMed]
- Jourde-Chiche, N.; Fakhouri, F.; Dou, L.; Bellien, J.; Burtey, S.; Frimat, M.; Jarrot, P.-A.; Kaplanski, G.; Le Quintrec, M.; Pernin, V.; et al. Endothelium Structure and Function in Kidney Health and Disease. Nat. Rev. Nephrol. 2019, 15, 87–108. [Google Scholar] [CrossRef]
- Tang, Q.; Dong, C.; Sun, Q. Immune Response Associated with Ischemia and Reperfusion Injury during Organ Transplantation. Inflamm. Res. 2022, 71, 1463–1476. [Google Scholar] [CrossRef]
- El-Sawy, T.; Belperio, J.A.; Strieter, R.M.; Remick, D.G.; Fairchild, R.L. Inhibition of Polymorphonuclear Leukocyte–Mediated Graft Damage Synergizes with Short-Term Costimulatory Blockade to Prevent Cardiac Allograft Rejection. Circulation 2005, 112, 320–331. [Google Scholar] [CrossRef]
- Jones, N.D.; Brook, M.O.; Carvalho-Gaspar, M.; Luo, S.; Wood, K.J. Regulatory T Cells Can Prevent Memory CD8+ T-Cell-Mediated Rejection Following Polymorphonuclear Cell Depletion. Eur. J. Immunol. 2010, 40, 3107–3116. [Google Scholar] [CrossRef]
- Kish, D.D.; Gorbachev, A.V.; Parameswaran, N.; Gupta, N.; Fairchild, R.L. Neutrophil Expression of Fas Ligand and Perforin Directs Effector CD8 T Cell Infiltration into Antigen-Challenged Skin. J. Immunol. 2012, 189, 2191–2202. [Google Scholar] [CrossRef]
- Morrell, C.N.; Murata, K.; Swaim, A.M.; Mason, E.; Martin, T.V.; Thompson, L.E.; Ballard, M.; Fox-Talbot, K.; Wasowska, B.; Baldwin, W.M. In Vivo Platelet–Endothelial Cell Interactions in Response to Major Histocompatibility Complex Alloantibody. Circ. Res. 2008, 102, 777–785. [Google Scholar] [CrossRef]
- Torres-Ruiz, J.; Villca-Gonzales, R.; Gómez-Martín, D.; Zentella-Dehesa, A.; Tapia-Rodríguez, M.; Uribe-Uribe, N.O.; Morales-Buenrostro, L.E.; Alberú, J. A Potential Role of Neutrophil Extracellular Traps (NETs) in Kidney Acute Antibody Mediated Rejection. Transpl. Immunol. 2020, 60, 101286. [Google Scholar] [CrossRef]
- Vincent, F.B.; Saulep-Easton, D.; Figgett, W.A.; Fairfax, K.A.; Mackay, F. The BAFF/APRIL System: Emerging Functions beyond B Cell Biology and Autoimmunity. Cytokine Growth Factor Rev. 2013, 24, 203–215. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Sun, W.; Zhang, C.; Yu, Y.; Du, B.; Jin, A.; Liu, Y. Neutrophil Depletion Attenuates Antibody-Mediated Rejection in a Renal Transplantation Mouse Model. Clin. Exp. Immunol. 2024, 216, 211–219. [Google Scholar] [CrossRef]
- Ruttens, D.; Wauters, E.; Kiciński, M.; Verleden, S.E.; Vandermeulen, E.; Vos, R.; Van Raemdonck, D.E.; Nawrot, T.S.; Lambrechts, D.; Verleden, G.M.; et al. Genetic Variation in Interleukin-17 Receptor A Is Functionally Associated with Chronic Rejection after Lung Transplantation. J. Heart Lung Transplant. 2013, 32, 1233–1240. [Google Scholar] [CrossRef]
- Zhao, S.; Hu, Y.; Yang, B.; Zhang, L.; Xu, M.; Jiang, K.; Liu, Z.; Wu, M.; Huang, Y.; Li, P.; et al. The Transplant Rejection Response Involves Neutrophil and Macrophage Adhesion-Mediated Trogocytosis and Is Regulated by NFATc3. Cell Death Dis. 2024, 15, 75. [Google Scholar] [CrossRef]
- Poli, A.; Michel, T.; Thérésine, M.; Andrès, E.; Hentges, F.; Zimmer, J. CD56bright Natural Killer (NK) Cells: An Important NK Cell Subset. Immunology 2009, 126, 458–465. [Google Scholar] [CrossRef]
- Turner, J.-E.; Rickassel, C.; Healy, H.; Kassianos, A.J. Natural Killer Cells in Kidney Health and Disease. Front. Immunol. 2019, 10, 587. [Google Scholar] [CrossRef] [PubMed]
- van Dam, J.G.; Li, F.; Yin, M.; You, X.-M.; Grauls, G.; Steinhoff, G.; Bruggeman, C.A. Effects of Cytomegalovirus Infection and Prolonged Cold Ischemia on Chronic Rejection of Rat Renal Allografts. Transplant. Int. 2000, 13, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Ozaki, K.S.; Ueki, S.; Zhang, M.; Yokota, S.; Stolz, D.B.; Geller, D.A.; Murase, N. Contribution of Alloantigens to Hepatic Ischemia/Reperfusion Injury: Roles of Natural Killer Cells and Innate Immune Recognition of Nonself. Liver Transplant. 2016, 22, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Pontrelli, P.; Rascio, F.; Castellano, G.; Grandaliano, G.; Gesualdo, L.; Stallone, G. The Role of Natural Killer Cells in the Immune Response in Kidney Transplantation. Front. Immunol. 2020, 11, 1454. [Google Scholar] [CrossRef]
- dos Santos, D.C.; Campos, E.F.; Saraiva Câmara, N.O.; David, D.S.R.; Malheiros, D.M.A.C. Compartment-Specific Expression of Natural Killer Cell Markers in Renal Transplantation: Immune Profile in Acute Rejection. Transplant. Int. 2016, 29, 443–452. [Google Scholar] [CrossRef]
- Kildey, K.; Francis, R.S.; Hultin, S.; Harfield, M.; Giuliani, K.; Law, B.M.P.; Wang, X.; See, E.J.; John, G.; Ungerer, J.; et al. Specialized Roles of Human Natural Killer Cell Subsets in Kidney Transplant Rejection. Front. Immunol. 2019, 10, 1877. [Google Scholar] [CrossRef]
- Yazdani, S.; Callemeyn, J.; Gazut, S.; Lerut, E.; de Loor, H.; Wevers, M.; Heylen, L.; Saison, C.; Koenig, A.; Thaunat, O.; et al. Natural Killer Cell Infiltration Is Discriminative for Antibody-Mediated Rejection and Predicts Outcome after Kidney Transplantation. Kidney Int. 2019, 95, 188–198. [Google Scholar] [CrossRef]
