Context-Dependent Modulation of Breast Cancer Cell E-Cadherin Expression, Mitogenesis, and Immuno-Sensitivity by Immortalized Human Mesenchymal Stem Cells In Vitro
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines and Cell Culture
2.2. Co-Culture Experiments
2.3. Annexin v/Propidium Iodide (AV/PI) Staining and Flow Cytometry
2.4. Immunofluorescence (IF)
2.5. Western Blot (WB)
2.6. Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR)
- hGAPDH-forward (5′→3′): GTCTCCTCTGACTTCAACAGCG
- hGAPDH-reverse (5′→3′): ACCACCCTGTTGCTGTAGCCAA
- hE-cadherin-forward (5′→3′): GCCTCCTGAAAAGAGAGTGGAAG
- hE-cadherin-reverse (5′→3′): TGGCAGTGTCTCTCCAAATCCG
2.7. EdU Assay
2.8. Statistics
3. Results
3.1. ihMSCs Enhance E-Cadherin Expression in Breast Cancer Cells
3.2. ihMSCs Modulate the Proliferation of Breast Cancer Cells
3.3. ihMSCs Influence the Sensitivity of Breast Cancer Cells to TRAIL-Induced Apoptosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Date Availability Statement
Conflicts of Interest
Abbreviations
ABB | Annexin V-binding buffer |
APC | Allophycocyanin |
AV | Annexin V |
BAX | BCL-2-associated X protein |
BCL | B-cell lymphoma |
BDNF | Brain-derived neurotrophic factor |
BrCa | Breast cancer |
BSA | Bovine serum albumin |
cDNA | Complementary deoxyribonucleic acid |
CFSE | Carboxyfluorescein succinimidyl ester |
CHX | Cycloheximide |
CM | Conditioned medium |
Ctr | Control |
DAPI | 4′,6-Diamidino-2-phenylindole |
DMEM | Dulbecco’s Modified Eagle Medium |
DTCs | Disseminated tumor cells |
Ecad | E-cadherin |
EDTA | Ethylenediaminetetraacetic acid |
EdU | 5-ethynyl-2′-deoxyuridine |
EGFP | Enhanced green fluorescent protein |
EMT | Epithelial–mesenchymal transition |
FasL | Fas ligand |
FBS | Fetal bovine serum |
FGF | Fibroblast growth factor |
FITC | Fluorescein 5-isothiocyanate |
FSP1 | Fibroblast-specific protein 1 |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase |
GFP | Green fluorescent protein |
HEPES | 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid |
HGF | Hepatocyte growth factor |
HRP | Horseradish peroxidase |
IF | Immunofluorescence |
IFN | Interferon |
IGF1 | Insulin-like growth factor 1 |
IGFBP-2 | Insulin-like growth factor-binding protein 2 |
ihMSCs | immortalized human mesenchymal stem cells |
ITS | Insulin-Transferrin-Selenium |
JAK2 | Janus kinase 2 |
M231 | MDA-MB-231 |
M468 | MDA-MB-468 |
M7 | MCF-7 |
M7shE | MCF-7 with shRNA-mediated E-cadherin knockdown |
MErT | Mesenchymal-to-epithelial reverting transition |
miRNA | microRNA |
mRNA | Messenger RNA |
MSCs | Mesenchymal stem cells |
NEAA | Non-essential amino acids |
NP-40 | Nonidet P-40 |
NT | Non-treatment |
P/S | Penicillin-Streptomycin |
PBS−− | Calcium- and magnesium-free phosphate-buffered saline |
PBS | Phosphate-buffered saline |
PDGF | Platelet-derived growth factor |
PE | Phycoerythrin |
PI | Propidium iodide |
PVDF | Polyvinylidene fluoride |
RFP | Red fluorescent protein |
RIPA | Radioimmunoprecipitation assay |
RNA | Ribonucleic acid |
