Lipid-Laden Microglia: Characterization and Roles in Diseases
Abstract
1. Introduction
2. Lipid-Laden Microglia in the Context of Microglial Heterogeneity
3. Molecular and Analytical Tools for Detecting Lipid Droplets in Microglia
3.1. Traditional Detection Methods (Staining and Labeling)
3.2. Label-Free Methods
4. Lipid-Laden Microglia Formation in Aging
5. Lipid-Laden Microglia in CNS Neurodegeneration
5.1. Alzheimer’s Disease
5.2. Tauopathies
5.3. Demyelinating Diseases
6. Lipid-Laden Microglia in CNS Injury
6.1. Spinal Cord Injury
6.2. Traumatic Brain Injury
7. Lipid-Laden Microglia in Glioblastoma
8. Lipid-Laden Microglia in Obesity and Diabetes
9. Sex Differences and Environmental Effects
10. Conclusions
11. Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sunshine, H.; Iruela-Arispe, M.L. Membrane lipids and cell signaling. Curr. Opin. Lipidol. 2017, 28, 408–413. [Google Scholar] [CrossRef]
- Fujimoto, T.; Parton, R.G. Not just fat: The structure and function of the lipid droplet. Cold Spring Harb. Perspect. Biol. 2011, 3, a004838. [Google Scholar] [CrossRef]
- Olzmann, J.A.; Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 2019, 20, 137–155. [Google Scholar] [CrossRef]
- Welte, M.A.; Gould, A.P. Lipid droplet functions beyond energy storage. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862 Pt B, 1260–1272. [Google Scholar] [CrossRef]
- Pereira-Dutra, F.S.; Teixeira, L.; Costa, M.F.d.S.; Bozza, P.T. Fat, fight, and beyond: The multiple roles of lipid droplets in infections and inflammation. J. Leukoc. Biol. 2019, 106, 563–580. [Google Scholar] [CrossRef]
- Marschallinger, J.; Iram, T.; Zardeneta, M.; Lee, S.E.; Lehallier, B.; Haney, M.S.; Pluvinage, J.V.; Mathur, V.; Hahn, O.; Morgens, D.W.; et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat. Neurosci. 2020, 23, 194–208. [Google Scholar] [CrossRef]
- Alzheimer, A.; Stelzmann, R.A.; Schnitzlein, H.N.; Murtagh, F.R. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin. Anat. 1995, 8, 429–431. [Google Scholar] [CrossRef]
- Fowler, S.D.; Mayer, E.P.; Greenspan, P. Foam cells and atherogenesis. Ann. N. Y. Acad. Sci. 1985, 454, 79–90. [Google Scholar] [CrossRef]
- Khatchadourian, A.; Bourque, S.D.; Richard, V.R.; Titorenko, V.I.; Maysinger, D. Dynamics and regulation of lipid droplet formation in lipopolysaccharide (LPS)-stimulated microglia. Biochim. Biophys. Acta 2012, 1821, 607–617. [Google Scholar] [CrossRef]
- Wurm, J.; Konttinen, H.; Andressen, C.; Malm, T.; Spittau, B. Microglia Development and Maturation and Its Implications for Induction of Microglia-Like Cells from Human iPSCs. Int. J. Mol. Sci. 2021, 22, 3088. [Google Scholar] [CrossRef]
- Guo, S.; Wang, H.; Yin, Y. Microglia Polarization From M1 to M2 in Neurodegenerative Diseases. Front. Aging Neurosci. 2022, 14, 815347. [Google Scholar] [CrossRef] [PubMed]
- Paolicelli, R.C.; Sierra, A.; Stevens, B.; Tremblay, M.E.; Aguzzi, A.; Ajami, B.; Amit, I.; Audinat, E.; Bechmann, I.; Bennett, M.; et al. Microglia states and nomenclature: A field at its crossroads. Neuron 2022, 110, 3458–3483. [Google Scholar] [CrossRef] [PubMed]
- Grajchen, E.; Hendriks, J.J.A.; Bogie, J.F.J. The physiology of foamy phagocytes in multiple sclerosis. Acta Neuropathol. Commun. 2018, 6, 124. [Google Scholar] [CrossRef]
- Yamamoto, S.; Masuda, T. Lipid in microglial biology—from material to mediator. Inflamm. Regen. 2023, 43, 38. [Google Scholar] [CrossRef]
- Zhu, Y.; Choi, D.; Somanath, P.R.; Zhang, D. Lipid-Laden Macrophages in Pulmonary Diseases. Cells 2024, 13, 889. [Google Scholar] [CrossRef]