- Shah, Y.; Yang, H.; Mueller, F.B.; Li, C.; Gul Rahim, S.E.; Varma, E.; Salinas, T.; Dadhania, D.M.; Salvatore, S.P.; Seshan, S.V.; et al. Transcriptomic Signatures of Chronic Active Antibody-Mediated Rejection Deciphered by RNA Sequencing of Human Kidney Allografts. Kidney Int. 2024, 105, 347–363. [Google Scholar] [CrossRef]
- Damman, J.; Bloks, V.W.; Daha, M.R.; van der Most, P.J.; Sanjabi, B.; van der Vlies, P.; Snieder, H.; Ploeg, R.J.; Krikke, C.; Leuvenink, H.G.D.; et al. Hypoxia and Complement-and-Coagulation Pathways in the Deceased Organ Donor as the Major Target for Intervention to Improve Renal Allograft Outcome. Transplantation 2015, 99, 1293–1300. [Google Scholar] [CrossRef]
- Poppelaars, F.; Seelen, M.A. Complement-Mediated Inflammation and Injury in Brain Dead Organ Donors. Mol. Immunol. 2017, 84, 77–83. [Google Scholar] [CrossRef]
- Damman, J.; Nijboer, W.N.; Schuurs, T.A.; Leuvenink, H.G.; Morariu, A.M.; Tullius, S.G.; van Goor, H.; Ploeg, R.J.; Seelen, M.A. Local Renal Complement C3 Induction by Donor Brain Death Is Associated with Reduced Renal Allograft Function after Transplantation. Nephrol. Dial. Transplant. 2011, 26, 2345–2354. [Google Scholar] [CrossRef] [PubMed]
- Helmy, K.Y.; Katschke, K.J.; Gorgani, N.N.; Kljavin, N.M.; Elliott, J.M.; Diehl, L.; Scales, S.J.; Ghilardi, N.; van Lookeren Campagne, M. CRIg: A Macrophage Complement Receptor Required for Phagocytosis of Circulating Pathogens. Cell 2006, 124, 915–927. [Google Scholar] [CrossRef] [PubMed]
- Damman, J.; Seelen, M.A.; Moers, C.; Daha, M.R.; Rahmel, A.; Leuvenink, H.G.; Paul, A.; Pirenne, J.; Ploeg, R.J. Systemic Complement Activation in Deceased Donors Is Associated with Acute Rejection After Renal Transplantation in the Recipient. Transplantation 2011, 92, 163–169. [Google Scholar] [CrossRef] [PubMed]
- van Werkhoven, M.B.; Damman, J.; van Dijk, M.C.R.F.; Daha, M.R.; de Jong, I.J.; Leliveld, A.; Krikke, C.; Leuvenink, H.G.; van Goor, H.; van Son, W.J.; et al. Complement Mediated Renal Inflammation Induced by Donor Brain Death: Role of Renal C5a-C5aR Interaction. Am. J. Transplant. 2013, 13, 875–882. [Google Scholar] [CrossRef]
- Błogowski, W.; Dołęgowska, B.; Sałata, D.; Budkowska, M.; Domański, L.; Starzyńska, T. Clinical Analysis of Perioperative Complement Activity during Ischemia/Reperfusion Injury Following Renal Transplantation. Clin. J. Am. Soc. Nephrol. 2012, 7, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- Troise, D.; Infante, B.; Mercuri, S.; Piccoli, C.; Lindholm, B.; Stallone, G. Hypoxic Inducible Factor Stabilization in Pericytes beyond Erythropoietin Production: The Good and the Bad. Antioxidants 2024, 13, 537. [Google Scholar] [CrossRef] [PubMed]
- Grafals, M.; Thurman, J.M. The Role of Complement in Organ Transplantation. Front. Immunol. 2019, 10, 2380. [Google Scholar] [CrossRef]
- Thurman, J.M.; Royer, P.A.; Ljubanovic, D.; Dursun, B.; Lenderink, A.M.; Edelstein, C.L.; Holers, V.M. Treatment with an Inhibitory Monoclonal Antibody to Mouse Factor B Protects Mice from Induction of Apoptosis and Renal Ischemia/Reperfusion Injury. J. Am. Soc. Nephrol. 2006, 17, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Danobeitia, J.S.; Djamali, A.; Fernandez, L.A. The Role of Complement in the Pathogenesis of Renal Ischemia-Reperfusion Injury and Fibrosis. Fibrogenesis Tissue Repair. 2014, 7, 16. [Google Scholar] [CrossRef]
- Wu, Y.; Zwaini, Z.D.; Brunskill, N.J.; Zhang, X.; Wang, H.; Chana, R.; Stover, C.M.; Yang, B. Properdin Deficiency Impairs Phagocytosis and Enhances Injury at Kidney Repair Phase Post Ischemia–Reperfusion. Front. Immunol. 2021, 12, 697760. [Google Scholar] [CrossRef]
- Farrar, C.A.; Tran, D.; Li, K.; Wu, W.; Peng, Q.; Schwaeble, W.; Zhou, W.; Sacks, S.H. Collectin-11 Detects Stress-Induced L-Fucose Pattern to Trigger Renal Epithelial Injury. J. Clin. Investig. 2016, 126, 1911–1925. [Google Scholar] [CrossRef]
- Henriksen, M.L.; Brandt, J.; Iyer, S.S.C.; Thielens, N.M.; Hansen, S. Characterization of the Interaction between Collectin 11 (CL-11, CL-K1) and Nucleic Acids. Mol. Immunol. 2013, 56, 757–767. [Google Scholar] [CrossRef]
- Howard, M.C.; Nauser, C.L.; Farrar, C.A.; Wallis, R.; Sacks, S.H. L-Fucose Prevention of Renal Ischaemia/Reperfusion Injury in Mice. FASEB J. 2020, 34, 822–834. [Google Scholar] [CrossRef]
- Nauser, C.L.; Farrar, C.A.; Sacks, S.H. Complement Recognition Pathways in Renal Transplantation. J. Am. Soc. Nephrol. 2017, 28, 2571–2578. [Google Scholar] [CrossRef]
- Peng, Q.; Li, K.; Patel, H.; Sacks, S.H.; Zhou, W. Dendritic Cell Synthesis of C3 Is Required for Full T Cell Activation and Development of a Th1 Phenotype. J. Immunol. 2006, 176, 3330–3341. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Li, K.; Anderson, K.; Farrar, C.A.; Lu, B.; Smith, R.A.G.; Sacks, S.H.; Zhou, W. Local Production and Activation of Complement Up-Regulates the Allostimulatory Function of Dendritic Cells through C3a–C3aR Interaction. Blood 2008, 111, 2452–2461. [Google Scholar] [CrossRef] [PubMed]
