Deciphering α-L-Fucosidase Activity Contribution in Human and Mouse: Tissue α-L-Fucosidase FUCA1 Meets Plasma α-L-Fucosidase FUCA2
Abstract
1. Introduction
2. Materials and Methods
2.1. Bioinformatics
2.2. Cell Culture
2.3. Cloning of Fucosidase Expression Constructs
2.4. Generation of Fucosidase-Specific Monoclonal Antibodies
2.5. RNA Isolation, cDNA Synthesis, and Real-Time PCR
2.6. Transient Transfection, Preparation of Cleared Cell Lysates, and Immunoblotting
2.7. Deglycosylation of N-Glycosylated Proteins
2.8. α-L-Fucosidase Activity Assays
2.9. Purification of Tagged and Untagged FUCA1 and FUCA2
2.10. Size-Exclusion Chromatography
2.11. Indirect Immunofluorescence Microscopy
2.12. Lysosome-Enriched Fractions from Mouse Liver (Tritosomes)
2.13. Enrichment and Analysis of Lysosome-Enriched Fractions from HAP1 Cells
2.14. Animals
3. Results
3.1. Structural Comparison of FUCA1 and FUCA2
3.2. Transcript Analysis of Fuca1 and Fuca2 in Wild-Type and Fuca1-KO Mouse Tissues
3.3. Generation and Evaluation of α-L-Fucosidase-Specific Antibodies
3.4. Molecular and Biochemical Analysis of FUCA1 and FUCA2
3.5. Ectopic Expression and Enzymatic Activity of α-L-Fucosidases
3.6. Oligomerization of FUCA1 and FUCA2
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FUCA1 | tissue α-L-fucosidase 1 |
FUCA2 | plasma α-L-fucosidase 2 |
qPCR | quantitative polymerase chain reaction |
4-MUF | 4-methylumbelliferyl-α-L-fucopyranoside |
pNPF | p-nitrophenyl-α-L-fucopyranoside |
BSA | bovine serum albumin |
DMEM | Dulbecco’s Modified Eagle’s Medium |
MEF | mouse embryonic fibroblasts |
Ct | cycle threshold |
RT | room temperature |
References
- Jiménez-Pérez, C.; Guzmán-Rodríguez, F.; Cruz-Guerrero, A.E.; Alatorre-Santamaría, S. The dual role of fucosidases: Tool or target. Biologia 2023, 78, 1773–1788. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hsu, H.C.; Mountz, J.D.; Allen, J.G. Unmasking Fucosylation: From Cell Adhesion to Immune System Regulation and Diseases. Cell Chem. Biol. 2018, 25, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Becker, D.J.; Lowe, J.B. Fucose: Biosynthesis and biological function in mammals. Glycobiology 2003, 13, 41R–53R. [Google Scholar] [CrossRef]
- Ghorashi, A.C.; Boucher, A.; Archer-Hartmann, S.A.; Zalem, D.; Taherzadeh Ghahfarrokhi, M.; Murray, N.B.; Konada, R.S.R.; Zhang, X.; Xing, C.; Teneberg, S.; et al. Fucosylation of glycoproteins and glycolipids: Opposing roles in cholera intoxication. Nat. Chem. Biol. 2025, 21, 555–566. [Google Scholar] [CrossRef]
- Alhadeff, J.A.; Miller, A.L.; Wenaas, H.; Vedvick, T.; O’Brien, J.S. Human liver alpha-L-fucosidase. Purification, characterization, and immunochemical studies. J. Biol. Chem. 1975, 250, 7106–7113. [Google Scholar] [CrossRef]
- Willems, P.J.; Gatti, R.; Darby, J.K.; Romeo, G.; Durand, P.; Dumon, J.E.; O’Brien, J.S. Fucosidosis revisited: A review of 77 patients. Am. J. Med. Genet. 1991, 38, 111–131. [Google Scholar] [CrossRef]
- Argade, S.P.; Hopfer, R.L.; Strang, A.M.; van Halbeek, H.; Alhadeff, J.A. Structural studies on the carbohydrate moieties of human liver alpha-L-fucosidase. Arch. Biochem. Biophys. 1988, 266, 227–247. [Google Scholar] [CrossRef]