RPMI | Roswell Park Memorial Institute |
RT-qPCR | Reverse transcription quantitative polymerase chain reaction |
SDS | Sodium dodecyl sulfate |
SDF | Stromal cell-derived factor |
shRNA | Short hairpin RNA |
STAT3 | Signal transducer and activator of transcription 3 |
TBST | Tris-buffered saline with Tween 20 |
TGF | Transforming growth factor |
TME | Tumor microenvironment |
TRAIL | Tumor necrosis factor-related apoptosis-inducing ligand |
VEGF | Vascular endothelial growth factor |
WB | Western blot |
231E | MDA-MB-231 with E-cadherin and RFP |
231R | MDA-MB-231 with RFP only |
ZO-1 | Zona Occludens |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Giaquinto, A.N.; Sung, H.; Newman, L.A.; Freedman, R.A.; Smith, R.A.; Star, J.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics 2024. CA Cancer J. Clin. 2024, 74, 477–495. [Google Scholar] [CrossRef]
- Kim, M.Y. Breast Cancer Metastasis. Adv. Exp. Med. Biol. 2021, 1187, 183–204. [Google Scholar] [CrossRef]
- Brackstone, M.; Townson, J.L.; Chambers, A.F. Tumour Dormancy in Breast Cancer: An Update. Breast Cancer Res. 2007, 9, 208. [Google Scholar] [CrossRef]
- Chambers, A.F.; MacDonald, I.C.; Schmidt, E.E.; Koop, S.; Morris, V.L.; Khokha, R.; Groom, A.C. Steps in Tumor Metastasis: New Concepts from Intravital Videomicroscopy. Cancer Metastasis Rev. 1995, 14, 279–301. [Google Scholar] [CrossRef]
- Luzzi, K.J.; MacDonald, I.C.; Schmidt, E.E.; Kerkvliet, N.; Morris, V.L.; Chambers, A.F.; Groom, A.C. Multistep Nature of Metastatic Inefficiency: Dormancy of Solitary Cells after Successful Extravasation and Limited Survival of Early Micrometastases. Am. J. Pathol. 1998, 153, 865–873. [Google Scholar] [CrossRef]
- Wells, A.; Griffith, L.; Wells, J.Z.; Taylor, D.P. The Dormancy Dilemma: Quiescence versus Balanced Proliferation. Cancer Res. 2013, 73, 3811–3816. [Google Scholar] [CrossRef]
- Wu, T.; Dai, Y. Tumor Microenvironment and Therapeutic Response. Cancer Lett. 2017, 387, 61–68. [Google Scholar] [CrossRef]
- Arneth, B. Tumor Microenvironment. Medicina 2019, 56, 15. [Google Scholar] [CrossRef]
- Wang, W.; Zhong, W.; Yuan, J.; Yan, C.; Hu, S.; Tong, Y.; Mao, Y.; Hu, T.; Zhang, B.; Song, G. Involvement of Wnt/β-Catenin Signaling in the Mesenchymal Stem Cells Promote Metastatic Growth and Chemoresistance of Cholangiocarcinoma. Oncotarget 2015, 6, 42276–42289. [Google Scholar] [CrossRef]
- Yulyana, Y.; Ho, I.A.W.; Sia, K.C.; Newman, J.P.; Toh, X.Y.; Endaya, B.B.; Chan, J.K.Y.; Gnecchi, M.; Huynh, H.; Chung, A.Y.F.; et al. Paracrine Factors of Human Fetal MSCs Inhibit Liver Cancer Growth through Reduced Activation of IGF-1R/PI3K/Akt Signaling. Mol. Ther. 2015, 23, 746–756. [Google Scholar] [CrossRef]
- D’souza, N.; Burns, J.S.; Grisendi, G.; Candini, O.; Veronesi, E.; Piccinno, S.; Horwitz, E.M.; Paolucci, P.; Conte, P.; Dominici, M. MSC and Tumors: Homing, Differentiation, and Secretion Influence Therapeutic Potential. Adv. Biochem. Eng. Biotechnol. 2013, 130, 209–266. [Google Scholar] [CrossRef]
