Long-Term Engraftment and Satellite Cell Expansion from Human PSC Teratoma-Derived Myogenic Progenitors
Abstract
1. Introduction
2. Materials and Methods
2.1. Mice
2.2. Human-Induced Pluripotent Stem Cell (hiPSC) Culture
2.3. Teratoma Formation
2.4. Teratoma Harvest
2.5. Fluorescence-Activated Cell Sorting (FACS)
2.6. Myogenic Cell Culture
2.7. Cryopreservation and Thawing of Myogenic Progenitors
2.8. In Vitro Myotube Differentiation
2.9. Muscle Transplantation
2.10. Immunostaining on Cultured Cells
2.11. Immunostaining on Muscle Sections
Primary antibodies: |
Rabbit anti-DYSTROPHIN (1:250, Abcam, #ab15277). |
Mouse anti-hLamin A/C (1:100, ThermoFisher Scientific, #mab636; AB_325377). |
Rabbit anti-MyoD Antibody (C-20) (1:500, Santa Cruz Biotechnology, #sc-304). |
Mouse anti-Dystrophin (MANDYS106, 2C6) (1:100, DSHB, #AB_2753249). |
Rabbit anti-hLamin A/C (1:500, Abcam, #ab108595). |
Rabbit anti-laminin (1:500, Sigma, #L9393). |
Rat anti-Laminin α-2 (4H8-2) (1:200, Santa Cruz Biotechnology, #sc-59854). |
Mouse anti-PAX7 (1:10, DSHB, #AB_528428). |
Mouse anti-neonatal MHC (N3.36) (1:20, (MIgM) DSHB, #AB_528380). |
Mouse anti-embryonic MHC (F1.652) (1:20, (MIgG1) DSHB, #AB_528358). |
Mouse anti-MHC-I slow (BA-F8) (1:20, (MIgG2b) DSHB, #AB_10572253). |
Mouse anti-MHC-IIA (SC-71) (1:20, (MIgG1) DSHB, #AB_2147165). |
Mouse anti-MHC-IIB (BF-F3) (1:20, (MIgM) DSHB, #AB_2147165). |
Secondary antibodies: |
Goat anti-rabbit Alexa Fluor 488 (111-545-144, Jackson ImmunoResearch Laboratories, West Grove, PA, USA). |
Goat anti-mouse Alexa Fluor 555 (A21422, Life Technologies, Carlsbad, CA, USA). |
Goat anti-rat Alexa Fluor 647 (A21247, Invitrogen, Carlsbad, CA, USA). |
Goat anti-mouse IgM Alexa Fluor 555 conjugate (A21426, Thermo Fisher Scientific, Waltham, MA, USA). |
Goat anti-mouse IgG1 Alexa Fluor 488 (A21121, Thermo Fisher Scientific, Waltham, MA, USA). |
Goat anti-mouse IgG2b Alexa Fluor 350 (A21140, Thermo Fisher Scientific, Waltham, MA, USA). |
2.12. Myofiber Engraftment Area Measurement
2.13. Statistical Analysis
2.14. Bioinformatics
3. Results
3.1. Teratoma Formation and Harvest
3.2. Isolation of CD82+ ERBB3+ NGFR+ Skeletal Myogenic Cells from Teratomas
3.3. In Vitro Expansion and Differentiation of Teratoma-Derived Myogenic Progenitors
3.4. Engraftment and Long-Term Maintenance of Human Xenografts
3.5. Engraftment Area
3.6. Engrafted Human Myofibers Increase in Size over Time
3.7. Myogenic Differentiation in Transplanted Cells
3.8. Satellite Cells (PAX7-Positive Cells) and hLamin A/C Expression
3.9. Expression of Myosin Heavy Chain (MyHC) Isoforms
3.10. Teratoma-Derived Myogenic Progenitors Retain Their Engraftment Capacity After Freeze/Thaw
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seale, P.; Ishibashi, J.; Scimè, A.; Rudnicki, M.A. Pax7 Is Necessary and Sufficient for the Myogenic Specification of CD45+: Sca1+ Stem Cells from Injured Muscle. PLoS Biol. 2004, 2, E130. [Google Scholar] [CrossRef] [PubMed]