- Alhadeff, J.A.; Cimino, G.; Janowsky, A. Isoenzymes of human liver alpha-L-fucosidase: Chemical relationship, kinetic studies, and immunochemical characterization. Mol. Cell Biochem. 1978, 19, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Luebke, T.; Lobel, P.; Sleat, D.E. Proteomics of the lysosome. Biochim. Biophys. Acta-Mol. Cell Res. 2009, 1793, 625–635. [Google Scholar] [CrossRef]
- Kollmann, K.; Pohl, S.; Marschner, K.; Encarnacao, M.; Sakwa, I.; Tiede, S.; Poorthuis, B.J.; Luebke, T.; Mueller-Loennies, S.; Storch, S.; et al. Mannose phosphorylation in health and disease. Eur. J. Cell Biol. 2010, 89, 117–123. [Google Scholar] [CrossRef]
- Alhadeff, J.A.; Miller, A.L.; Wenger, D.A.; O’Brien, J.S. Electrophoretic forms of human liver alpha-L-fucosidase and their relationship to fucosidosis (mucopolysaccharidosis F). Clin. Chim. Acta 1974, 57, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.M.; Beratis, N.G.; Turner, V.S.; Hirschhorn, K. Isozymes of human alpha-L-fucosidase detectable by starch gel electrophoresis. Clin. Chim. Acta 1974, 57, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Chien, S.F.; Dawson, G. Purification and properties of two forms of human alpha-L-fucosidase. Biochim. Biophys. Acta 1980, 614, 476–488. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, Z.; Meek, R.W.; Wu, L.; Blaza, J.N.; Davies, G.J. Cryo-EM structures of human fucosidase FucA1 reveal insight into substrate recognition and catalysis. Structure 2022, 30, 1443–1451.e5. [Google Scholar] [CrossRef]
- Michalski, J.C.; Klein, A. Glycoprotein lysosomal storage disorders: Alpha- and beta-mannosidosis, fucosidosis and alpha-N-acetylgalactosaminidase deficiency. Biochim. Biophys. Acta 1999, 1455, 69–84. [Google Scholar] [CrossRef]
- Wolf, H.; Damme, M.; Stroobants, S.; D’Hooge, R.; Beck, H.C.; Hermans-Borgmeyer, I.; Lüllmann-Rauch, R.; Dierks, T.; Lübke, T. A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease. Dis. Model. Mech. 2016, 9, 1015–1028. [Google Scholar] [CrossRef]
- Baudot, A.D.; Wang, V.M.; Leach, J.D.; O’Prey, J.; Long, J.S.; Paulus-Hock, V.; Lilla, S.; Thomson, D.M.; Greenhorn, J.; Ghaffar, F.; et al. Glycan degradation promotes macroautophagy. Proc. Natl. Acad. Sci. USA 2022, 119, e2111506119. [Google Scholar] [CrossRef]
- Arrol, L.P.; Kerrins, A.M.; Yamakawa, Y.; Smith, P.M. Fucosidosis in a domestic shorthair cat. J. Feline Med. Surg. 2011, 13, 120–124. [Google Scholar] [CrossRef]
- Kelly, W.R.; Clague, A.E.; Barns, R.J.; Bate, M.J.; MacKay, B.M. Canine alpha-L-fucosidosis: A storage disease of Springer Spaniels. Acta Neuropathol. 1983, 60, 9–13. [Google Scholar] [CrossRef]
- Kondagari, G.S.; King, B.M.; Thomson, P.C.; Williamson, P.; Clements, P.R.; Fuller, M.; Hemsley, K.M.; Hopwood, J.J.; Taylor, R.M. Treatment of canine fucosidosis by intracisternal enzyme infusion. Exp. Neurol. 2011, 230, 218–226. [Google Scholar] [CrossRef]