- Wei, W.; Lattau, S.S.J.; Xin, W.; Pan, Y.; Tatenhorst, L.; Zhang, L.; Graf, I.; Kuang, Y.; Zheng, X.; Hao, Z.; et al. Dynamic Brain Lipid Profiles Modulate Microglial Lipid Droplet Accumulation and Inflammation Under Ischemic Conditions in Mice. Adv. Sci. 2024, 11, e2306863. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, L.; Xin, W.; Pan, Y.; Tatenhorst, L.; Hao, Z.; Gerner, S.T.; Huber, S.; Juenemann, M.; Butz, M.; et al. TREM2 regulates microglial lipid droplet formation and represses post-ischemic brain injury. Biomed. Pharmacother. 2024, 170, 115962. [Google Scholar] [CrossRef]
- Arbaizar-Rovirosa, M.; Pedragosa, J.; Lozano, J.J.; Casal, C.; Pol, A.; Gallizioli, M.; Planas, A.M. Aged lipid-laden microglia display impaired responses to stroke. EMBO Mol. Med. 2023, 15, e17175. [Google Scholar] [CrossRef]
- van der Vliet, D.; Di, X.; Shamorkina, T.M.; Pavlovic, A.; van der Vliet, I.A.C.M.; Zeng, Y.; Macnair, W.; van Egmond, N.; Chen, J.Q.A.; van den Bosch, A.M.R.; et al. Foamy microglia link oxylipins to disease progression in multiple sclerosis. bioRxiv 2024. [Google Scholar] [CrossRef]
- Daemen, S.; van Zandvoort, M.; Parekh, S.H.; Hesselink, M.K.C. Microscopy tools for the investigation of intracellular lipid storage and dynamics. Mol. Metab. 2016, 5, 153–163. [Google Scholar] [CrossRef]
- Xu, S.; Huang, Y.; Xie, Y.; Lan, T.; Le, K.; Chen, J.; Chen, S.; Gao, S.; Xu, X.; Shen, X.; et al. Evaluation of foam cell formation in cultured macrophages: An improved method with Oil Red O staining and DiI-oxLDL uptake. Cytotechnology 2010, 62, 473–481. [Google Scholar] [CrossRef]
- Zbesko, J.C.; Stokes, J.; Becktel, D.A.; Doyle, K.P. Targeting foam cell formation to improve recovery from ischemic stroke. Neurobiol. Dis. 2023, 181, 106130. [Google Scholar] [CrossRef]
- Maiyo, B.K.; Loppi, S.H.; Morrison, H.W.; Doyle, K.P. Assessment and Quantification of Foam Cells and Lipid Droplet-Accumulating Microglia in Mouse Brain Tissue Using BODIPY Staining. Bio Protoc. 2024, 14, e5107. [Google Scholar] [CrossRef]
- Bisht, K.; Sharma, K.P.; Lecours, C.; Sanchez, M.G.; El Hajj, H.; Milior, G.; Olmos-Alonso, A.; Gomez-Nicola, D.; Luheshi, G.; Vallieres, L.; et al. Dark microglia: A new phenotype predominantly associated with pathological states. Glia 2016, 64, 826–839. [Google Scholar] [CrossRef]
- Yao, X.Q.; Chen, J.Y.; Garcia-Segura, M.E.; Wen, Z.H.; Yu, Z.H.; Huang, Z.C.; Hamel, R.; Liu, J.H.; Shen, X.; Huang, Z.P.; et al. Integrated multi-omics analysis reveals molecular changes associated with chronic lipid accumulation following contusive spinal cord injury. Exp. Neurol. 2024, 380, 114909. [Google Scholar] [CrossRef]
- Kim, H.; Oh, S.; Lee, S.; Lee, K.S.; Park, Y. Recent advances in label-free imaging and quantification techniques for the study of lipid droplets in cells. Curr. Opin. Cell Biol. 2024, 87, 102342. [Google Scholar] [CrossRef]
- Zhang, C. Coherent Raman scattering microscopy of lipid droplets in cells and tissues. J. Raman Spectrosc. 2023, 54, 988–1000. [Google Scholar] [CrossRef]
- Xie, B.; Njoroge, W.; Dowling, L.M.; Sule-Suso, J.; Cinque, G.; Yang, Y. Detection of lipid efflux from foam cell models using a label-free infrared method. Analyst 2022, 147, 5372–5385. [Google Scholar] [CrossRef]
- Cao, C.; Zhou, D.; Chen, T.; Streets, A.M.; Huang, Y. Label-Free Digital Quantification of Lipid Droplets in Single Cells by Stimulated Raman Microscopy on a Microfluidic Platform. Anal. Chem. 2016, 88, 4931–4939. [Google Scholar] [CrossRef]
- Kim, K.; Lee, S.; Yoon, J.; Heo, J.; Choi, C.; Park, Y. Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes. Sci. Rep. 2016, 6, 36815. [Google Scholar] [CrossRef]
