Proposing Bromo-Epi-Androsterone (BEA) for Post-Traumatic Stress Disorder (PTSD)
Abstract
1. Introduction
2. Mechanisms of Neuroinflammation in PTSD
3. Mitochondrial Dysfunction in PTSD
4. Inflammatory Cytokines in PTSD
5. DHEA and PTSD
6. Bromoepiandrosterone (BEA)
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, D.H.; Lee, J.Y.; Hong, D.Y.; Lee, E.C.; Park, S.W.; Lee, M.R.; Oh, J.S. Neuroinflammation in Post-Traumatic Stress Disorder. Biomedicines 2022, 10, 953. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zass, L.J.; Hart, S.A.; Seedat, S.; Hemmings, S.M.; Malan-Müller, S. Neuroinflammatory genes associated with post-traumatic stress disorder: Implications for comorbidity. Psychiatr. Genet. 2017, 27, 1–16. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, A.; Ahmadian, A.J.; Neylan, T.C.; Pacult, M.A.; Edmondson, D.; Cohen, B.E. Current posttraumatic stress disorder and exaggerated threat sensitivity associated with elevated inflammation in the Mind Your Heart Study. Brain Behav. Immun. 2017, 60, 198–205. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muhie, S.; Gautam, A.; Yang, R.; Misganaw, B.; Daigle, B.J., Jr.; Mellon, S.H.; Flory, J.D.; Abu-Amara, D.; Lee, I.; Wang, K.; et al. Molecular signatures of post-traumatic stress disorder in war-zone-exposed veteran and active-duty soldiers. Cell Rep. Med. 2023, 4, 101045. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, T.D.; Lee, S.; Yoon, S. Inflammation in Post-Traumatic Stress Disorder (PTSD): A Review of Potential Correlates of PTSD with a Neurological Perspective. Antioxidants 2020, 9, 107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scaffidi, P.; Misteli, T.; Bianchi, M.E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002, 418, 191–195, Erratum in: Nature 2010, 467, 622. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Suarez, J.S.; Minaai, M.; Li, S.; Gaudino, G.; Pass, H.I.; Carbone, M.; Yang, H. HMGB1 as a therapeutic target in disease. J. Cell. Physiol. 2021, 236, 3406–3419. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Andersson, U.; Yang, H.; Harris, H. Extracellular HMGB1 as a therapeutic target in inflammatory diseases. Expert. Opin. Ther. Targets 2018, 22, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Lotze, M.T.; Tracey, K.J. High-mobility group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal. Nat. Rev. Immunol. 2005, 5, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Frank, M.G.; Baratta, M.V.; Sprunger, D.B.; Watkins, L.R.; Maier, S.F. Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav. Immun. 2007, 21, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Bloom, O.; Zhang, M.; Vishnubhakat, J.M.; Ombrellino, M.; Che, J.; Frazier, A.; Yang, H.; Ivanova, S.; Borovikova, L.; et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999, 285, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Franklin, T.C.; Wohleb, E.S.; Zhang, Y.; Fogaça, M.; Hare, B.; Duman, R.S. Persistent Increase in Microglial RAGE Contributes to Chronic Stress-Induced Priming of Depressive-like Behavior. Biol. Psychiatry 2018, 83, 50–60. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Banks, W.A.; Erickson, M.A. The blood-brain barrier and immune function and dysfunction. Neurobiol. Dis. 2010, 37, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Morgan, A.; Gaulden, A.; Altemus, M.; Williford, K.; Centanni, S.; Winder, D.; Patel, S. Cyclooxygenase-2 inhibition prevents stress induced amygdala activation and anxiety-like behavior. Brain Behav. Immun. 2020, 89, 513–517. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Minghetti, L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol. 2004, 63, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.S.; Stone, E.F.; Francis, R.O.; Karafin, M.S. The global role of G6PD in infection and immunity. Front. Immunol. 2024, 15, 1393213. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ni, P.; Ma, Y.; Chung, S. Mitochondrial dysfunction in psychiatric disorders. Schizophr. Res. 2024, 273, 62–77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dmytriv, T.R.; Tsiumpala, S.A.; Semchyshyn, H.M.; Storey, K.B.; Lushchak, V.I. Mitochondrial dysfunction as a possible trigger of neuroinflammation at post-traumatic stress disorder (PTSD). Front. Physiol. 2023, 14, 1222826. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaplan, G.B.; Dadhi, N.A.; Whitaker, C.S. Mitochondrial dysfunction in animal models of PTSD: Relationships between behavioral models, neural regions, and cellular maladaptation. Front. Physiol. 2023, 14, 1105839. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Passos, I.C.; Vasconcelos-Moreno, M.P.; Costa, L.G.; Kunz, M.; Brietzke, E.; Quevedo, J.; Salum, G.; Magalhães, P.V.; Kapczinski, F.; Kauer-Sant’Anna, M. Inflammatory markers in post-traumatic stress disorder: A systematic review, meta-analysis, and meta-regression. Lancet Psychiatry 2015, 2, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Peruzzolo, T.L.; Pinto, J.V.; Roza, T.H.; Shintani, A.O.; Anzolin, A.P.; Gnielka, V.; Kohmann, A.M.; Marin, A.S.; Lorenzon, V.R.; Brunoni, A.R.; et al. Inflammatory and oxidative stress markers in post-traumatic stress disorder: A systematic review and meta-analysis. Mol. Psychiatry 2022, 27, 3150–3163. [Google Scholar] [CrossRef] [PubMed]
- Mesiano, S.; Jaffe, R.B. Developmental and functional biology of the primate fetal adrenal cortex. Endocr. Rev. 1997, 18, 378–403. [Google Scholar] [CrossRef] [PubMed]
- Havelock, J.C.; Auchus, R.J.; Rainey, W.E. The rise in adrenal androgen biosynthesis: Adrenarche. Semin. Reprod. Med. 2004, 22, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Parker, L.N.; Odell, W.D. Control of adrenal androgen secretion. Endocr. Rev. 1980, 1, 392–410. [Google Scholar] [CrossRef] [PubMed]
- Azuma, T.; Matsubara, T.; Shima, Y.; Haeno, S.; Fujimoto, T.; Tone, K.; Shibata, N.; Sakoda, S. Neurosteroids in cerebrospinal fluid in neurologic disorders. J. Neurol. Sci. 1993, 120, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Guazzo, E.P.; Kirkpatrick, P.J.; Goodyer, I.M.; Shiers, H.M.; Herbert, J. Cortisol, dehydroepiandrosterone (DHEA), and DHEA sulfate in the cerebrospinal fluid of man: Relation to blood levels and the effects of age. J. Clin. Endocrinol. Metab. 1996, 81, 3951–3960. [Google Scholar] [CrossRef] [PubMed]
- Regelson, W.; Kalimi, M. Dehydroepiandrosterone (DHEA)--the multifunctional steroid. II. Effects on the CNS, cell proliferation, metabolic and vascular, clinical and other effects. Mechanism of action? Ann. N. Y. Acad. Sci. 1994, 719, 564–575. [Google Scholar] [CrossRef] [PubMed]
- Maninger, N.; Wolkowitz, O.M.; Reus, V.I.; Epel, E.S.; Mellon, S.H. Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front. Neuroendocrinol. 2009, 30, 65–91. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yehuda, R.; Brand, S.R.; Golier, J.A.; Yang, R.K. Clinical correlates of DHEA associated with post-traumatic stress disorder. Acta Psychiatr. Scand. 2006, 114, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, R.; Pratchett, L.C.; Elmes, M.W.; Lehrner, A.; Daskalakis, N.P.; Koch, E.; Makotkine, I.; Flory, J.D.; Bierer, L.M. Glucocorticoid-related predictors and correlates of post-traumatic stress disorder treatment response in combat veterans. Interface Focus 2014, 4, 20140048. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kokras, N.; Dioli, C.; Paravatou, R.; Sotiropoulos, M.G.; Delis, F.; Antoniou, K.; Calogeropoulou, T.; Charalampopoulos, I.; Gravanis, A.; Dalla, C. Psychoactive properties of BNN27, a novel neurosteroid derivate, in male and female rats. Psychopharmacology 2020, 237, 2435–2449. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Yu, L.; Ge, C.; Ma, H. Protective effect of DHEA on hydrogen peroxide-induced oxidative damage and apoptosis in primary rat Leydig cells. Oncotarget 2017, 8, 16158–16169. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gallo, M.; Aragno, M.; Gatto, V.; Tamagno, E.; Brignardello, E.; Manti, R.; Danni, O.; Boccuzzi, G. Protective effect of dehydroepiandrosterone against lipid peroxidation in a human liver cell line. Eur. J. Endocrinol. 1999, 141, 35–39. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mastrocola, R.; Aragno, M.; Betteto, S.; Brignardello, E.; Catalano, M.G.; Danni, O.; Boccuzzi, G. Pro-oxidant effect of dehydroepiandrosterone in rats is mediated by PPAR activation. Life Sci. 2003, 73, 289–299. [Google Scholar] [CrossRef] [PubMed]
- López-Torres, M.O.; Marquina-Castillo, B.; Ramos-Espinosa, O.; Mata-Espinosa, D.; Barrios-Payan, J.A.; Baay-Guzman, G.; Yepez, S.H.; Bini, E.; Torre-Villalvazo, I.; Torres, N.; et al. 16α-Bromoepiandrosterone as a new candidate for experimental diabetes-tuberculosis co-morbidity treatment. Clin. Exp. Immunol. 2021, 205, 232–245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Webber, T.; Ronacher, K.; Conradie-Smit, M.; Kleynhans, L. Interplay Between the Immune and Endocrine Systems in the Lung: Implications for TB Susceptibility. Front. Immunol. 2022, 13, 829355. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Henderson, E.; Schwartz, A.; Pashko, L.; Abou-Gharbia, M.; Swern, D. Dehydroepiandrosterone and 16 alpha-bromo-epiandrosterone: Inhibitors of Epstein-Barr virus-induced transformation of human lymphocytes. Carcinogenesis 1981, 2, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, A.T.; Thiemann, O.H. 16-bromoepiandrosterone, an activator of the mammalian immune system, inhibits glucose 6-phosphate dehydrogenase from Trypanosoma cruzi and is toxic to these parasites grown in culture. Bioorg. Med. Chem. 2010, 18, 4762–4768. [Google Scholar] [CrossRef] [PubMed]
- Frincke, J.M.; Stickney, D.R.; Onizuka-Handa, N.; Garsd, A.; Reading, C.; Krudsood, S.; Wilairatana, P.; Looareesuwan, S. Reduction of parasite levels in patients with uncomplicated malaria by treatment with HE2000. Am. J. Trop. Med. Hyg. 2007, 76, 232–236. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Freilich, D.; Ferris, S.; Wallace, M.; Leach, L.; Kallen, A.; Frincke, J.; Ahlem, C.; Hacker, M.; Nelson, D.; Hebert, J. 16alpha-bromoepiandrosterone, a dehydroepiandrosterone (DHEA) analogue, inhibits Plasmodium falciparum and Plasmodium berghei growth. Am. J. Trop. Med. Hyg. 2000, 63, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Ayi, K.; Giribaldi, G.; Skorokhod, A.; Schwarzer, E.; Prendergast, P.T.; Arese, P. 16alpha-bromoepiandrosterone, an antimalarial analogue of the hormone dehydroepiandrosterone, enhances phagocytosis of ring stage parasitized erythrocytes: A novel mechanism for antimalarial activity. Antimicrob. Agents Chemother. 2002, 46, 3180–3184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frincke, J. HE2000 begins clinical trials: Interview with James Frincke, Ph.D. Interview by John S. James. AIDS Treatment News, 4 June 1999; pp. 4–7. [Google Scholar] [PubMed]
- Starving the virus. Res. Initiat. Treat. Action. 1999, 5, 32–33. [PubMed]