- Cravedi, P.; Leventhal, J.; Lakhani, P.; Ward, S.C.; Donovan, M.J.; Heeger, P.S. Immune Cell-Derived C3a and C5a Costimulate Human T Cell Alloimmunity. Am. J. Transplant. 2013, 13, 2530–2539. [Google Scholar] [CrossRef]
- Luque, A.; Serrano, I.; Aran, J.M. Complement Components as Promoters of Immunological Tolerance in Dendritic Cells. Semin. Cell Dev. Biol. 2019, 85, 143–152. [Google Scholar] [CrossRef]
- Santarsiero, D.; Aiello, S. The Complement System in Kidney Transplantation. Cells 2023, 12, 791. [Google Scholar] [CrossRef]
- Liszewski, M.K.; Kolev, M.; Le Friec, G.; Leung, M.; Bertram, P.G.; Fara, A.F.; Subias, M.; Pickering, M.C.; Drouet, C.; Meri, S.; et al. Intracellular Complement Activation Sustains T Cell Homeostasis and Mediates Effector Differentiation. Immunity 2013, 39, 1143–1157. [Google Scholar] [CrossRef]
- Kolev, M.; Dimeloe, S.; Le Friec, G.; Navarini, A.; Arbore, G.; Povoleri, G.A.; Fischer, M.; Belle, R.; Loeliger, J.; Develioglu, L.; et al. Complement Regulates Nutrient Influx and Metabolic Reprogramming during Th1 Cell Responses. Immunity 2015, 42, 1033–1047. [Google Scholar] [CrossRef]
- Chun, N.; Heeger, P.S. Blurring the Lines Between Innate and Adaptive Immunity. Transplantation 2016, 100, 1789–1790. [Google Scholar] [CrossRef]
- Feucht, H.E.; Felber, E.; Gokel, M.J.; Hillebrand, G.; Nattermann, U.; Brockmeyer, C.; Held, E.; Riethmüller, G.; Land, W.; Albert, E. Vascular Deposition of Complement-Split Products in Kidney Allografts with Cell-Mediated Rejection. Clin. Exp. Immunol. 2008, 86, 464–470. [Google Scholar] [CrossRef]
- Patel, R.; Mickey, M.R.; Terasaki, P.I. Serotyping for Homotransplantation. N. Engl. J. Med. 1968, 279, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Biglarnia, A.-R.; Huber-Lang, M.; Mohlin, C.; Ekdahl, K.N.; Nilsson, B. The Multifaceted Role of Complement in Kidney Transplantation. Nat. Rev. Nephrol. 2018, 14, 767–781. [Google Scholar] [CrossRef]
- Ugurlar, D.; Howes, S.C.; de Kreuk, B.-J.; Koning, R.I.; de Jong, R.N.; Beurskens, F.J.; Schuurman, J.; Koster, A.J.; Sharp, T.H.; Parren, P.W.H.I.; et al. Structures of C1-IgG1 Provide Insights into How Danger Pattern Recognition Activates Complement. Science (1979) 2018, 359, 794–797. [Google Scholar] [CrossRef]
- Jane-wit, D.; Manes, T.D.; Yi, T.; Qin, L.; Clark, P.; Kirkiles-Smith, N.C.; Abrahimi, P.; Devalliere, J.; Moeckel, G.; Kulkarni, S.; et al. Alloantibody and Complement Promote T Cell–Mediated Cardiac Allograft Vasculopathy Through Noncanonical Nuclear Factor-ΚB Signaling in Endothelial Cells. Circulation 2013, 128, 2504–2516. [Google Scholar] [CrossRef]
- Frémeaux-Bacchi, V.; Legendre, C.M. The Emerging Role of Complement Inhibitors in Transplantation. Kidney Int. 2015, 88, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Naesens, M.; Roufosse, C.; Haas, M.; Lefaucheur, C.; Mannon, R.B.; Adam, B.A.; Aubert, O.; Böhmig, G.A.; Callemeyn, J.; Clahsen-van Groningen, M.; et al. The Banff 2022 Kidney Meeting Report: Reappraisal of Microvascular Inflammation and the Role of Biopsy-Based Transcript Diagnostics. Am. J. Transplant. 2024, 24, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Kiss, M.G.; Ozsvár-Kozma, M.; Porsch, F.; Göderle, L.; Papac-Miličević, N.; Bartolini-Gritti, B.; Tsiantoulas, D.; Pickering, M.C.; Binder, C.J. Complement Factor H Modulates Splenic B Cell Development and Limits Autoantibody Production. Front. Immunol. 2019, 10, 1607. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Thomson, A.W.; Rogers, N.M. Dendritic Cells as Sensors, Mediators, and Regulators of Ischemic Injury. Front. Immunol. 2019, 10, 2418. [Google Scholar] [CrossRef]
- Lv, D.; Jiang, H.; Yang, X.; Li, Y.; Niu, W.; Zhang, D. Advances in Understanding of Dendritic Cell in the Pathogenesis of Acute Kidney Injury. Front. Immunol. 2024, 15, 1294807. [Google Scholar] [CrossRef]
- Nakamura, Y.; Inoue, T. Tolerogenic Dendritic Cells: Promising Cell Therapy for Acute Kidney Injury. Kidney Int. 2023, 104, 420–422. [Google Scholar] [CrossRef]
- Lin, J.; Wang, H.; Liu, C.; Cheng, A.; Deng, Q.; Zhu, H.; Chen, J. Dendritic Cells: Versatile Players in Renal Transplantation. Front. Immunol. 2021, 12, 654540. [Google Scholar] [CrossRef]
- Ezzelarab, M.B.; Raich-Regue, D.; Lu, L.; Zahorchak, A.F.; Perez-Gutierrez, A.; Humar, A.; Wijkstrom, M.; Minervini, M.; Wiseman, R.W.; Cooper, D.K.C.; et al. Renal Allograft Survival in Nonhuman Primates Infused with Donor Antigen-Pulsed Autologous Regulatory Dendritic Cells. Am. J. Transplant. 2017, 17, 1476–1489. [Google Scholar] [CrossRef]
- Duneton, C.; Winterberg, P.D.; Ford, M.L. Activation and Regulation of Alloreactive T Cell Immunity in Solid Organ Transplantation. Nat. Rev. Nephrol. 2022, 18, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Ronca, V.; Wootton, G.; Milani, C.; Cain, O. The Immunological Basis of Liver Allograft Rejection. Front. Immunol. 2020, 11, 2155. [Google Scholar] [CrossRef] [PubMed]