- Berger, L.; Shamai, Y.; Skorecki, K.L.; Tzukerman, M. Tumor Specific Recruitment and Reprogramming of Mesenchymal Stem Cells in Tumorigenesis. Stem Cells 2016, 34, 1011–1026. [Google Scholar] [CrossRef]
- Lin, W.; Huang, L.; Li, Y.; Fang, B.; Li, G.; Chen, L.; Xu, L. Mesenchymal Stem Cells and Cancer: Clinical Challenges and Opportunities. BioMed Res. Int. 2019, 2019, 2820853. [Google Scholar] [CrossRef]
- Keating, A. Mesenchymal Stromal Cells. Curr. Opin. Hematol. 2006, 13, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Amé-Thomas, P.; Maby-El Hajjami, H.; Monvoisin, C.; Jean, R.; Monnier, D.; Caulet-Maugendre, S.; Guillaudeux, T.; Lamy, T.; Fest, T.; Tarte, K. Human Mesenchymal Stem Cells Isolated from Bone Marrow and Lymphoid Organs Support Tumor B-Cell Growth: Role of Stromal Cells in Follicular Lymphoma Pathogenesis. Blood 2007, 109, 693–702. [Google Scholar] [CrossRef]
- Karnoub, A.E.; Dash, A.B.; Vo, A.P.; Sullivan, A.; Brooks, M.W.; Bell, G.W.; Richardson, A.L.; Polyak, K.; Tubo, R.; Weinberg, R.A. Mesenchymal Stem Cells within Tumour Stroma Promote Breast Cancer Metastasis. Nature 2007, 449, 557–563. [Google Scholar] [CrossRef]
- Prantl, L.; Muehlberg, F.; Navone, N.M.; Song, Y.-H.; Vykoukal, J.; Logothetis, C.J.; Alt, E.U. Adipose Tissue-Derived Stem Cells Promote Prostate Tumor Growth. Prostate 2010, 70, 1709–1715. [Google Scholar] [CrossRef]
- Qiao, L.; Xu, Z.; Zhao, T.; Zhao, Z.; Shi, M.; Zhao, R.C.; Ye, L.; Zhang, X. Suppression of Tumorigenesis by Human Mesenchymal Stem Cells in a Hepatoma Model. Cell Res. 2008, 18, 500–507. [Google Scholar] [CrossRef]
- Otsu, K.; Das, S.; Houser, S.D.; Quadri, S.K.; Bhattacharya, S.; Bhattacharya, J. Concentration-Dependent Inhibition of Angiogenesis by Mesenchymal Stem Cells. Blood 2009, 113, 4197–4205. [Google Scholar] [CrossRef]
- Khakoo, A.Y.; Pati, S.; Anderson, S.A.; Reid, W.; Elshal, M.F.; Rovira, I.I.; Nguyen, A.T.; Malide, D.; Combs, C.A.; Hall, G.; et al. Human Mesenchymal Stem Cells Exert Potent Antitumorigenic Effects in a Model of Kaposi’s Sarcoma. J. Exp. Med. 2006, 203, 1235–1247. [Google Scholar] [CrossRef]
- Ye, H.; Cheng, J.; Tang, Y.; Liu, Z.; Xu, C.; Liu, Y.; Sun, Y. Human Bone Marrow-Derived Mesenchymal Stem Cells Produced TGFbeta Contributes to Progression and Metastasis of Prostate Cancer. Cancer Investig. 2012, 30, 513–518. [Google Scholar] [CrossRef]
- El-Haibi, C.P.; Bell, G.W.; Zhang, J.; Collmann, A.Y.; Wood, D.; Scherber, C.M.; Csizmadia, E.; Mariani, O.; Zhu, C.; Campagne, A.; et al. Critical Role for Lysyl Oxidase in Mesenchymal Stem Cell-Driven Breast Cancer Malignancy. Proc. Natl. Acad. Sci. USA 2012, 109, 17460–17465. [Google Scholar] [CrossRef]
- Zhou, X.; Li, T.; Chen, Y.; Zhang, N.; Wang, P.; Liang, Y.; Long, M.; Liu, H.; Mao, J.; Liu, Q.; et al. Mesenchymal Stem Cell-derived Extracellular Vesicles Promote the in Vitro Proliferation and Migration of Breast Cancer Cells through the Activation of the ERK Pathway. Int. J. Oncol. 2019, 54, 1843–1852. [Google Scholar] [CrossRef]