- Reading, C.; Dowding, C.; Schramm, B.; Garsd, A.; Onizuka-Handa, N.; Stickney, D.; Frincke, J. Improvement in immune parameters and human immunodeficiency virus-1 viral response in individuals treated with 16alpha-bromoepiandrosterone (HE2000). Clin. Microbiol. Infect. 2006, 12, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, F.; Conrad, D.; Wang, A.; Pieters, R.; Mangano, K.; van Heeckeren, A.; White, S.K.; Frincke, J.; Reading, C.L.; Auci, D.L.; et al. 16alpha-Bromoepiandrosterone (HE2000) limits non-productive inflammation and stimulates immunity in lungs. Clin. Exp. Immunol. 2009, 158, 308–316. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hernández-Pando, R.; Aguilar-Leon, D.; Orozco, H.; Serrano, A.; Ahlem, C.; Trauger, R.; Schramm, B.; Reading, C.; Frincke, J.; Rook, G.A. 16alpha-Bromoepiandrosterone restores T helper cell type 1 activity and accelerates chemotherapy-induced bacterial clearance in a model of progressive pulmonary tuberculosis. J. Infect. Dis. 2005, 191, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Targonski, P.V.; Jacobson, R.M.; Poland, G.A. Immunosenescence: Role and measurement in influenza vaccine response among the elderly. Vaccine 2007, 25, 3066–3069. [Google Scholar] [CrossRef] [PubMed]
- Fulop, T.; Larbi, A.; Dupuis, G.; Le Page, A.; Frost, E.H.; Cohen, A.A.; Witkowski, J.M.; Franceschi, C. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Front. Immunol. 2018, 8, 1960. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Briceño, O.; Lissina, A.; Wanke, K.; Afonso, G.; von Braun, A.; Ragon, K.; Miquel, T.; Gostick, E.; Papagno, L.; Stiasny, K.; et al. Reduced naïve CD8(+) T-cell priming efficacy in elderly adults. Aging Cell. 2016, 15, 14–21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Available online: https://www.protibea.com/lead-product (accessed on 30 June 2025).
- Vuic, B.; Milos, T.; Kvak, E.; Konjevod, M.; Tudor, L.; Farkas, S.; Nedic Erjavec, G.; Nikolac Perkovic, M.; Zelena, D.; Svob Strac, D. Neuroprotective Effects of Dehydroepiandrosterone Sulphate Against Aβ Toxicity and Accumulation in Cellular and Animal Model of Alzheimer’s Disease. Biomedicines 2025, 13, 432. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hou, Y.L.; Li, C.J.; Lin, L.T.; Chen, S.N.; Wen, Z.H.; Tsui, K.H. DHEA restores mitochondrial dynamics of cumulus cells by regulating PGAM5 expression in poor ovarian responders. Taiwan. J. Obstet. Gynecol. 2022, 61, 223–229, Erratum in Taiwan. J. Obstet. Gynecol. 2022, 61, 914–915. https://doi.org/10.1016/j.tjog.2022.07.004. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, O.; Strilbytska, O.; Koliada, A.; Storey, K.B. An orchestrating role of mitochondria in the origin and development of post-traumatic stress disorder. Front. Physiol. 2023, 13, 1094076. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abu Shelbayeh, O.; Arroum, T.; Morris, S.; Busch, K.B. PGC-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants 2023, 12, 1075. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, L.; Yao, Y.; Zhao, J.; Cao, J.; Ma, H. Dehydroepiandrosterone protects against hepatic glycolipid metabolic disorder and insulin resistance induced by high fat via activation of AMPK-PGC-1α-NRF-1 and IRS1-AKT-GLUT2 signaling pathways. Int. J. Obes. 2020, 44, 1075–1086. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Qin, Y.; Liu, B.; Gao, M.; Li, A.; Li, X.; Gong, G. PGC-1α-Mediated Mitochondrial Quality Control: Molecular Mechanisms and Implications for Heart Failure. Front. Cell Dev. Biol. 2022, 10, 871357. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sarapultsev, A.; Komelkova, M.; Lookin, O.; Khatsko, S.; Gusev, E.; Trofimov, A.; Tokay, T.; Hu, D. Rat Models in Post-Traumatic Stress Disorder Research: Strengths, Limitations, and Implications for Translational Studies. Pathophysiology 2024, 31, 709–760. [Google Scholar] [CrossRef] [PubMed]