- Mauro, A. SATELLITE CELL OF SKELETAL MUSCLE FIBERS. J. Biophys. Biochem. Cytol. 1961, 9, 493–495. [Google Scholar] [CrossRef] [PubMed]
- Günther, S.; Kim, J.; Kostin, S.; Lepper, C.; Fan, C.M.; Braun, T. Myf5-Positive Satellite Cells Contribute to Pax7-Dependent Long-Term Maintenance of Adult Muscle Stem Cells. Cell Stem Cell 2013, 13, 590–601. [Google Scholar] [CrossRef]
- Von Maltzahn, J.; Jones, A.E.; Parks, R.J.; Rudnicki, M.A. Pax7 Is Critical for the Normal Function of Satellite Cells in Adult Skeletal Muscle. Proc. Natl. Acad. Sci. USA 2013, 110, 16474–16479. [Google Scholar] [CrossRef]
- Murach, K.A.; White, S.H.; Wen, Y.; Ho, A.; Dupont-Versteegden, E.E.; McCarthy, J.J.; Peterson, C.A. Differential Requirement for Satellite Cells during Overload-Induced Muscle Hypertrophy in Growing versus Mature Mice. Skelet Muscle 2017, 7, 14. [Google Scholar] [CrossRef]
- Collins, C.A.; Olsen, I.; Zammit, P.S.; Heslop, L.; Petrie, A.; Partridge, T.A.; Morgan, J.E. Stem Cell Function, Self-Renewal, and Behavioral Heterogeneity of Cells from the Adult Muscle Satellite Cell Niche. Cell 2005, 122, 289–301. [Google Scholar] [CrossRef]
- Arpke, R.W.; Darabi, R.; Mader, T.L.; Zhang, Y.; Toyama, A.; Lonetree, C.L.; Nash, N.; Lowe, D.A.; Perlingeiro, R.C.R.; Kyba, M. A New Immuno-, Dystrophin-Deficient Model, the NSG-mdx4Cv Mouse, Provides Evidence for Functional Improvement Following Allogeneic Satellite Cell Transplantation. Stem Cells 2013, 31, 1611–1620. [Google Scholar] [CrossRef]
- Darabi, R.; Arpke, R.W.; Irion, S.; Dimos, J.T.; Grskovic, M.; Kyba, M.; Perlingeiro, R.C.R. Human ES- and IPS-Derived Myogenic Progenitors Restore DYSTROPHIN and Improve Contractility upon Transplantation in Dystrophic Mice. Cell Stem Cell 2012, 10, 610–619. [Google Scholar] [CrossRef]
- Hicks, M.R.; Hiserodt, J.; Paras, K.; Fujiwara, W.; Eskin, A.; Jan, M.; Xi, H.; Young, C.S.; Evseenko, D.; Nelson, S.F.; et al. ERBB3 and NGFR Mark a Distinct Skeletal Muscle Progenitor Cell in Human Development and HPSCs. Nat. Cell Biol. 2018, 20, 46–57. [Google Scholar] [CrossRef]
- Wu, J.; Matthias, N.; Lo, J.; Ortiz-Vitali, J.L.; Shieh, A.W.; Wang, S.H.; Darabi, R. A Myogenic Double-Reporter Human Pluripotent Stem Cell Line Allows Prospective Isolation of Skeletal Muscle Progenitors. Cell Rep. 2018, 25, 1966–1981.e4. [Google Scholar] [CrossRef] [PubMed]
- Chal, J.; Oginuma, M.; Al Tanoury, Z.; Gobert, B.; Sumara, O.; Hick, A.; Bousson, F.; Zidouni, Y.; Mursch, C.; Moncuquet, P. Differentiation of Pluripotent Stem Cells to Muscle Fiber to Model Duchenne Muscular Dystrophy. Differ-Entiation of Pluripotent Stem Cells to Muscle Fiber to Model Duchenne Muscular Dystrophy. Nat. Biotechnol. 2015, 33, 962–969. [Google Scholar] [CrossRef]
- Martin, G.R. Isolation of a Pluripotent Cell Line from Early Mouse Embryos Cultured in Medium Conditioned by Teratocarcinoma Stem Cells (Embryonic Stem Cells/Inner Cell Masses/Differentiation in Vsitro/Embryonal Carcinoma Cells/Growth Factors). Proc. Natl. Acad. Sci. USA 1981, 78, 7624–7638. [Google Scholar] [CrossRef]