- Eiberg, H.; Mohr, J.; Nielsen, L.S. Linkage of plasma alpha-L-fucosidase (FUCA2) and the plasminogen (PLG) system. Clin. Genet. 1984, 26, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Narahara, K.; Tsuji, K.; Yokoyama, Y.; Namba, H.; Murakami, M.; Matsubara, T.; Kasai, R.; Fukushima, Y.; Seki, T.; Wakui, K. Specification of small distal 6q deletions in two patients by gene dosage and in situ hybridization study of plasminogen and alpha-L-fucosidase 2. Am. J. Med. Genet. 1991, 40, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Sleat, D.E.; Zheng, H.; Qian, M.; Lobel, P. Identification of sites of mannose 6-phosphorylation on lysosomal proteins. Mol. Cell Proteom. 2006, 5, 686–701. [Google Scholar] [CrossRef]
- Sakurama, H.; Tsutsumi, E.; Ashida, H.; Katayama, T.; Yamamoto, K.; Kumagai, H. Differences in the substrate specificities and active-site structures of two α-L-fucosidases (glycoside hydrolase family 29) from Bacteroides thetaiotaomicron. Biosci. Biotechnol. Biochem. 2012, 76, 1022–1024. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.W.; Ho, C.W.; Huang, H.H.; Chang, S.M.; Popat, S.D.; Wang, Y.T.; Wu, M.S.; Chen, Y.J.; Lin, C.H. Role for alpha-L-fucosidase in the control of Helicobacter pylori-infected gastric cancer cells. Proc. Natl. Acad. Sci. USA 2009, 106, 14581–14586. [Google Scholar] [CrossRef]
- Markmann, S.; Krambeck, S.; Hughes, C.J.; Mirzaian, M.; Aerts, J.M.; Saftig, P.; Schweizer, M.; Vissers, J.P.; Braulke, T.; Damme, M. Quantitative Proteome Analysis of Mouse Liver Lysosomes Provides Evidence for Mannose 6-phosphate-independent Targeting Mechanisms of Acid Hydrolases in Mucolipidosis II. Mol. Cell Proteom. 2017, 16, 438–450. [Google Scholar] [CrossRef]
- Huang, L.; Pike, D.; Sleat, D.E.; Nanda, V.; Lobel, P. Potential pitfalls and solutions for use of fluorescent fusion proteins to study the lysosome. PLoS ONE 2014, 9, e88893. [Google Scholar] [CrossRef]
- Richards, C.M.; Jabs, S.; Qiao, W.; Varanese, L.D.; Schweizer, M.; Mosen, P.R.; Riley, N.M.; Klüssendorf, M.; Zengel, J.R.; Flynn, R.A.; et al. The human disease gene LYSET is essential for lysosomal enzyme transport and viral infection. Science 2022, 378, eabn5648. [Google Scholar] [CrossRef]
- Koch-Nolte, F.; Glowacki, G.; Bannas, P.; Braasch, F.; Dubberke, G.; Ortolan, E.; Funaro, A.; Malavasi, F.; Haag, F. Use of genetic immunization to raise antibodies recognizing toxin-related cell surface ADP-ribosyltransferases in native conformation. Cell Immunol. 2005, 236, 66–71. [Google Scholar] [CrossRef]
- Muñoz, J.J.; Anauate, A.C.; Amaral, A.G.; Ferreira, F.M.; Watanabe, E.H.; Meca, R.; Ormanji, M.S.; Boim, M.A.; Onuchic, L.F.; Heilberg, I.P. Ppia is the most stable housekeeping gene for qRT-PCR normalization in kidneys of three Pkd1-deficient mouse models. Sci. Rep. 2021, 11, 19798. [Google Scholar] [CrossRef]
- Verheyen, S.; Blatterer, J.; Speicher, M.R.; Bhavani, G.S.; Boons, G.J.; Ilse, M.B.; Andrae, D.; Sproß, J.; Vaz, F.M.; Kircher, S.G.; et al. Novel subtype of mucopolysaccharidosis caused by arylsulfatase K (ARSK) deficiency. J. Med. Genet. 2022, 59, 957–964. [Google Scholar] [CrossRef]
- Candiano, G.; Bruschi, M.; Musante, L.; Santucci, L.; Ghiggeri, G.M.; Carnemolla, B.; Orecchia, P.; Zardi, L.; Righetti, P.G. Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 2004, 25, 1327–1333. [Google Scholar] [CrossRef]
- Kowalewski, B.; Lübke, T.; Kollmann, K.; Braulke, T.; Reinheckel, T.; Dierks, T.; Damme, M. Molecular characterization of arylsulfatase G: Expression, processing, glycosylation, transport, and activity. J. Biol. Chem. 2014, 289, 27992–28005. [Google Scholar] [CrossRef]