- Flandreau, E.I.; Toth, M. Animal Models of PTSD: A Critical Review. In Behavioral Neurobiology of PTSD; Springer: Cham, Switzerland, 2017; Volume 38, pp. 47–68. [Google Scholar] [CrossRef] [PubMed]
- Maren, S.; Holmes, A. Stress and Fear Extinction. Neuropsychopharmacology 2016, 41, 58–79. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rau, V.; Fanselow, M.S. Exposure to a stressor produces a long lasting enhancement of fear learning in rats. Stress 2009, 12, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Pennington, Z.T.; Anderson, A.S.; Fanselow, M.S. The ventromedial prefrontal cortex in a model of traumatic stress: Fear inhibition or contextual processing? Learn. Mem. 2017, 24, 400–406. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liberzon, I.; Krstov, M.; Young, E.A. Stress-restress: Effects on ACTH and fast feedback. Psychoneuroendocrinology 1997, 22, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Knox, D.; George, S.A.; Fitzpatrick, C.J.; Rabinak, C.A.; Maren, S.; Liberzon, I. Single prolonged stress disrupts retention of extinguished fear in rats. Learn. Mem. 2012, 19, 43–49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Locci, A.; Pinna, G. Social isolation as a promising animal model of PTSD comorbid suicide: Neurosteroids and cannabinoids as possible treatment options. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 92, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Serra, M.; Pisu, M.G.; Littera, M.; Papi, G.; Sanna, E.; Tuveri, F.; Usala, L.; Purdy, R.H.; Biggio, G. Social isolation-induced decreases in both the abundance of neuroactive steroids and GABA(A) receptor function in rat brain. J. Neurochem. 2000, 75, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Torrisi, S.A.; Lavanco, G.; Maurel, O.M.; Gulisano, W.; Laudani, S.; Geraci, F.; Grasso, M.; Barbagallo, C.; Caraci, F.; Bucolo, C.; et al. A novel arousal-based individual screening reveals susceptibility and resilience to PTSD-like phenotypes in mice. Neurobiol. Stress 2020, 14, 100286. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ritov, G.; Boltyansky, B.; Richter-Levin, G. A novel approach to PTSD modeling in rats reveals alternating patterns of limbic activity in different types of stress reaction. Mol. Psychiatry 2016, 21, 630–641. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grafe, L.; Miller, K.E.; Ross, R.J.; Bhatnagar, S. The importance of REM sleep fragmentation in the effects of stress on sleep: Perspectives from preclinical studies. Neurobiol. Stress 2023, 28, 100588. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jung, T.; Noh, J. Alteration of fear behaviors in sleep-deprived adolescent rats: Increased fear expression and delayed fear extinction. Anim. Cells Syst. 2021, 25, 83–92. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nie, X.; Kitaoka, S.; Tanaka, K.; Segi-Nishida, E.; Imoto, Y.; Ogawa, A.; Nakano, F.; Tomohiro, A.; Nakayama, K.; Taniguchi, M.; et al. The Innate Immune Receptors TLR2/4 Mediate Repeated Social Defeat Stress-Induced Social Avoidance through Prefrontal Microglial Activation. Neuron 2018, 99, 464–479.e7. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, Y.; Furuyashiki, T. The impact of stress on immune systems and its relevance to mental illness. Neurosci. Res. 2022, 175, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.; Jana, M.; Paidi, R.K.; Majumder, M.; Raha, S.; Dasarathy, S.; Pahan, K. Tau fibrils induce glial inflammation and neuropathology via TLR2 in Alzheimer’s disease-related mouse models. J. Clin. Investig. 