- Lin, R.; Wang, S.; Zhao, R.C. Exosomes from Human Adipose-Derived Mesenchymal Stem Cells Promote Migration through Wnt Signaling Pathway in a Breast Cancer Cell Model. Mol. Cell Biochem. 2013, 383, 13–20. [Google Scholar] [CrossRef]
- Li, T.; Zhang, C.; Ding, Y.; Zhai, W.; Liu, K.; Bu, F.; Tu, T.; Sun, L.; Zhu, W.; Zhou, F.; et al. Umbilical Cord-Derived Mesenchymal Stem Cells Promote Proliferation and Migration in MCF-7 and MDA-MB-231 Breast Cancer Cells through Activation of the ERK Pathway. Oncol. Rep. 2015, 34, 1469–1477. [Google Scholar] [CrossRef]
- Shojaei, S.; Hashemi, S.M.; Ghanbarian, H.; Sharifi, K.; Salehi, M.; Mohammadi-Yeganeh, S. Delivery of miR-381-3p Mimic by Mesenchymal Stem Cell-Derived Exosomes Inhibits Triple Negative Breast Cancer Aggressiveness; an In Vitro Study. Stem Cell Rev. Rep. 2021, 17, 1027–1038. [Google Scholar] [CrossRef]
- Casson, J.; Davies, O.G.; Smith, C.-A.; Dalby, M.J.; Berry, C.C. Mesenchymal Stem Cell-Derived Extracellular Vesicles May Promote Breast Cancer Cell Dormancy. J. Tissue Eng. 2018, 9, 2041731418810093. [Google Scholar] [CrossRef]
- Hass, R. Role of MSC in the Tumor Microenvironment. Cancers 2020, 12, 2107. [Google Scholar] [CrossRef]
- Patel, S.A.; Meyer, J.R.; Greco, S.J.; Corcoran, K.E.; Bryan, M.; Rameshwar, P. Mesenchymal Stem Cells Protect Breast Cancer Cells through Regulatory T Cells: Role of Mesenchymal Stem Cell-Derived TGF-Beta. J. Immunol. 2010, 184, 5885–5894. [Google Scholar] [CrossRef]
- Loebinger, M.R.; Eddaoudi, A.; Davies, D.; Janes, S.M. Mesenchymal Stem Cell Delivery of TRAIL Can Eliminate Metastatic Cancer. Cancer Res. 2009, 69, 4134–4142. [Google Scholar] [CrossRef]
- Loebinger, M.R.; Sage, E.K.; Davies, D.; Janes, S.M. TRAIL-Expressing Mesenchymal Stem Cells Kill the Putative Cancer Stem Cell Population. Br. J. Cancer 2010, 103, 1692–1697. [Google Scholar] [CrossRef]
- Reagan, M.R.; Seib, F.P.; McMillin, D.W.; Sage, E.K.; Mitsiades, C.S.; Janes, S.M.; Ghobrial, I.M.; Kaplan, D.L. Stem Cell Implants for Cancer Therapy: TRAIL-Expressing Mesenchymal Stem Cells Target Cancer Cells In Situ. J. Breast Cancer 2012, 15, 273–282. [Google Scholar] [CrossRef]
- Studeny, M.; Marini, F.C.; Champlin, R.E.; Zompetta, C.; Fidler, I.J.; Andreeff, M. Bone Marrow-Derived Mesenchymal Stem Cells as Vehicles for Interferon-Beta Delivery into Tumors. Cancer Res. 2002, 62, 3603–3608. [Google Scholar]
- Studeny, M.; Marini, F.C.; Dembinski, J.L.; Zompetta, C.; Cabreira-Hansen, M.; Bekele, B.N.; Champlin, R.E.; Andreeff, M. Mesenchymal Stem Cells: Potential Precursors for Tumor Stroma and Targeted-Delivery Vehicles for Anticancer Agents. J. Natl. Cancer Inst. 2004, 96, 1593–1603. [Google Scholar] [CrossRef]
- Niess, H.; von Einem, J.C.; Thomas, M.N.; Michl, M.; Angele, M.K.; Huss, R.; Günther, C.; Nelson, P.J.; Bruns, C.J.; Heinemann, V. Treatment of Advanced Gastrointestinal Tumors with Genetically Modified Autologous Mesenchymal Stromal Cells (TREAT-ME1): Study Protocol of a Phase I/II Clinical Trial. BMC Cancer 2015, 15, 237. [Google Scholar] [CrossRef]