- Mueller, F.B.; Yang, H.; Lubetzky, M.; Verma, A.; Lee, J.R.; Dadhania, D.M.; Xiang, J.Z.; Salvatore, S.P.; Seshan, S.V.; Sharma, V.K.; et al. Landscape of Innate Immune System Transcriptome and Acute T Cell–Mediated Rejection of Human Kidney Allografts. JCI Insight 2019, 4, e128014. [Google Scholar] [CrossRef]
- Zhuang, Q.; Lakkis, F.G. Dendritic Cells and Innate Immunity in Kidney Transplantation. Kidney Int. 2015, 87, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Q.; Liu, Q.; Divito, S.J.; Zeng, Q.; Yatim, K.M.; Hughes, A.D.; Rojas-Canales, D.M.; Nakao, A.; Shufesky, W.J.; Williams, A.L.; et al. Graft-Infiltrating Host Dendritic Cells Play a Key Role in Organ Transplant Rejection. Nat. Commun. 2016, 7, 12623. [Google Scholar] [CrossRef]
- Vaulet, T.; Callemeyn, J.; Lamarthée, B.; Antoranz, A.; Debyser, T.; Koshy, P.; Anglicheau, D.; Colpaert, J.; Gwinner, W.; Halloran, P.F.; et al. The Clinical Relevance of the Infiltrating Immune Cell Composition in Kidney Transplant Rejection. J. Am. Soc. Nephrol. 2024, 35, 886–900. [Google Scholar] [CrossRef]
- Rabb, H.; Daniels, F.; O’Donnell, M.; Haq, M.; Saba, S.R.; Keane, W.; Tang, W.W. Pathophysiological Role of T Lymphocytes in Renal Ischemia-Reperfusion Injury in Mice. Am. J. Physiol.-Ren. Physiol. 2000, 279, F525–F531. [Google Scholar] [CrossRef]
- Lai, L.-W.; Yong, K.-C.; Igarashi, S.; Lien, Y.-H. A Sphingosine-1-Phosphate Type 1 Receptor Agonist Inhibits the Early T-Cell Transient Following Renal Ischemia–Reperfusion Injury. Kidney Int. 2007, 71, 1223–1231. [Google Scholar] [CrossRef]
- Li, L.; Huang, L.; Sung, S.J.; Lobo, P.I.; Brown, M.G.; Gregg, R.K.; Engelhard, V.H.; Okusa, M.D. NKT Cell Activation Mediates Neutrophil IFN-γ Production and Renal Ischemia-Reperfusion Injury. J. Immunol. 2007, 178, 5899–5911. [Google Scholar] [CrossRef]
- Xu, D.; Trajkovic, V.; Hunter, D.; Leung, B.P.; Schulz, K.; Gracie, J.A.; McInnes, I.B.; Liew, F.Y. IL-18 Induces the Differentiation of Th1 or Th2 Cells Depending upon Cytokine Milieu and Genetic Background. Eur. J. Immunol. 2000, 30, 3147–3156. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.Y.; Solanki, H.S.; Advani, J.; Khan, A.A.; Keshava Prasad, T.S.; Gowda, H.; Thiyagarajan, S.; Chatterjee, A. Comprehensive Network Map of Interferon Gamma Signaling. J. Cell Commun. Signal 2018, 12, 745–751. [Google Scholar] [CrossRef]
- Abbas, A.K.; Murphy, K.M.; Sher, A. Functional Diversity of Helper T Lymphocytes. Nature 1996, 383, 787–793. [Google Scholar] [CrossRef]
- Lasorsa, F.; Rutigliano, M.; Milella, M.; d’Amati, A.; Crocetto, F.; Pandolfo, S.D.; Barone, B.; Ferro, M.; Spilotros, M.; Battaglia, M.; et al. Ischemia–Reperfusion Injury in Kidney Transplantation: Mechanisms and Potential Therapeutic Targets. Int. J. Mol. Sci. 2024, 25, 4332. [Google Scholar] [CrossRef]
- Yokota, N.; Burne-Taney, M.; Racusen, L.; Rabb, H. Contrasting Roles for STAT4 and STAT6 Signal Transduction Pathways in Murine Renal Ischemia-Reperfusion Injury. Am. J. Physiol.-Ren. Physiol. 2003, 285, F319–F325. [Google Scholar] [CrossRef] [PubMed]
- Miura, M.; Morita, K.; Kobayashi, H.; Hamilton, T.A.; Burdick, M.D.; Strieter, R.M.; Fairchild, R.L. Monokine Induced by IFN-γ Is a Dominant Factor Directing T Cells into Murine Cardiac Allografts During Acute Rejection. J. Immunol. 2001, 167, 3494–3504. [Google Scholar] [CrossRef]
- Schroder, K.; Hertzog, P.J.; Ravasi, T.; Hume, D.A. Interferon-γ: An Overview of Signals, Mechanisms and Functions. J. Leukoc. Biol. 2004, 75, 163–189. [Google Scholar] [CrossRef]
- Mendoza Rojas, A.; Verhoeven, J.G.H.P.; de Kuiper, R.; Clahsen-van Groningen, M.C.; Boer, K.; Hesselink, D.A.; van Gelder, T.; van Besouw, N.M.; Baan, C.C. Alloreactive T Cells to Assess Acute Rejection Risk in Kidney Transplant Recipients. Transplant. Direct 2023, 9, e1478. [Google Scholar] [CrossRef]
- Udomkarnjananun, S.; Kerr, S.J.; Townamchai, N.; van Besouw, N.M.; Hesselink, D.A.; Baan, C.C. Donor-Specific ELISPOT Assay for Predicting Acute Rejection and Allograft Function after Kidney Transplantation: A Systematic Review and Meta-Analysis. Clin. Biochem. 2021, 94, 1–11. [Google Scholar] [CrossRef]
- Ke, B.; Shen, X.; Lassman, C.R.; Gao, F.; Busuttil, R.W.; Kupiec-Weglinski, J.W. Cytoprotective and Antiapoptotic Effects of IL-13 in Hepatic Cold Ischemia/Reperfusion Injury Are Heme Oxygenase-1 Dependent. Am. J. Transplant. 2003, 3, 1076–1082. [Google Scholar] [CrossRef] [PubMed]
- Ke, B.; Ritter, T.; Kato, H.; Zhai, Y.; Li, J.; Lehmann, M.; Busuttil, R.W.; Volk, H.-D.; Kupiec-Weglinski, J.W. Regulatory Cells Potentiate the Efficacy of IL-4 Gene Transfer by Up-Regulating Th2-Dependent Expression of Protective Molecules in the Infectious Tolerance Pathway in Transplant Recipients. J. Immunol. 2000, 164, 5739–5745. [Google Scholar] [CrossRef]