- Jo, Y.; Cho, H.; Park, W.S.; Kim, G.; Ryu, D.; Kim, Y.S.; Lee, M.; Park, S.; Lee, M.J.; Joo, H.; et al. Label-free multiplexed microtomography of endogenous subcellular dynamics using generalizable deep learning. Nat. Cell Biol. 2021, 23, 1329–1337. [Google Scholar] [CrossRef]
- Yu, Y.; Ramachandran, P.V.; Wang, M.C. Shedding new light on lipid functions with CARS and SRS microscopy. Biochim. Biophys. Acta 2014, 1841, 1120–1129. [Google Scholar] [CrossRef]
- Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019, 15, 565–581. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Jin, Y.; Zhang, Y.; Wu, J.; Xu, Z.; Huang, Y.; Cai, L.; Gao, S.; Liu, T.; et al. Transcriptional and epigenetic decoding of the microglial aging process. Nat. Aging 2023, 3, 1288–1311. [Google Scholar] [CrossRef]
- Shimabukuro, M.K.; Langhi, L.G.; Cordeiro, I.; Brito, J.M.; Batista, C.M.; Mattson, M.P.; Mello Coelho, V. Lipid-laden cells differentially distributed in the aging brain are functionally active and correspond to distinct phenotypes. Sci. Rep. 2016, 6, 23795. [Google Scholar] [CrossRef]
- Abou Assale, T.; Afrang, N.; Wissfeld, J.; Cuevas-Rios, G.; Klaus, C.; Linnartz-Gerlach, B.; Neumann, H. Neuroprotective role of sialic-acid-binding immunoglobulin-like lectin-11 in humanized transgenic mice. Front. Neurosci. 2024, 18, 1504765. [Google Scholar] [CrossRef]
- Uranga, R.M.; Bruce-Keller, A.J.; Morrison, C.D.; Fernandez-Kim, S.O.; Ebenezer, P.J.; Zhang, L.; Dasuri, K.; Keller, J.N. Intersection between metabolic dysfunction, high fat diet consumption, and brain aging. J. Neurochem. 2010, 114, 344–361. [Google Scholar] [CrossRef]
- Zhuang, H.; Yao, X.; Li, H.; Li, Q.; Yang, C.; Wang, C.; Xu, D.; Xiao, Y.; Gao, Y.; Gao, J.; et al. Long-term high-fat diet consumption by mice throughout adulthood induces neurobehavioral alterations and hippocampal neuronal remodeling accompanied by augmented microglial lipid accumulation. Brain Behav. Immun. 2022, 100, 155–171. [Google Scholar] [CrossRef]
- Loving, B.A.; Tang, M.; Neal, M.C.; Gorkhali, S.; Murphy, R.; Eckel, R.H.; Bruce, K.D. Lipoprotein Lipase Regulates Microglial Lipid Droplet Accumulation. Cells 2021, 10, 198. [Google Scholar] [CrossRef]
- Burgunder, J.M. Neurodegeneration. IUBMB Life 2003, 55, 291. [Google Scholar] [CrossRef]
- Colonna, M.; Butovsky, O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu. Rev. Immunol. 2017, 35, 441–468. [Google Scholar] [CrossRef]
- Better M, A. 2024 Alzheimer’s disease facts and figures. Alzheimers Dement. 2024, 20, 3708–3821. [Google Scholar] [CrossRef]
- Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol. 2018, 25, 59–70. [Google Scholar] [CrossRef]
- Haney, M.S.; Palovics, R.; Munson, C.N.; Long, C.; Johansson, P.K.; Yip, O.; Dong, W.; Rawat, E.; West, E.; Schlachetzki, J.C.M.; et al. APOE4/4 is linked to damaging lipid droplets in Alzheimer’s disease microglia. Nature 2024, 628, 154–161. [Google Scholar] [CrossRef]
- Jansen, W.J.; Ossenkoppele, R.; Knol, D.L.; Tijms, B.M.; Scheltens, P.; Verhey, F.R.; Visser, P.J.; Amyloid Biomarker Study, G.; Aalten, P.; Aarsland, D.; et al. Prevalence of cerebral amyloid pathology in persons without dementia: A meta-analysis. JAMA 2015, 313, 1924–1938. [Google Scholar] [CrossRef]
- Jiang, T.; Tan, L.; Zhu, X.C.; Zhang, Q.Q.; Cao, L.; Tan, M.S.; Gu, L.Z.; Wang, H.F.; Ding, Z.Z.; Zhang, Y.D.; et al. Upregulation of TREM2 ameliorates neuropathology and rescues spatial cognitive impairment in a transgenic mouse model of Alzheimer’s disease. Neuropsychopharmacology 2014, 39, 2949–2962. [Google Scholar] [CrossRef]
- Keren-Shaul, H.; Spinrad, A.; Weiner, A.; Matcovitch-Natan, O.; Dvir-Szternfeld, R.; Ulland, T.K.; David, E.; Baruch, K.; Lara-Astaiso, D.; Toth, B.; et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell 2017, 169, 1276–1290.E17. [Google Scholar] [CrossRef]