- Rubtsova, S.N.; Zhitnyak, I.Y.; Gloushankova, N.A. Phenotypic Plasticity of Cancer Cells Based on Remodeling of the Actin Cytoskeleton and Adhesive Structures. Int. J. Mol. Sci. 2021, 22, 1821. [Google Scholar] [CrossRef]
- Chao, Y.L.; Shepard, C.R.; Wells, A. Breast Carcinoma Cells Re-Express E-Cadherin during Mesenchymal to Epithelial Reverting Transition. Mol. Cancer 2010, 9, 179. [Google Scholar] [CrossRef]
- Heuberger, J.; Birchmeier, W. Interplay of Cadherin-Mediated Cell Adhesion and Canonical Wnt Signaling. Cold Spring Harb. Perspect. Biol. 2010, 2, a002915. [Google Scholar] [CrossRef]
- Hiscox, S.; Jiang, W.G. Association of the HGF/SF Receptor, c-Met, with the Cell-Surface Adhesion Molecule, E-Cadherin, and Catenins in Human Tumor Cells. Biochem. Biophys. Res. Commun. 1999, 261, 406–411. [Google Scholar] [CrossRef]
- Rubtsova, S.N.; Zhitnyak, I.Y.; Gloushankova, N.A. Dual Role of E-Cadherin in Cancer Cells. Tissue Barriers 2022, 10, 2005420. [Google Scholar] [CrossRef]
- Ma, B.; Wheeler, S.E.; Clark, A.M.; Whaley, D.L.; Yang, M.; Wells, A. Liver Protects Metastatic Prostate Cancer from Induced Death by Activating E-cadherin Signaling. Hepatology 2016, 64, 1725–1742. [Google Scholar] [CrossRef]
- Chao, Y.; Wu, Q.; Acquafondata, M.; Dhir, R.; Wells, A. Partial Mesenchymal to Epithelial Reverting Transition in Breast and Prostate Cancer Metastases. Cancer Microenviron. 2012, 5, 19–28. [Google Scholar] [CrossRef]
- Okamoto, T.; Aoyama, T.; Nakayama, T.; Nakamata, T.; Hosaka, T.; Nishijo, K.; Nakamura, T.; Kiyono, T.; Toguchida, J. Clonal Heterogeneity in Differentiation Potential of Immortalized Human Mesenchymal Stem Cells. Biochem. Biophys. Res. Commun. 2002, 295, 354–361. [Google Scholar] [CrossRef]
- Nobre, A.R.; Risson, E.; Singh, D.K.; Di Martino, J.S.; Cheung, J.F.; Wang, J.; Johnson, J.; Russnes, H.G.; Bravo-Cordero, J.J.; Birbrair, A.; et al. Bone Marrow NG2+/Nestin+ Mesenchymal Stem Cells Drive DTC Dormancy via TGFβ2. Nat. Cancer 2021, 2, 327–339. [Google Scholar] [CrossRef]
- Yang, M.; Ma, B.; Shao, H.; Clark, A.M.; Wells, A. Macrophage Phenotypic Subtypes Diametrically Regulate Epithelial-Mesenchymal Plasticity in Breast Cancer Cells. BMC Cancer 2016, 16, 419. [Google Scholar] [CrossRef]
- Wells, A.; Yates, C.; Shepard, C.R. E-Cadherin as an Indicator of Mesenchymal to Epithelial Reverting Transitions during the Metastatic Seeding of Disseminated Carcinomas. Clin. Exp. Metastasis 2008, 25, 621–628. [Google Scholar] [CrossRef]
- Sanchez, C.; Oskowitz, A.; Pochampally, R.R. Epigenetic Reprogramming of IGF1 and Leptin Genes by Serum Deprivation in Multipotential Mesenchymal Stromal Cells. Stem Cells 2009, 27, 375–382. [Google Scholar] [CrossRef]
- Dong, L.; Pu, Y.; Zhang, L.; Qi, Q.; Xu, L.; Li, W.; Wei, C.; Wang, X.; Zhou, S.; Zhu, J.; et al. Human Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Lung Adenocarcinoma Growth by Transferring miR-410. Cell Death Dis. 2018, 9, 218. [Google Scholar] [CrossRef]