- Pindjakova, J.; Hanley, S.A.; Duffy, M.M.; Sutton, C.E.; Weidhofer, G.A.; Miller, M.N.; Nath, K.A.; Mills, K.H.G.; Ceredig, R.; Griffin, M.D. Interleukin-1 Accounts for Intrarenal Th17 Cell Activation during Ureteral Obstruction. Kidney Int. 2012, 81, 379–390. [Google Scholar] [CrossRef]
- Song, Z.; Yuan, W.; Zheng, L.; Wang, X.; Kuchroo, K.V.; Mohib, K.; Rothstein, M.D. B Cell IL-4 Drives Th2 Responses In Vivo, Ameliorates Allograft Rejection, and Promotes Allergic Airway Disease. Front. Immunol. 2022, 13, 762390. [Google Scholar] [CrossRef]
- Chung, B.H.; Yang, C.W.; Cho, M.-L. Clinical Significance of Th17 Cells in Kidney Transplantation. Korean J. Intern. Med. 2018, 33, 860–866. [Google Scholar] [CrossRef]
- Tehrani, H.A.; Einollahi, B.; Ahmadpoor, P.; Nafar, M.; Nikoueinejad, H.; Parvin, M.; Ashrafi, S.; Dalili, N. The Relationship between T-Cell Infiltration in Biopsy Proven Acute T-Cell Mediated Rejection with Allograft Function and Response to Therapy: A Retrospective Study. Transpl. Immunol. 2022, 71, 101394. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.-L.; He, Y.-R.; Liu, Y.-J.; He, H.-Y.; Gu, Z.-Y.; Liu, Y.-M.; Liu, W.-J.; Luo, Z.; Ju, M.-J. The Immunomodulation Role of Th17 and Treg in Renal Transplantation. Front. Immunol. 2023, 14, 1113560. [Google Scholar] [CrossRef] [PubMed]
- do Valle Duraes, F.; Lafont, A.; Beibel, M.; Martin, K.; Darribat, K.; Cuttat, R.; Waldt, A.; Naumann, U.; Wieczorek, G.; Gaulis, S.; et al. Immune Cell Landscaping Reveals a Protective Role for Regulatory T Cells during Kidney Injury and Fibrosis. JCI Insight 2020, 5, e130651. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-G.; Jung Cho, E.; Won Lee, J.; Sook Ko, Y.; Young Lee, H.; Jo, S.-K.; Cho, W.Y.; Kim, H.K. The Heat-Shock Protein-70–Induced Renoprotective Effect Is Partially Mediated by CD4 + CD25 + Foxp3 + Regulatory T Cells in Ischemia/Reperfusion-Induced Acute Kidney Injury. Kidney Int. 2014, 85, 62–71. [Google Scholar] [CrossRef]
- Chen, G.; Dong, Z.; Liu, H.; Liu, Y.; Duan, S.; Liu, Y.; Liu, F.; Chen, H. MTOR Signaling Regulates Protective Activity of Transferred CD4+Foxp3+ T Cells in Repair of Acute Kidney Injury. J. Immunol. 2016, 197, 3917–3926. [Google Scholar] [CrossRef]
- Rudensky, A.Y. Regulatory T Cells and Foxp3. Immunol. Rev. 2011, 241, 260–268. [Google Scholar] [CrossRef]
- Jaworska, K.; Ratajczak, J.; Huang, L.; Whalen, K.; Yang, M.; Stevens, B.K.; Kinsey, G.R. Both PD-1 Ligands Protect the Kidney from Ischemia Reperfusion Injury. J. Immunol. 2015, 194, 325–333. [Google Scholar] [CrossRef]
- Hochegger, K.; Schätz, T.; Eller, P.; Tagwerker, A.; Heininger, D.; Mayer, G.; Rosenkranz, A.R. Role of α/β and γ/δ T Cells in Renal Ischemia-Reperfusion Injury. Am. J. Physiol.-Ren. Physiol. 2007, 293, F741–F747. [Google Scholar] [CrossRef]
- Lee, K.; Jang, H.R. Role of T Cells in Ischemic Acute Kidney Injury and Repair. Korean J. Intern. Med. 2022, 37, 534–550. [Google Scholar] [CrossRef]
- Dellepiane, S.; Leventhal, J.S.; Cravedi, P. T Cells and Acute Kidney Injury: A Two-Way Relationship. Front. Immunol. 2020, 11, 1546. [Google Scholar] [CrossRef] [PubMed]
- Short, S.; Lewik, G.; Issa, F. An Immune Atlas of T Cells in Transplant Rejection: Pathways and Therapeutic Opportunities. Transplantation 2023, 107, 2341–2352. [Google Scholar] [CrossRef] [PubMed]
- Mai, H.L.; Degauque, N.; Le Bot, S.; Rimbert, M.; Renaudin, K.; Danger, R.; Le Borgne, F.; Kerleau, C.; Tilly, G.; Vivet, A.; et al. Antibody-Mediated Allograft Rejection Is Associated with an Increase in Peripheral Differentiated CD28-CD8+ T Cells—Analyses of a Cohort of 1032 Kidney Transplant Recipients. EBioMedicine 2022, 83, 104226. [Google Scholar] [CrossRef]
- Yokose, T.; Szuter, E.S.; Rosales, I.; Guinn, M.T.; Liss, A.S.; Baba, T.; Ruddy, D.A.; Piquet, M.; Azzi, J.; Cosimi, A.B.; et al. Dysfunction of Infiltrating Cytotoxic CD8+ T Cells within the Graft Promotes Murine Kidney Allotransplant Tolerance. J. Clin. Invest. 2024, 134, e179709. [Google Scholar] [CrossRef]
- Nutt, S.L.; Hodgkin, P.D.; Tarlinton, D.M.; Corcoran, L.M. The Generation of Antibody-Secreting Plasma Cells. Nat. Rev. Immunol. 2015, 15, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Victora, G.D.; Schwickert, T.A.; Fooksman, D.R.; Kamphorst, A.O.; Meyer-Hermann, M.; Dustin, M.L.; Nussenzweig, M.C. Germinal Center Dynamics Revealed by Multiphoton Microscopy with a Photoactivatable Fluorescent Reporter. Cell 2010, 143, 592–605. [Google Scholar] [CrossRef]
- Zhang, Y.; Garcia-Ibanez, L.; Toellner, K. Regulation of Germinal Center B-cell Differentiation. Immunol. Rev. 2016, 270, 8–19. [Google Scholar] [CrossRef]
- Farahnak, K.; Bai, Y.Z.; Yokoyama, Y.; Morkan, D.B.; Liu, Z.; Amrute, J.M.; De Filippis Falcon, A.; Terada, Y.; Liao, F.; Li, W.; et al. B Cells Mediate Lung Ischemia/Reperfusion Injury by Recruiting Classical Monocytes via Synergistic B Cell Receptor/TLR4 Signaling. J. Clin. Investig. 2024, 134, e170118. [Google Scholar] [CrossRef] [PubMed]
- Eibel, H.; Kraus, H.; Sic, H.; Kienzler, A.-K.; Rizzi, M. B Cell Biology: An Overview. Curr. Allergy Asthma Rep. 2014, 14, 434. [Google Scholar] [CrossRef]