- Jonsson, T.; Stefansson, H.; Steinberg, S.; Jonsdottir, I.; Jonsson, P.V.; Snaedal, J.; Bjornsson, S.; Huttenlocher, J.; Levey, A.I.; Lah, J.J.; et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 2013, 368, 107–116. [Google Scholar] [CrossRef]
- Prakash, P.; Manchanda, P.; Paouri, E.; Bisht, K.; Sharma, K.; Rajpoot, J.; Wendt, V.; Hossain, A.; Wijewardhane, P.R.; Randolph, C.E.; et al. Amyloid-beta induces lipid droplet-mediated microglial dysfunction via the enzyme DGAT2 in Alzheimer’s disease. Immunity 2025, 58, 1536–1552.E8. [Google Scholar] [CrossRef]
- Wu, L.; Zhao, Y.; Gong, X.; Liang, Z.; Yu, J.; Wang, J.; Zhang, Y.; Wang, X.; Shu, X.; Bao, J. Intermittent Fasting Ameliorates beta-Amyloid Deposition and Cognitive Impairment Accompanied by Decreased Lipid Droplet Aggregation Within Microglia in an Alzheimer’s Disease Model. Mol. Nutr. Food Res. 2025, 69, e202400660. [Google Scholar] [CrossRef]
- Sha, X.; Lin, J.; Wu, K.; Lu, J.; Yu, Z. The TRPV1-PKM2-SREBP1 axis maintains microglial lipid homeostasis in Alzheimer’s disease. Cell Death Dis. 2025, 16, 14. [Google Scholar] [CrossRef]
- Gedam, M.; Comerota, M.M.; Propson, N.E.; Chen, T.; Jin, F.; Wang, M.C.; Zheng, H. Complement C3aR depletion reverses HIF-1alpha-induced metabolic impairment and enhances microglial response to Abeta pathology. J. Clin. Invest. 2023, 133, e167501. [Google Scholar] [CrossRef]
- Li, N.; Wang, X.; Lin, R.; Yang, F.; Chang, H.C.; Gu, X.; Shu, J.; Liu, G.; Yu, Y.; Wei, W.; et al. ANGPTL4-mediated microglial lipid droplet accumulation: Bridging Alzheimer’s disease and obesity. Neurobiol. Dis. 2024, 203, 106741. [Google Scholar] [CrossRef]
- Victor, M.B.; Leary, N.; Luna, X.; Meharena, H.S.; Scannail, A.N.; Bozzelli, P.L.; Samaan, G.; Murdock, M.H.; von Maydell, D.; Effenberger, A.H.; et al. Lipid accumulation induced by APOE4 impairs microglial surveillance of neuronal-network activity. Cell Stem Cell 2022, 29, 1197–1212.E8. [Google Scholar] [CrossRef]
- Cammarota, M.; Ferlenghi, F.; Vacondio, F.; Vincenzi, F.; Varani, K.; Bedini, A.; Rivara, S.; Mor, M.; Boscia, F. Combined targeting of fatty acid amide hydrolase and melatonin receptors promotes neuroprotection and stimulates inflammation resolution in rats. Br. J. Pharmacol. 2023, 180, 1316–1338. [Google Scholar] [CrossRef]
- Comerota, M.M.; Gedam, M.; Xiong, W.; Jin, F.; Deng, L.; Wang, M.C.; Wang, J.; Zheng, H. Oleoylethanolamide facilitates PPARalpha and TFEB signaling and attenuates Abeta pathology in a mouse model of Alzheimer’s disease. Mol. Neurodegener. 2023, 18, 56. [Google Scholar] [CrossRef]
- Kovacs, G.G. Tauopathies. Handb. Clin. Neurol. 2017, 145, 355–368. [Google Scholar] [CrossRef]
- Li, Y.; Munoz-Mayorga, D.; Nie, Y.; Kang, N.; Tao, Y.; Lagerwall, J.; Pernaci, C.; Curtin, G.; Coufal, N.G.; Mertens, J.; et al. Microglial lipid droplet accumulation in tauopathy brain is regulated by neuronal AMPK. Cell Metab. 2024, 36, 1351–1370.E8. [Google Scholar] [CrossRef]
- Hopperton, K.E.; Mohammad, D.; Trépanier, M.O.; Giuliano, V.; Bazinet, R.P. Markers of microglia in post-mortem brain samples from patients with Alzheimer’s disease: A systematic review. Mol. Psychiatry 2018, 23, 177–198. [Google Scholar] [CrossRef]
- Drieu, A.; Du, S.; Kipnis, M.; Bosch, M.E.; Herz, J.; Lee, C.; Jiang, H.; Manis, M.; Ulrich, J.D.; Kipnis, J.; et al. Parenchymal border macrophages regulate tau pathology and tau-mediated neurodegeneration. Life Sci. Alliance 2023, 6, e202302087. [Google Scholar] [CrossRef]
- Olesova, D.; Dobesova, D.; Majerova, P.; Brumarova, R.; Kvasnicka, A.; Kouril, S.; Stevens, E.; Hanes, J.; Fialova, L.; Michalicova, A.; et al. Changes in lipid metabolism track with the progression of neurofibrillary pathology in tauopathies. J. Neuroinflammation 2024, 21, 78. [Google Scholar] [CrossRef]