- Chan, S.S.K.; Arpke, R.W.; Filareto, A.; Xie, N.; Pappas, M.P.; Penaloza, J.S.; Perlingeiro, R.C.R.; Kyba, M. Skeletal Muscle Stem Cells from PSC-Derived Teratomas Have Functional Regenerative Capacity. Cell Stem Cell 2018, 23, 74–85.e6. [Google Scholar] [CrossRef]
- Pappas, M.P.; Xie, N.; Penaloza, J.S.; Chan, S.S.K. Defining the Skeletal Myogenic Lineage in Human Pluripotent Stem Cell-Derived Teratomas. Cells 2022, 11, 1589. [Google Scholar] [CrossRef]
- Xie, N.; Chu, S.N.; Schultz, C.B.; Chan, S.S.K. Efficient Muscle Regeneration by Human PSC-Derived CD82+ ERBB3+ NGFR+ Skeletal Myogenic Progenitors. Cells 2023, 12, 362. [Google Scholar] [CrossRef]
- Martin, M. TECHNICAL NOTES. EMBnet J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon Provides Fast and Bias-Aware Quantification of Transcript Expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Soneson, C.; Hickey, P.F.; Johnson, L.K.; Tessa Pierce, N.; Shepherd, L.; Morgan, M.; Patro, R. Tximeta: Reference Sequence Checksums for Provenance Identification in RNA-Seq. PLoS Comput. Biol. 2020, 16, e1007664. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, J.P.; Sebille, A. Basic Fibroblast Growth Factor Promotes in Vivo Muscle Regeneration in Murine Muscular Dystrophy. Neurosci. Lett. 1995, 202, 121–124. [Google Scholar] [CrossRef]
- Rinaldi, F.; Perlingeiro, R.C.R. Stem Cells for Skeletal Muscle Regeneration: Therapeutic Potential and Roadblocks. Transl. Res. 2014, 163, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Relaix, F.; Zammit, P.S. Satellite Cells Are Essential for Skeletal Muscle Regeneration: The Cell on the Edge Returns Centre Stage. Development 2012, 139, 2845–2856. [Google Scholar] [CrossRef]
- Cerletti, M.; Jurga, S.; Witczak, C.A.; Hirshman, M.F.; Shadrach, J.L.; Goodyear, L.J.; Wagers, A.J. Highly Efficient, Functional Engraftment of Skeletal Muscle Stem Cells in Dystrophic Muscles. Cell 2008, 134, 37–47. [Google Scholar] [CrossRef]
- Wallace, G.Q.; Lapidos, K.A.; Kenik, J.S.; McNally, E.M. Long-Term Survival of Transplanted Stem Cells in Immunocompetent Mice with Muscular Dystrophy. Am. J. Pathol. 2008, 173, 792–802. [Google Scholar] [CrossRef]
- Yin, H.; Price, F.; Rudnicki, M.A. Satellite Cells and the Muscle Stem Cell Niche. Physiol. Rev. 2013, 93, 23–67. [Google Scholar] [CrossRef]
- Hicks, M.R.; Saleh, K.K.; Clock, B.; Gibbs, D.E.; Yang, M.; Younesi, S.; Gane, L.; Gutierrez-Garcia, V.; Xi, H.; Pyle, A.D. Regenerating Human Skeletal Muscle Forms an Emerging Niche in Vivo to Support PAX7 Cells. Nat. Cell Biol. 2023, 25, 1758–1773. [Google Scholar] [CrossRef]
- Kaczmarek, A.; Kaczmarek, M.; Ciałowicz, M.; Clemente, F.M.; Wolański, P.; Badicu, G.; Murawska-Ciałowicz, E. The Role of Satellite Cells in Skeletal Muscle Regeneration—The Effect of Exercise and Age. Biology 2021, 10, 1056. [Google Scholar] [CrossRef]