- Vergani, S.; Yuan, J. Developmental Changes in the Rules for B Cell Selection. Immunol. Rev. 2021, 300, 194–202. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Burrows, P.D.; Wang, J.-Y. B Cell Development and Maturation. In B Cells in Immunity and Tolerance; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–22. [Google Scholar] [CrossRef]
- Burne-Taney, M.J.; Ascon, D.B.; Daniels, F.; Racusen, L.; Baldwin, W.; Rabb, H. B Cell Deficiency Confers Protection from Renal Ischemia Reperfusion Injury. J. Immunol. 2003, 171, 3210–3215. [Google Scholar] [CrossRef] [PubMed]
- Benichou, G.; Yamada, Y.; Yun, S.-H.; Lin, C.; Fray, M.; Tocco, G. Immune Recognition and Rejection of Allogeneic Skin Grafts. Immunotherapy 2011, 3, 757–770. [Google Scholar] [CrossRef]
- Billingham, R.E.; Krohn, P.L.; Medawar, P.B. Effect of Locally Applied Cortisone Acetate on Survival of Skin Homografts in Rabbits. BMJ 1951, 2, 1049–1053. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, R.; Fitch, Z.W.; Schroder, P.M.; Choi, A.Y.; Jackson, A.M.; Knechtle, S.J.; Kwun, J. B Cells in Transplant Tolerance and Rejection: Friends or Foes? Transplant. Int. 2020, 33, 30–40. [Google Scholar] [CrossRef]
- Zeng, Q.; Ng, Y.-H.; Singh, T.; Jiang, K.; Sheriff, K.A.; Ippolito, R.; Zahalka, S.; Li, Q.; Randhawa, P.; Hoffman, R.A.; et al. B Cells Mediate Chronic Allograft Rejection Independently of Antibody Production. J. Clin. Investig. 2014, 124, 1052–1056. [Google Scholar] [CrossRef]
- Ohm, B.; Jungraithmayr, W. B Cell Immunity in Lung Transplant Rejection—Effector Mechanisms and Therapeutic Implications. Front. Immunol. 2022, 13, 845867. [Google Scholar] [CrossRef]
- Sarwal, M.; Chua, M.-S.; Kambham, N.; Hsieh, S.-C.; Satterwhite, T.; Masek, M.; Salvatierra, O. Molecular Heterogeneity in Acute Renal Allograft Rejection Identified by DNA Microarray Profiling. N. Engl. J. Med. 2003, 349, 125–138. [Google Scholar] [CrossRef]
- Liarski, V.M.; Kaverina, N.; Chang, A.; Brandt, D.; Yanez, D.; Talasnik, L.; Carlesso, G.; Herbst, R.; Utset, T.O.; Labno, C.; et al. Cell Distance Mapping Identifies Functional T Follicular Helper Cells in Inflamed Human Renal Tissue. Sci. Transl. Med. 2014, 6, 230ra46. [Google Scholar] [CrossRef]
- Zhang, H.; Cavazzoni, C.B.; Hanson, B.L.; Bechu, E.D.; Podestà, M.A.; Azzi, J.; Blazar, B.R.; Chong, A.S.; Kreisel, D.; Alessandrini, A.; et al. Transcriptionally Distinct B Cells Infiltrate Allografts After Kidney Transplantation. Transplantation 2023, 107, e47–e57. [Google Scholar] [CrossRef] [PubMed]
- Heeger, P.S.; Haro, M.C.; Jordan, S. Translating B Cell Immunology to the Treatment of Antibody-Mediated Allograft Rejection. Nat. Rev. Nephrol. 2024, 20, 218–232. [Google Scholar] [CrossRef]
- Chong, A.S. Mechanisms of Organ Transplant Injury Mediated by B Cells and Antibodies: Implications for Antibody-Mediated Rejection. Am. J. Transplant. 2020, 20, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Hasjim, B.J.; Sanders, J.M.; Alexander, M.; Redfield, R.R.; Ichii, H. Perfusion Techniques in Kidney Allograft Preservation to Reduce Ischemic Reperfusion Injury: A Systematic Review and Meta-Analysis. Antioxidants 2024, 13, 642. [Google Scholar] [CrossRef] [PubMed]
- De Carlis, R.; Centonze, L.; Migliorini, M.; Pitoni, L.; Cerchione, R.; Lauterio, A.; De Carlis, L. Abdominal Normothermic Regional Perfusion in Donation After Circulatory Death: Organ Viability or Organ Preservation? Eur. J. Transplant. 2023, 1, 113–120. [Google Scholar] [CrossRef]
- Jochmans, I.; Hessheimer, A.J.; Neyrinck, A.P.; Paredes, D.; Bellini, M.I.; Dark, J.H.; Kimenai, H.J.A.N.; Pengel, L.H.M.; Watson, C.J.E.; Abelli, M.; et al. Consensus Statement on Normothermic Regional Perfusion in Donation after Circulatory Death: Report from the European Society for Organ Transplantation’s Transplant Learning Journey. Transplant. Int. 2021, 34, 2019–2030. [Google Scholar] [CrossRef]
- Kerforne, T.; Allain, G.; Giraud, S.; Bon, D.; Ameteau, V.; Couturier, P.; Hebrard, W.; Danion, J.; Goujon, J.-M.; Thuillier, R.; et al. Defining the Optimal Duration for Normothermic Regional Perfusion in the Kidney Donor: A Porcine Preclinical Study. Am. J. Transplant. 2019, 19, 737–751. [Google Scholar] [CrossRef]
- Murry, C.E.; Jennings, R.B.; Reimer, K.A. Preconditioning with Ischemia: A Delay of Lethal Cell Injury in Ischemic Myocardium. Circulation 1986, 74, 1124–1136. [Google Scholar] [CrossRef]
- Ortega-Trejo, J.A.; Bobadilla, N.A. Is Renal Ischemic Preconditioning an Alternative to Ameliorate the Short- and Long-Term Consequences of Acute Kidney Injury? Int. J. Mol. Sci. 2023, 24, 8345. [Google Scholar] [CrossRef]