- De Pace, R.; Coutinho, M.F.; Koch-Nolte, F.; Haag, F.; Prata, M.J.; Alves, S.; Braulke, T.; Pohl, S. Mucolipidosis II-related mutations inhibit the exit from the endoplasmic reticulum and proteolytic cleavage of GlcNAc-1-phosphotransferase precursor protein (GNPTAB). Hum. Mutat. 2014, 35, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Radons, J.; Faber, V.; Buhrmester, H.; Völker, W.; Horejsí, V.; Hasilik, A. Stimulation of the biosynthesis of lactosamine repeats in glycoproteins in differentiating U937 cells and its suppression in the presence of NH4Cl. Eur. J. Cell Biol. 1992, 57, 184–192. [Google Scholar] [PubMed]
- Stroobants, S.; Wolf, H.; Callaerts-Vegh, Z.; Dierks, T.; Lübke, T.; D’Hooge, R. Sen-sorimotor and Neurocognitive Dysfunctions Parallel Early Telencephalic Neuropathology in Fuco-sidosis Mice. Front. Behav. Neurosci. 2018, 12, 69. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Turner, B.M. Purification and characterisation of alpha-L-fucosidase from human placenta. pH-dependent changes in molecular size. Biochim. Biophys. Acta 1979, 578, 325–336. [Google Scholar] [CrossRef]
- Di Matteo, G.; Orfeo, M.A.; Romeo, G. Human alpha-fucosidase. Purification and properties. Biochim. Biophys. Acta 1976, 429, 527–537. [Google Scholar] [CrossRef]
- Fu, J.; Guo, Q.; Feng, Y.; Cheng, P.; Wu, A. Dual role of fucosidase in cancers and its clinical potential. J. Cancer 2022, 13, 3121–3132. [Google Scholar] [CrossRef]
- Hu, D.; Kobayashi, N.; Ohki, R. FUCA1: An Underexplored p53 Target Gene Linking Glycosylation and Cancer Progression. Cancers 2024, 16, 2753. [Google Scholar] [CrossRef]
- Wang, S.W.; Ko, Y.A.; Chen, C.Y.; Liao, K.S.; Chang, Y.H.; Lee, H.Y.; Yu, Y.H.; Lih, Y.H.; Cheng, Y.Y.; Lin, H.H.; et al. Mechanism of Antigen Presentation and Specificity of Antibody Cross-Reactivity Elicited by an Oligosaccharide-Conjugate Cancer Vaccine. J. Am. Chem. Soc. 2023, 145, 9840–9849. [Google Scholar] [CrossRef] [PubMed]
- Sleat, D.E.; Wiseman, J.A.; El-Banna, M.; Zheng, H.; Zhao, C.; Soherwardy, A.; Moore, D.F.; Lobel, P. Analysis of Brain and Cerebrospinal Fluid from Mouse Models of the Three Major Forms of Neuronal Ceroid Lipofuscinosis Reveals Changes in the Lysosomal Proteome. Mol. Cell Proteom. 2019, 18, 2244–2261. [Google Scholar] [CrossRef] [PubMed]
- Sleat, D.E.; Della Valle, M.C.; Zheng, H.; Moore, D.F.; Lobel, P. The mannose 6-phosphate glycoprotein proteome. J. Proteome Res. 2008, 7, 3010–3021. [Google Scholar] [CrossRef] [PubMed]
- Perna, V.N.; Barrett, K.; Meyer, A.S.; Zeuner, B. Substrate specificity and transglycosylation capacity of α-L-fucosidases across GH29 assessed by bioinformatics-assisted selection of functional diversity. Glycobiology 2023, 33, 396–410. [Google Scholar] [CrossRef]
- Matzhold, E.M.; Berghold, A.; Bemelmans, M.K.B.; Banfi, C.; Stelzl, E.; Kessler, H.H.; Steinmetz, I.; Krause, R.; Wurzer, H.; Schlenke, P.; et al. Lewis and ABO histo-blood types and the secretor status of patients hospitalized with COVID-19 implicate a role for ABO antibodies in susceptibility to infection with SARS-CoV-2. Transfusion 2021, 61, 2736–2745. [Google Scholar] [CrossRef]