- Haddix, S.G.; Lee, Y.i.; Kornegay, J.N.; Thompson, W.J. Cycles of Myofiber Degeneration and Regeneration Lead to Remodeling of the Neuromuscular Junction in Two Mammalian Models of Duchenne Muscular Dystrophy. PLoS ONE 2018, 13, e0205926. [Google Scholar] [CrossRef]
- Massopust, R.T.; Lee, Y.i.; Pritchard, A.L.; Nguyen, V.K.M.; McCreedy, D.A.; Thompson, W.J. Lifetime Analysis of Mdx Skeletal Muscle Reveals a Progressive Pathology That Leads to Myofiber Loss. Sci. Rep. 2020, 10, 17248. [Google Scholar] [CrossRef] [PubMed]
- Latroche, C.; Matot, B.; Martins-Bach, A.; Briand, D.; Chazaud, B.; Wary, C.; Carlier, P.G.; Chrétien, F.; Jouvion, G. Structural and Functional Alterations of Skeletal Muscle Microvasculature in Dystrophin-Deficient Mdx Mice. Am. J. Pathol. 2015, 185, 2482–2494. [Google Scholar] [CrossRef] [PubMed]
- Morotti, M.; Garofalo, S.; Cocozza, G.; Antonangeli, F.; Bianconi, V.; Mozzetta, C.; De Stefano, M.E.; Capitani, R.; Wulff, H.; Limatola, C.; et al. Muscle Damage in Dystrophic Mdx Mice Is Influenced by the Activity of Ca2+-Activated KCa 3.1 Channels. Life 2022, 12, 538. [Google Scholar] [CrossRef] [PubMed]
- Lavasani, M.; Lu, A.; Peng, H.; Cummins, J.; Huard, J. Nerve Growth Factor Improves the Muscle Regeneration Capacity of Muscle Stem Cells in Dystrophic Muscle. Hum. Gene Ther. 2006, 17, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Salzillo, C.; Imparato, A.; Fortarezza, F.; Maniglio, S.; Lucà, S.; La Verde, M.; Serio, G.; Marzullo, A. Gonadal Teratomas: A State-of-the-Art Review in Pathology. Cancers 2024, 16, 2412. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khosrowpour, Z.; Ramaswamy, N.; Engquist, E.N.; Dincer, B.; Shah, A.M.; Soliman, H.A.N.; Goloviznina, N.A.; Karachunski, P.I.; Kyba, M. Long-Term Engraftment and Satellite Cell Expansion from Human PSC Teratoma-Derived Myogenic Progenitors. Cells 2025, 14, 1150. https://doi.org/10.3390/cells14151150
Khosrowpour Z, Ramaswamy N, Engquist EN, Dincer B, Shah AM, Soliman HAN, Goloviznina NA, Karachunski PI, Kyba M. Long-Term Engraftment and Satellite Cell Expansion from Human PSC Teratoma-Derived Myogenic Progenitors. Cells. 2025; 14(15):1150. https://doi.org/10.3390/cells14151150
Chicago/Turabian StyleKhosrowpour, Zahra, Nivedha Ramaswamy, Elise N. Engquist, Berkay Dincer, Alisha M. Shah, Hossam A. N. Soliman, Natalya A. Goloviznina, Peter I. Karachunski, and Michael Kyba. 2025. "Long-Term Engraftment and Satellite Cell Expansion from Human PSC Teratoma-Derived Myogenic Progenitors" Cells 14, no. 15: 1150. https://doi.org/10.3390/cells14151150
APA StyleKhosrowpour, Z., Ramaswamy, N., Engquist, E. N., Dincer, B., Shah, A. M., Soliman, H. A. N., Goloviznina, N. A., Karachunski, P. I., & Kyba, M. (2025). Long-Term Engraftment and Satellite Cell Expansion from Human PSC Teratoma-Derived Myogenic Progenitors. Cells, 14(15), 1150. https://doi.org/10.3390/cells14151150