- Vallabhaneni, K.C.; Penfornis, P.; Dhule, S.; Guillonneau, F.; Adams, K.V.; Mo, Y.Y.; Xu, R.; Liu, Y.; Watabe, K.; Vemuri, M.C.; et al. Extracellular Vesicles from Bone Marrow Mesenchymal Stem/Stromal Cells Transport Tumor Regulatory microRNA, Proteins, and Metabolites. Oncotarget 2015, 6, 4953–4967. [Google Scholar] [CrossRef]
- Rhee, K.-J.; Lee, J.I.; Eom, Y.W. Mesenchymal Stem Cell-Mediated Effects of Tumor Support or Suppression. Int. J. Mol. Sci. 2015, 16, 30015–30033. [Google Scholar] [CrossRef]
- Jantalika, T.; Manochantr, S.; Kheolamai, P.; Tantikanlayaporn, D.; Saijuntha, W.; Pinlaor, S.; Chairoungdua, A.; Paraoan, L.; Tantrawatpan, C. Human Chorion-Derived Mesenchymal Stem Cells Suppress JAK2/STAT3 Signaling and Induce Apoptosis of Cholangiocarcinoma Cell Lines. Sci. Rep. 2022, 12, 11341. [Google Scholar] [CrossRef]
- Phetfong, J.; Tawonsawatruk, T.; Kamprom, W.; Ontong, P.; Tanyong, D.; Borwornpinyo, S.; Supokawej, A. Bone Marrow-Mesenchymal Stem Cell-Derived Extracellular Vesicles Affect Proliferation and Apoptosis of Leukemia Cells in Vitro. FEBS Open Bio 2022, 12, 470–479. [Google Scholar] [CrossRef]
- Mohd Ali, N.; Yeap, S.K.; Ho, W.Y.; Boo, L.; Ky, H.; Satharasinghe, D.A.; Tan, S.W.; Cheong, S.K.; Huang, H.D.; Lan, K.C.; et al. Adipose MSCs Suppress MCF7 and MDA-MB-231 Breast Cancer Metastasis and EMT Pathways Leading to Dormancy via Exosomal-miRNAs Following Co-Culture Interaction. Pharmaceuticals 2020, 14, 8. [Google Scholar] [CrossRef]
- Chang, L.; Gao, H.; Wang, L.; Wang, N.; Zhang, S.; Zhou, X.; Yang, H. Exosomes Derived from miR-1228 Overexpressing Bone Marrow-Mesenchymal Stem Cells Promote Growth of Gastric Cancer Cells. Aging 2021, 13, 11808–11821. [Google Scholar] [CrossRef]
- Del Vecchio, V.; Rehman, A.; Panda, S.K.; Torsiello, M.; Marigliano, M.; Nicoletti, M.M.; Ferraro, G.A.; De Falco, V.; Lappano, R.; Lieto, E.; et al. Mitochondrial Transfer from Adipose Stem Cells to Breast Cancer Cells Drives Multi-Drug Resistance. J. Exp. Clin. Cancer Res. 2024, 43, 166. [Google Scholar] [CrossRef]
- Pasquier, J.; Guerrouahen, B.S.; Al Thawadi, H.; Ghiabi, P.; Maleki, M.; Abu-Kaoud, N.; Jacob, A.; Mirshahi, M.; Galas, L.; Rafii, S.; et al. Preferential Transfer of Mitochondria from Endothelial to Cancer Cells through Tunneling Nanotubes Modulates Chemoresistance. J. Transl. Med. 2013, 11, 94. [Google Scholar] [CrossRef]
- Kheirandish-Rostami, M.; Roudkenar, M.H.; Jahanian-Najafabadi, A.; Tomita, K.; Kuwahara, Y.; Sato, T.; Roushandeh, A.M. Mitochondrial Characteristics Contribute to Proliferation and Migration Potency of MDA-MB-231 Cancer Cells and Their Response to Cisplatin Treatment. Life Sci. 2020, 244, 117339. [Google Scholar] [CrossRef]
- Guo, Y.; Zhai, Y.; Wu, L.; Wang, Y.; Wu, P.; Xiong, L. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Pleiotropic Impacts on Breast Cancer Occurrence, Development, and Therapy. Int. J. Mol. Sci. 2022, 23, 2927. [Google Scholar] [CrossRef]