- Johnson, S.W.; Alhadeff, J.A. Mammalian alpha-L-fucosidases. Comp. Biochem. Physiol. B 1991, 99, 479–488. [Google Scholar] [CrossRef]
- Shoarinejad, F.; Johnson, S.W.; Alhadeff, J.A. Analysis of the subunits, isoforms and substrate specificity of mouse liver alpha-L-fucosidase. Comp. Biochem. Physiol. B 1993, 105, 129–137. [Google Scholar] [CrossRef]
- Haslund-Gourley, B.S.; Aziz, P.V.; Heithoff, D.M.; Restagno, D.; Fried, J.C.; Ilse, M.B.; Bäumges, H.; Mahan, M.J.; Lübke, T.; Marth, J.D. Establishment of blood glycosidase activities and their excursions in sepsis. PNAS Nexus 2022, 1, pgac113. [Google Scholar] [CrossRef]
- Tang, T.; Li, L.; Tang, J.; Li, Y.; Lin, W.Y.; Martin, F.; Grant, D.; Solloway, M.; Parker, L.; Ye, W.; et al. A mouse knockout library for secreted and transmembrane proteins. Nat. Biotechnol. 2010, 28, 749–755. [Google Scholar] [CrossRef]
- Sardiello, M.; Palmieri, M.; di Ronza, A.; Medina, D.L.; Valenza, M.; Gennarino, V.A.; Di Malta, C.; Donaudy, F.; Embrione, V.; Polishchuk, R.S.; et al. A gene network regulating lysosomal biogenesis and function. Science 2009, 325, 473–477. [Google Scholar] [CrossRef]
- Palmieri, M.; Impey, S.; Kang, H.; di Ronza, A.; Pelz, C.; Sardiello, M.; Ballabio, A. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 2011, 20, 3852–3866. [Google Scholar] [CrossRef]
- Lukatela, G.; Krauss, N.; Theis, K.; Selmer, T.; Gieselmann, V.; von Figura, K.; Saenger, W. Crystal structure of human arylsulfatase A: The aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis. Biochemistry 1998, 37, 3654–3664. [Google Scholar] [CrossRef]
- Zhong, A.; Chen, T.; Xing, Y.; Pan, X.; Shi, M. FUCA2 Is a Prognostic Biomarker and Correlated With an Immunosuppressive Microenvironment in Pan-Cancer. Front. Immunol. 2021, 12, 758648. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bäumges, H.; Jelinek, S.; Lange, H.; Markmann, S.; Capriotti, E.; Häusser, J.A.; Ilse, M.-B.; Braulke, T.; Lübke, T. Deciphering α-L-Fucosidase Activity Contribution in Human and Mouse: Tissue α-L-Fucosidase FUCA1 Meets Plasma α-L-Fucosidase FUCA2. Cells 2025, 14, 1355. https://doi.org/10.3390/cells14171355
Bäumges H, Jelinek S, Lange H, Markmann S, Capriotti E, Häusser JA, Ilse M-B, Braulke T, Lübke T. Deciphering α-L-Fucosidase Activity Contribution in Human and Mouse: Tissue α-L-Fucosidase FUCA1 Meets Plasma α-L-Fucosidase FUCA2. Cells. 2025; 14(17):1355. https://doi.org/10.3390/cells14171355
Chicago/Turabian StyleBäumges, Hannah, Svenja Jelinek, Heike Lange, Sandra Markmann, Emanuela Capriotti, Jan Anwar Häusser, Mai-Britt Ilse, Thomas Braulke, and Torben Lübke. 2025. "Deciphering α-L-Fucosidase Activity Contribution in Human and Mouse: Tissue α-L-Fucosidase FUCA1 Meets Plasma α-L-Fucosidase FUCA2" Cells 14, no. 17: 1355. https://doi.org/10.3390/cells14171355
APA StyleBäumges, H., Jelinek, S., Lange, H., Markmann, S., Capriotti, E., Häusser, J. A., Ilse, M.-B., Braulke, T., & Lübke, T. (2025). Deciphering α-L-Fucosidase Activity Contribution in Human and Mouse: Tissue α-L-Fucosidase FUCA1 Meets Plasma α-L-Fucosidase FUCA2. Cells, 14(17), 1355. https://doi.org/10.3390/cells14171355