- Amantea, D.; La Russa, D.; Frisina, M.; Giordano, F.; Di Santo, C.; Panno, M.L.; Pignataro, G.; Bagetta, G. Ischemic Preconditioning Modulates the Peripheral Innate Immune System to Promote Anti-Inflammatory and Protective Responses in Mice Subjected to Focal Cerebral Ischemia. Front. Immunol. 2022, 13, 825834. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wu, Y.; Zeng, M.; Yang, C.; Qiu, Z.; Liu, R.; Wang, L.; Zhong, M.; Chen, Q.; Liang, W. Protective Role of Remote Ischemic Conditioning in Renal Transplantation and Partial Nephrectomy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Surg. 2023, 10, 1024650. [Google Scholar] [CrossRef] [PubMed]
- Jeyamogan, S.; Leventhal, J.R.; Mathew, J.M.; Zhang, Z.J. CD4+CD25+FOXP3+ Regulatory T Cells: A Potential “Armor” to Shield “Transplanted Allografts” in the War against Ischemia Reperfusion Injury. Front. Immunol. 2023, 14, 1270300. [Google Scholar] [CrossRef]
- Gandolfo, M.T.; Jang, H.R.; Bagnasco, S.M.; Ko, G.-J.; Agreda, P.; Satpute, S.R.; Crow, M.T.; King, L.S.; Rabb, H. Foxp3+ Regulatory T Cells Participate in Repair of Ischemic Acute Kidney Injury. Kidney Int. 2009, 76, 717–729. [Google Scholar] [CrossRef]
- Boucquemont, J.; Foucher, Y.; Masset, C.; Legendre, C.; Scemla, A.; Buron, F.; Morelon, E.; Garrigue, V.; Pernin, V.; Albano, L.; et al. Induction Therapy in Kidney Transplant Recipients: Description of the Practices According to the Calendar Period from the French Multicentric DIVAT Cohort. PLoS ONE 2020, 15, e0240929. [Google Scholar] [CrossRef]
- Bellini, A.; Finocchietti, M.; Rosa, A.C.; Nordio, M.; Ferroni, E.; Massari, M.; Spila Alegiani, S.; Masiero, L.; Bedeschi, G.; Cardillo, M.; et al. Effectiveness and Safety of Immunosuppressive Regimens Used as Maintenance Therapy in Kidney Transplantation: The CESIT Study. PLoS ONE 2024, 19, e0295205. [Google Scholar] [CrossRef]
- López-Abente, J.; Martínez-Bonet, M.; Bernaldo-de-Quirós, E.; Camino, M.; Gil, N.; Panadero, E.; Gil-Jaurena, J.M.; Clemente, M.; Urschel, S.; West, L.; et al. Basiliximab Impairs Regulatory T Cell (TREG) Function and Could Affect the Short-Term Graft Acceptance in Children with Heart Transplantation. Sci. Rep. 2021, 11, 827. [Google Scholar] [CrossRef] [PubMed]
- Cassano, A.; Chong, A.S.; Alegre, M.-L. Tregs in Transplantation Tolerance: Role and Therapeutic Potential. Front. Transplant. 2023, 2, 1217065. [Google Scholar] [CrossRef]
- Trivioli, G.; Peyronel, F.; Vaglio, A. The New Generation of B Cell–Targeting Therapies for the Treatment of Autoimmune Kidney Diseases. Nephrol. Dial. Transplant. 2024, 39, 1210–1213. [Google Scholar] [CrossRef]
- Zouggari, Y.; Ait-Oufella, H.; Bonnin, P.; Simon, T.; Sage, A.P.; Guérin, C.; Vilar, J.; Caligiuri, G.; Tsiantoulas, D.; Laurans, L.; et al. B Lymphocytes Trigger Monocyte Mobilization and Impair Heart Function after Acute Myocardial Infarction. Nat. Med. 2013, 19, 1273–1280. [Google Scholar] [CrossRef]
- Chen, J.; Crispín, J.C.; Tedder, T.F.; Dalle Lucca, J.; Tsokos, G.C. B Cells Contribute to Ischemia/Reperfusion-Mediated Tissue Injury. J. Autoimmun. 2009, 32, 195–200. [Google Scholar] [CrossRef]
- Anwar, I.J.; DeLaura, I.F.; Gao, Q.; Ladowski, J.; Jackson, A.M.; Kwun, J.; Knechtle, S.J. Harnessing the B Cell Response in Kidney Transplantation—Current State and Future Directions. Front. Immunol. 2022, 13, 903068. [Google Scholar] [CrossRef]
- Howard, M.C.; Nauser, C.L.; Farrar, C.A.; Sacks, S.H. Correction to: Complement in Ischaemia–Reperfusion Injury and Transplantation. Semin. Immunopathol. 2022, 44, 391. [Google Scholar] [CrossRef]
- Schmitz, R.; Fitch, Z.W.; Schroder, P.M.; Choi, A.Y.; Manook, M.; Yoon, J.; Song, M.; Yi, J.S.; Khandelwal, S.; Arepally, G.M.; et al. C3 Complement Inhibition Prevents Antibody-Mediated Rejection and Prolongs Renal Allograft Survival in Sensitized Non-Human Primates. Nat. Commun. 2021, 12, 5456. [Google Scholar] [CrossRef] [PubMed]
- Karpman, D.; Bekassy, Z.; Grunenwald, A.; Roumenina, L.T. A Role for Complement Blockade in Kidney Transplantation. Cell Mol. Immunol. 2022, 19, 755–757. [Google Scholar] [CrossRef] [PubMed]
- Schröppel, B.; Akalin, E.; Baweja, M.; Bloom, R.D.; Florman, S.; Goldstein, M.; Haydel, B.; Hricik, D.E.; Kulkarni, S.; Levine, M.; et al. Peritransplant Eculizumab Does Not Prevent Delayed Graft Function in Deceased Donor Kidney Transplant Recipients: Results of Two Randomized Controlled Pilot Trials. Am. J. Transplant. 2020, 20, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Kaabak, M.; Babenko, N.; Shapiro, R.; Zokoyev, A.; Dymova, O.; Kim, E. A Prospective Randomized, Controlled Trial of Eculizumab to Prevent Ischemia-reperfusion Injury in Pediatric Kidney Transplantation. Pediatr. Transplant. 2018, 22, e13129. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.K.C.; Cozzi, E. The Immense Potential of Xenotransplantation. Eur. J. Transplant. 2023, 1, 163–166. [Google Scholar] [CrossRef]
- Montgomery, R.; Stern, J.; Griesemer, A.; Locke, J.; Khalil, K.; Aljab-ban, I.; Eitan, T.; Jaffe, I.; Rosenthal, C.; Weldon, E.; et al. Longest Surviving Recipient of a Xenotransplant: Allo-Sensitized Patient Receiving a 10 Gene-Edited Pig Kidney. Am. J. Transplant. 2025, 25, S25. [Google Scholar] [CrossRef]