- Xu, Y.; Propson, N.E.; Du, S.; Xiong, W.; Zheng, H. Autophagy deficiency modulates microglial lipid homeostasis and aggravates tau pathology and spreading. Proc. Natl. Acad. Sci. USA 2021, 118, e2023418118. [Google Scholar] [CrossRef]
- Poitelon, Y.; Kopec, A.M.; Belin, S. Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. Cells 2020, 9, 812. [Google Scholar] [CrossRef]
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I.; et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler. 2020, 26, 1816–1821. [Google Scholar] [CrossRef]
- Li, H.; Cuzner, M.L.; Newcombe, J. Microglia-derived macrophages in early multiple sclerosis plaques. Neuropathol. Appl. Neurobiol. 1996, 22, 207–215. [Google Scholar] [CrossRef]
- de Boer, A.; van den Bosch, A.M.R.; Mekkes, N.J.; Fransen, N.L.; Dagkesamanskaia, E.; Hoekstra, E.; Hamann, J.; Smolders, J.; Huitinga, I.; Holtman, I.R. Disentangling the heterogeneity of multiple sclerosis through identification of independent neuropathological dimensions. Acta Neuropathol. 2024, 147, 90. [Google Scholar] [CrossRef]
- Belien, J.; Swinnen, S.; D’Hondt, R.; Verdu de Juan, L.; Dedoncker, N.; Matthys, P.; Bauer, J.; Vens, C.; Moylett, S.; Dubois, B. CHIT1 at diagnosis predicts faster disability progression and reflects early microglial activation in multiple sclerosis. Nat. Commun. 2024, 15, 5013. [Google Scholar] [CrossRef]
- van den Bosch, A.; Fransen, N.; Mason, M.; Rozemuller, A.J.; Teunissen, C.; Smolders, J.; Huitinga, I. Neurofilament Light Chain Levels in Multiple Sclerosis Correlate With Lesions Containing Foamy Macrophages and With Acute Axonal Damage. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1154. [Google Scholar] [CrossRef]
- Hendrickx, D.A.E.; van Eden, C.G.; Schuurman, K.G.; Hamann, J.; Huitinga, I. Staining of HLA-DR, Iba1 and CD68 in human microglia reveals partially overlapping expression depending on cellular morphology and pathology. J. Neuroimmunol. 2017, 309, 12–22. [Google Scholar] [CrossRef]
- Ma, H.; Ou, Z.L.; Alaeiilkhchi, N.; Cheng, Y.Q.; Chen, K.; Chen, J.Y.; Guo, R.Q.; He, M.Y.; Tang, S.Y.; Zhang, X.; et al. MiR-223 enhances lipophagy by suppressing CTSB in microglia following lysolecithin-induced demyelination in mice. Lipids Health Dis. 2024, 23, 194. [Google Scholar] [CrossRef]
- Zhou, L.Q.; Chu, Y.H.; Dong, M.H.; Yang, S.; Chen, M.; Tang, Y.; Pang, X.W.; You, Y.F.; Wu, L.J.; Wang, W.; et al. Ldl-stimulated microglial activation exacerbates ischemic white matter damage. Brain Behav. Immun. 2024, 119, 416–430. [Google Scholar] [CrossRef]
- Loix, M.; Wouters, E.; Vanherle, S.; Dehairs, J.; McManaman, J.L.; Kemps, H.; Swinnen, J.V.; Haidar, M.; Bogie, J.F.J.; Hendriks, J.J.A. Perilipin-2 limits remyelination by preventing lipid droplet degradation. Cell. Mol. Life Sci. 2022, 79, 515. [Google Scholar] [CrossRef]
- Orsini, J.J.; Escolar, M.L.; Wasserstein, M.P.; Caggana, M. Krabbe Disease. In GeneReviews (®); Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Aisenberg, W.H.; O’Brien, C.A.; Sangster, M.; Yaqoob, F.; Zhang, Y.; Temsamrit, B.; Thom, S.; Gosse, L.; Chaluvadi, S.; Elfayomi, B.; et al. Direct microglia replacement reveals pathologic and therapeutic contributions of brain macrophages to a monogenic neurological disease. Immunity 2025, 58, 1254–1268.E9. [Google Scholar] [CrossRef]
- Gouna, G.; Klose, C.; Bosch-Queralt, M.; Liu, L.; Gokce, O.; Schifferer, M.; Cantuti-Castelvetri, L.; Simons, M. TREM2-dependent lipid droplet biogenesis in phagocytes is required for remyelination. J. Exp. Med. 2021, 218, e20210227. [Google Scholar] [CrossRef]