- Tu, Z.; Karnoub, A.E. Mesenchymal Stem/Stromal Cells in Breast Cancer Development and Management. Semin. Cancer Biol. 2022, 86, 81–92. [Google Scholar] [CrossRef]
- Chen, Z.; Xia, X.; Yao, M.; Yang, Y.; Ao, X.; Zhang, Z.; Guo, L.; Xu, X. The Dual Role of Mesenchymal Stem Cells in Apoptosis Regulation. Cell Death Dis. 2024, 15, 250. [Google Scholar] [CrossRef]
- Al-Awsi, G.R.L.; Alsaikhan, F.; Margiana, R.; Ahmad, I.; Patra, I.; Najm, M.A.A.; Yasin, G.; Rasulova, I.; Hammid, A.T.; Kzar, H.H.; et al. Shining the Light on Mesenchymal Stem Cell-Derived Exosomes in Breast Cancer. Stem Cell Res. Ther. 2023, 14, 21. [Google Scholar] [CrossRef]
Co-Culture Type | Cell Line | Group | EdU+ Nuclei | EdU− Nuclei | Total Nuclei | EdU+/Total Nuclei (%) | p Value Versus BrCa |
---|---|---|---|---|---|---|---|
Direct | M231 | BrCa | 714 | 834 | 1548 | 46.12 | / |
BrCa + ihMSC | 562 | 734 | 1296 | 43.36 | 0.183 | ||
M468 | BrCa | 2423 | 2128 | 4551 | 53.24 | / | |
BrCa + ihMSC | 2015 | 1524 | 3539 | 56.94 | 0.187 | ||
M7 | BrCa | 1423 | 874 | 2297 | 61.95 | / | |
BrCa + ihMSC | 2137 | 1060 | 3197 | 66.84 | 0.014 | ||
CM | M231 | BrCa CM | 1388 | 1431 | 2819 | 49.24 | / |
ihMSC CM | 861 | 1213 | 2074 | 41.51 | 0.013 | ||
BrCa + ihMSC CM | 1099 | 1273 | 2372 | 46.33 | 0.182 | ||
Fresh medium | 255 | 273 | 528 | 48.30 | 0.600 | ||
M468 | BrCa CM | 2795 | 1807 | 4602 | 60.73 | / | |
ihMSC CM | 3405 | 1374 | 4779 | 71.25 | 0.025 | ||
BrCa + ihMSC CM | 3865 | 2169 | 6034 | 64.05 | 0.188 | ||
Fresh medium | 793 | 539 | 1332 | 59.53 | 0.873 | ||
M7 | BrCa CM | 2512 | 900 | 3412 | 73.62 | / | |
ihMSC CM | 8046 | 1271 | 9317 | 86.36 | 0.007 | ||
BrCa + ihMSC CM | 6761 | 1079 | 7840 | 86.24 | 0.003 | ||
Fresh medium | 791 | 323 | 1114 | 71.01 | 0.724 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, B.; Atale, N.; Clark, A.M.; Wells, A. Context-Dependent Modulation of Breast Cancer Cell E-Cadherin Expression, Mitogenesis, and Immuno-Sensitivity by Immortalized Human Mesenchymal Stem Cells In Vitro. Cells 2025, 14, 1316. https://doi.org/10.3390/cells14171316
Dai B, Atale N, Clark AM, Wells A. Context-Dependent Modulation of Breast Cancer Cell E-Cadherin Expression, Mitogenesis, and Immuno-Sensitivity by Immortalized Human Mesenchymal Stem Cells In Vitro. Cells. 2025; 14(17):1316. https://doi.org/10.3390/cells14171316
Chicago/Turabian StyleDai, Bei, Neha Atale, Amanda M. Clark, and Alan Wells. 2025. "Context-Dependent Modulation of Breast Cancer Cell E-Cadherin Expression, Mitogenesis, and Immuno-Sensitivity by Immortalized Human Mesenchymal Stem Cells In Vitro" Cells 14, no. 17: 1316. https://doi.org/10.3390/cells14171316
APA StyleDai, B., Atale, N., Clark, A. M., & Wells, A. (2025). Context-Dependent Modulation of Breast Cancer Cell E-Cadherin Expression, Mitogenesis, and Immuno-Sensitivity by Immortalized Human Mesenchymal Stem Cells In Vitro. Cells, 14(17), 1316. https://doi.org/10.3390/cells14171316