- Patel, P.M.; Connolly, M.R.; Coe, T.M.; Calhoun, A.; Pollok, F.; Markmann, J.F.; Burdorf, L.; Azimzadeh, A.; Madsen, J.C.; Pierson, R.N. Minimizing Ischemia Reperfusion Injury in Xenotransplantation. Front. Immunol. 2021, 12, 681504. [Google Scholar] [CrossRef]
- Stoerzer, S.; Kruszona, S.; Wand, P.; Linge, H.; Zlatev, H.; Hoeffler, K.; Singh, J.; Roters, N.; Muth, V.; Tavil, S.; et al. Advances in Xenotransplantation: Evaluation of AGal-KO Porcine Livers and Lungs Using Normothermic Machine Perfusion in a Collaborative Perfusion Hub. Transplant. Int. 2025, 38, 13781. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.; Lee, G.; Kim, H.W.; Kang, M.; Kim, H.J.; Park, C.-G. Current Status of Xenotransplantation from an Immunobiological Standpoint. Clin. Transplant. Res. 2025, 39, 97–115. [Google Scholar] [CrossRef] [PubMed]
Cell Type | Role in IRI | Role in Rejection | References |
---|---|---|---|
Macrophages | M1 amplifies inflammation M2 promotes repair and regeneration | TCMR: M1 polarization, antigen presentation, arteritis AMR: peritubular infiltration; modulate T-cell differentiation Chronic: M2 drives fibrosis and vasculopathy | [61,62,63,64,65,66,67,68] |
Neutrophils | Release ROS, cytokines, proteases; form NETs | AMR: recruited by antibodies, NETs amplify injury, B-cells help via BAFF Acute: promote T-cell infiltration (CXCR2), recruit CD8+ via CCL1/2/5 Chronic: IL-17 production, trogocytosis | [69,70,71,72,73,74,75,76,77,78,79] |
Natural Killer Cells | TEC injury and neutrophil recruitment | Distinct NK subsets linked to TCMR and AMR; strong evidence from transcriptomics | [80,81,82,83,84,85,86,87,88] |
Complement System | DGF, TEC injury, fibrosis | Induction of T-cell responses, AMR, prothrombotic state | [89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119] |
Dendritic Cells | Produce TNFα, upregulate MHC and costimulatory molecules | Promote Th1 and Tfh differentiation, supporting development of TCMR and AMR | [120,121,122,123,124,125,126,127,128,129,130] |
T-cells | Th1 proinflammatory, recruits neutrophils/NK/macrophages Th2 anti-inflammatory Th17 fibrosis and neutrophil recruitment Tregs suppress inflammation CD8+ T-cells can promote injury | Th1 promotes alloimmunity Th2 supports Tregs Th17 is linked to TCMR severity Tregs induce tolerance, suppress effector T-cells CD8+ T-cells induce graft injury | [131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161] |
B-cells | B1 cells respond to DAMPs B2 cells amplify inflammation and act as APCs | DSA production and development of AMR Promote T-cell activation Facilitate T-cell infiltration and cytokine production Chronic allograft vasculopathy and microvascular injury | [161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179] |
Strategy | Purpose | Key Features | References |
---|---|---|---|
Machine Perfusion | Preventive | Reduced incidence of DGF, acute rejection, and graft failure | [180] |
Normothermic Regional Perfusion | Preventive | Safe alternative to in situ cooling and rapid procurement for kidneys from DCD donors | [181,182,183] |
Ischemic Preconditioning | Preventive | Protected renal cells by reducing ROS, enhancing blood flow, inducing anti-apoptotic, and lowering pro-inflammatory cytokines | [184,185,186,187] |
Adoptive Tregs Transfer | Therapeutic | Reduced the infiltration of immune cells | [188,189] |
Immunosuppression | Therapeutic | Immunomodulation | [190,191,192,193] |
B-cell-depleting Therapies | Therapeutic | May reduce IRI-related damage and rejection rates | [194,195,196,197] |
Complement Inhibitors | Therapeutic | Immunomodulation | [198,199,200,201,202] |
Xenotransplantation | Preventive-Therapeutic | May enhance graft viability and mitigate immune rejection | [203,204,205,206,207] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Troise, D.; Infante, B.; Mercuri, S.; Lindholm, B.; Kublickiene, K.; Stallone, G. Exploring the Immunological Landscape of Ischemia/Reperfusion Injury and Graft Rejection in Kidney Transplantation: Shared Mechanisms and Insights. Cells 2025, 14, 1443. https://doi.org/10.3390/cells14181443
Troise D, Infante B, Mercuri S, Lindholm B, Kublickiene K, Stallone G. Exploring the Immunological Landscape of Ischemia/Reperfusion Injury and Graft Rejection in Kidney Transplantation: Shared Mechanisms and Insights. Cells. 2025; 14(18):1443. https://doi.org/10.3390/cells14181443
Chicago/Turabian StyleTroise, Dario, Barbara Infante, Silvia Mercuri, Bengt Lindholm, Karolina Kublickiene, and Giovanni Stallone. 2025. "Exploring the Immunological Landscape of Ischemia/Reperfusion Injury and Graft Rejection in Kidney Transplantation: Shared Mechanisms and Insights" Cells 14, no. 18: 1443. https://doi.org/10.3390/cells14181443
APA StyleTroise, D., Infante, B., Mercuri, S., Lindholm, B., Kublickiene, K., & Stallone, G. (2025). Exploring the Immunological Landscape of Ischemia/Reperfusion Injury and Graft Rejection in Kidney Transplantation: Shared Mechanisms and Insights. Cells, 14(18), 1443. https://doi.org/10.3390/cells14181443