- Anjum, A.; Yazid, M.D.; Fauzi Daud, M.; Idris, J.; Ng, A.M.H.; Selvi Naicker, A.; Ismail, O.H.R.; Athi Kumar, R.K.; Lokanathan, Y. Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int. J. Mol. Sci. 2020, 21, 7533. [Google Scholar] [CrossRef]
- Tamosaityte, S.; Galli, R.; Uckermann, O.; Sitoci-Ficici, K.H.; Koch, M.; Later, R.; Schackert, G.; Koch, E.; Steiner, G.; Kirsch, M. Inflammation-related alterations of lipids after spinal cord injury revealed by Raman spectroscopy. J. Biomed. Opt. 2016, 21, 61008. [Google Scholar] [CrossRef] [PubMed]
- Ou, Z.; Cheng, Y.; Ma, H.; Chen, K.; Lin, Q.; Chen, J.; Guo, R.; Huang, Z.; Cheng, Q.; Alaeiilkhchi, N.; et al. miR-223 accelerates lipid droplets clearance in microglia following spinal cord injury by upregulating ABCA1. J. Transl. Med. 2024, 22, 659. [Google Scholar] [CrossRef] [PubMed]
- Madalena, K.M.; Brennan, F.H.; Popovich, P.G. Genetic deletion of the glucocorticoid receptor in Cx(3)cr1(+) myeloid cells is neuroprotective and improves motor recovery after spinal cord injury. Exp. Neurol. 2022, 355, 114114. [Google Scholar] [CrossRef]
- Mahley, R.W. Central Nervous System Lipoproteins: ApoE and Regulation of Cholesterol Metabolism. Arter. Thromb. Vasc. Biol. 2016, 36, 1305–1315. [Google Scholar] [CrossRef]
- Yao, X.Q.; Chen, J.Y.; Yu, Z.H.; Huang, Z.C.; Hamel, R.; Zeng, Y.Q.; Huang, Z.P.; Tu, K.W.; Liu, J.H.; Lu, Y.M.; et al. Bioinformatics analysis identified apolipoprotein E as a hub gene regulating neuroinflammation in macrophages and microglia following spinal cord injury. Front. Immunol. 2022, 13, 964138. [Google Scholar] [CrossRef]
- Tansley, S.; Uttam, S.; Urena Guzman, A.; Yaqubi, M.; Pacis, A.; Parisien, M.; Deamond, H.; Wong, C.; Rabau, O.; Brown, N.; et al. Single-cell RNA sequencing reveals time- and sex-specific responses of mouse spinal cord microglia to peripheral nerve injury and links ApoE to chronic pain. Nat. Commun. 2022, 13, 843. [Google Scholar] [CrossRef]
- Schott, M.B.; Rozeveld, C.N.; Weller, S.G.; McNiven, M.A. Lipophagy at a glance. J. Cell Sci. 2022, 135, jcs259402. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.N.; Du, A.Y.; Chen, X.H.; Huang, T.; Mamun, A.A.; Li, P.; Du, S.T.; Feng, Y.Z.; Jiang, L.Y.; Xu, J.; et al. Inhibition of CD36 ameliorates mouse spinal cord injury by accelerating microglial lipophagy. Acta Pharmacol. Sin. 2025, 46, 1205–1220. [Google Scholar] [CrossRef] [PubMed]
- Capizzi, A.; Woo, J.; Verduzco-Gutierrez, M. Traumatic Brain Injury: An Overview of Epidemiology, Pathophysiology, and Medical Management. Med. Clin. N. Am. 2020, 104, 213–238. [Google Scholar] [CrossRef]
- Zambusi, A.; Novoselc, K.T.; Hutten, S.; Kalpazidou, S.; Koupourtidou, C.; Schieweck, R.; Aschenbroich, S.; Silva, L.; Yazgili, A.S.; van Bebber, F.; et al. TDP-43 condensates and lipid droplets regulate the reactivity of microglia and regeneration after traumatic brain injury. Nat. Neurosci. 2022, 25, 1608–1625. [Google Scholar] [CrossRef]
- Sridharan, P.S.; Koh, Y.; Miller, E.; Hu, D.; Chakraborty, S.; Tripathi, S.J.; Kee, T.R.; Chaubey, K.; Vázquez-Rosa, E.; Barker, S.; et al. Acutely blocking excessive mitochondrial fission prevents chronic neurodegeneration after traumatic brain injury. Cell Rep. Med. 2024, 5, 101715. [Google Scholar] [CrossRef]
- Davis, M.E. Glioblastoma: Overview of Disease and Treatment. Clin. J. Oncol. Nurs. 2016, 20 (Suppl. 5), S2–S8. [Google Scholar] [CrossRef]
- Buonfiglioli, A.; Hambardzumyan, D. Macrophages and microglia: The cerberus of glioblastoma. Acta Neuropathol. Commun. 2021, 9, 54. [Google Scholar] [CrossRef]
- Choi, J.; Stradmann-Bellinghausen, B.; Yakubov, E.; Savaskan, N.E.; Regnier-Vigouroux, A. Glioblastoma cells induce differential glutamatergic gene expressions in human tumor-associated microglia/macrophages and monocyte-derived macrophages. Cancer Biol. Ther. 2015, 16, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Cruz, A.L.S.; Barreto, E.A.; Fazolini, N.P.B.; Viola, J.P.B.; Bozza, P.T. Lipid droplets: Platforms with multiple functions in cancer hallmarks. Cell Death Dis. 2020, 11, 105. [Google Scholar] [CrossRef]
- Offer, S.; Menard, J.A.; Perez, J.E.; de Oliveira, K.G.; Indira Chandran, V.; Johansson, M.C.; Bang-Rudenstam, A.; Siesjo, P.; Ebbesson, A.; Hedenfalk, I.; et al. Extracellular lipid loading augments hypoxic paracrine signaling and promotes glioma angiogenesis and macrophage infiltration. J. Exp. Clin. Cancer Res. 2019, 38, 241. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Y.; Yang, Z.; Jiang, L.; Yan, X.; Zhu, W.; Shen, Y.; Wang, B.; Li, J.; Song, J. Lipid droplets in central nervous system and functional profiles of brain cells containing lipid droplets in various diseases. J. Neuroinflamm. 2025, 22, 7. [Google Scholar] [CrossRef]
- Governa, V.; de Oliveira, K.G.; Bång-Rudenstam, A.; Offer, S.; Cerezo-Magaña, M.; Li, J.; Beyer, S.; Johansson, M.C.; Månsson, A.-S.; Edvardsson, C. Protumoral lipid droplet–loaded macrophages are enriched in human glioblastoma and can be therapeutically targeted.pdf. Sci. Transl. 2024, 16, eadk1168. [Google Scholar] [CrossRef] [PubMed]
- Kloosterman, D.J.; Erbani, J.; Boon, M.; Farber, M.; Handgraaf, S.M.; Ando-Kuri, M.; Sanchez-Lopez, E.; Fontein, B.; Mertz, M.; Nieuwland, M.; et al. Macrophage-mediated myelin recycling fuels brain cancer malignancy. Cell 2024, 187, 5336–5356.E30. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Zhou, F.; Chen, P. Lipid-Laden Macrophages Recycle Myelin to Feed Glioblastoma. Cancer Res. 2024, 84, 3712–3714. [Google Scholar] [CrossRef]
- Hsu, S.P.C.; Chen, Y.C.; Chiang, H.C.; Huang, Y.C.; Huang, C.C.; Wang, H.E.; Wang, Y.S.; Chi, K.H. Rapamycin and hydroxychloroquine combination alters macrophage polarization and sensitizes glioblastoma to immune checkpoint inhibitors. J. Neurooncol. 2020, 146, 417–426. [Google Scholar] [CrossRef]
- Grigsby, A.B.; Anderson, R.J.; Freedland, K.E.; Clouse, R.E.; Lustman, P.J. Prevalence of anxiety in adults with diabetes: A systematic review. J. Psychosom. Res. 2002, 53, 1053–1060. [Google Scholar] [CrossRef]
- Hui, Y.; Xu, Z.; Li, J.; Kuang, L.; Zhong, Y.; Tang, Y.; Wei, J.; Zhou, H.; Zheng, T. Nonenzymatic function of DPP4 promotes diabetes-associated cognitive dysfunction through IGF-2R/PKA/SP1/ERp29/IP3R2 pathway-mediated impairment of Treg function and M1 microglia polarization. Metabolism 2023, 138, 155340. [Google Scholar] [CrossRef]
- Ogrodnik, M.; Zhu, Y.; Langhi, L.G.P.; Tchkonia, T.; Kruger, P.; Fielder, E.; Victorelli, S.; Ruswhandi, R.A.; Giorgadze, N.; Pirtskhalava, T.; et al. Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis. Cell Metab. 2019, 29, 1061–1077.e8. [Google Scholar] [CrossRef] [PubMed]
- Seferi, G.; Mjones, H.S.; Havik, M.; Reiersen, H.; Dalen, K.T.; Nordengen, K.; Morland, C. Distribution of lipid droplets in hippocampal neurons and microglia: Impact of diabetes and exercise. Life Sci. Alliance 2024, 7, e202302239. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhao, Y.; Guo, H.; Li, Q.; Yan, C.; Li, Y.; He, S.; Wang, N.; Wang, Q. Impaired lipophagy induced-microglial lipid droplets accumulation contributes to the buildup of TREM1 in diabetes-associated cognitive impairment. Autophagy 2023, 19, 2639–2656. [Google Scholar] [CrossRef]
- Zhang, T.; Feng, T.; Wu, K.; Guo, J.; Nana, A.L.; Yang, G.; Seeley, W.W.; Hu, F. Progranulin deficiency results in sex-dependent alterations in microglia in response to demyelination. Acta Neuropathol. 2023, 146, 97–119. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Dimitry, J.M.; Song, J.H.; Son, M.; Sheehan, P.W.; King, M.W.; Travis Tabor, G.; Goo, Y.A.; Lazar, M.A.; Petrucelli, L.; et al. Microglial REV-ERBalpha regulates inflammation and lipid droplet formation to drive tauopathy in male mice. Nat. Commun. 2023, 14, 5197. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Walter, E.; Wohleb, E.; Fan, Y.; Wang, C. ATG5 (autophagy related 5) in microglia controls hippocampal neurogenesis in Alzheimer disease. Autophagy 2024, 20, 847–862. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Zhang, J.; Wu, J.; Su, P. Lead exposure induced lipid metabolism disorders by regulating the lipophagy process in microglia. Environ. Sci. Pollut. Res. Int. 2023, 30, 125991–126008. [Google Scholar] [CrossRef] [PubMed]
Tools | Principles | Advantages | Disadvantages |
---|---|---|---|
Label-dependent approaches (invasive) | |||
Sudan Black B; ORO 1 | Lipophilic diazo dyes | Classical stains for visualizing neutral lipids; inexpensive | Only for fixed cells; requires freshly prepared and sensitive to preparation conditions |
Dil-oxLDL | Lipophilic, non-toxic fluorescent dye DiI attached to oxidized LDL to trace LDL uptake | Useful for studying the uptake and trafficking of LDL in live cells | Not a direct LDs marker; needs to be combined with other LDs dye for study |
BODIPY; Nile Red | Lipophilic fluorescent molecules | Both have high specificity and photostability for LDs; can be applied to both live and fixed cells; Nile Red is a polar-sensitive fluorescent molecule | May have non-specific binding to other lipid-rich membranes like mitochondrial and nuclear membranes |
TEM 2; SEM 3 | Electron beam imaging | Better preservation of cellular structures | Cannot be used for live and dynamic imaging; requires cell-fixing |
Label-free approaches (non-invasive) | |||
Synchrotron-based microFTIR spectroscopy | Lipid-characteristic infrared absorption spectra | Monitors lipid content and efflux without labeling | Complex and expensive setup for detecting LDs |
CARS microscopy 4; SRS Microscopy 5 | Measures molecular specific vibrational frequency | Label-free, real-time, live-cell imaging; high spatial resolution | CARS can achieve higher spatial resolution than SRS; however, SRS provides superior quantification and eliminates the non-resonant background that can interfere with signal specificity in CARS. |
ODT 6 | Based on the RI differences between LDs and cytoplasm | Label-free, live-cell, 3D imaging; can track LD volume, number, and distribution | Low dynamic range |
ODT + RI2FL Deep Learning Model | Enables label-free tracking of LD dynamics over time with high temporal resolution | Predicts LD dynamics in live cells without photobleaching; long-term 4D tracking | AI training dataset required |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, J.; McKenzie, T.; Hu, J. Lipid-Laden Microglia: Characterization and Roles in Diseases. Cells 2025, 14, 1281. https://doi.org/10.3390/cells14161281
Xing J, McKenzie T, Hu J. Lipid-Laden Microglia: Characterization and Roles in Diseases. Cells. 2025; 14(16):1281. https://doi.org/10.3390/cells14161281
Chicago/Turabian StyleXing, Jiani, Takese McKenzie, and Jian Hu. 2025. "Lipid-Laden Microglia: Characterization and Roles in Diseases" Cells 14, no. 16: 1281. https://doi.org/10.3390/cells14161281
APA StyleXing, J., McKenzie, T., & Hu, J. (2025). Lipid-Laden Microglia: Characterization and Roles in Diseases. Cells, 14(16), 1281. https://doi.org/10.3390/cells14161281