2023, 133, e161987. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Majewska, M.D.; Demirgören, S.; Spivak, C.E.; London, E.D. The neurosteroid dehydroepiandrosterone sulfate is an allosteric antagonist of the GABAA receptor. Brain Res. 1990, 526, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, R.; de Montigny, C.; Debonnel, G. Potentiation of neuronal NMDA response induced by dehydroepiandrosterone and its suppression by progesterone: Effects mediated via sigma receptors. J. Neurosci. 1996, 16, 1193–1202. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Zuiden, M.; Haverkort, S.Q.; Tan, Z.; Daams, J.; Lok, A.; Olff, M. DHEA and DHEA-S levels in posttraumatic stress disorder: A meta-analytic review. Psychoneuroendocrinology 2017, 84, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Maurice, T.; Phan, V.; Sandillon, F.; Urani, A. Differential effect of dehydroepiandrosterone and its steroid precursor pregnenolone against the behavioural deficits in CO-exposed mice. Eur. J. Pharmacol. 2000, 390, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Schottenbauer, M.A.; Glass, C.R.; Arnkoff, D.B.; Tendick, V.; Gray, S.H. Nonresponse and dropout rates in outcome studies on PTSD: Review and methodological considerations. Psychiatry 2008, 71, 134–168. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.Y.; Thomas, J.L.; Wilk, J.E.; Castro, C.A.; Hoge, C.W. Stigma, barriers to care, and use of mental health services among active duty and National Guard soldiers after combat. Psychiatr. Serv. 2010, 61, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Betthauser, L.M.; Brenner, L.A.; Forster, J.E.; Hostetter, T.A.; Schneider, A.L.; Hernández, T.D. A factor analysis and exploration of attitudes and beliefs toward complementary and conventional medicine in veterans. Med. Care 2014, 52, S50–S56. [Google Scholar] [CrossRef] [PubMed]
- Kmita, H.; Pinna, G.; Lushchak, V.I. Potential oxidative stress related targets of mitochondria-focused therapy of PTSD. Front. Physiol. 2023, 14, 1266575. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brady, K.; Pearlstein, T.; Asnis, G.M.; Baker, D.; Rothbaum, B.; Sikes, C.R.; Farfel, G.M. Efficacy and safety of sertraline treatment of posttraumatic stress disorder: A randomized controlled trial. JAMA 2000, 283, 1837–1844. [Google Scholar] [CrossRef] [PubMed]
- Raskind, M.A.; Peterson, K.; Williams, T.; Hoff, D.J.; Hart, K.; Holmes, H.; Homas, D.; Hill, J.; Daniels, C.; Calohan, J.; et al. A trial of prazosin for combat trauma PTSD with nightmares in active-duty soldiers returned from Iraq and Afghanistan. Am. J. Psychiatry 2013, 170, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Brunet, A.; Saumier, D.; Liu, A.; Streiner, D.L.; Tremblay, J.; Pitman, R.K. Reduction of PTSD Symptoms With Pre-Reactivation Propranolol Therapy: A Randomized Controlled Trial. Am. J. Psychiatry 2018, 175, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Feder, A.; Costi, S.; Rutter, S.B.; Collins, A.B.; Govindarajulu, U.; Jha, M.K.; Horn, S.R.; Kautz, M.; Corniquel, M.; Collins, K.A.; et al. A Randomized Controlled Trial of Repeated Ketamine Administration for Chronic Posttraumatic Stress Disorder. Am. J. Psychiatry 2021, 178, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Tillman, A.N.; Fujita, M.; Yoshikawa, M.; Ballard, E.D.; Lee, Y.; Zarate, C.A., Jr. Can. ketamine and other glutamate receptor modulators be considered entactogens? Psychiatry Res. 2025, 349, 116513. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mitchell, J.M.; Bogenschutz, M.; Lilienstein, A.; Harrison, C.; Kleiman, S.; Parker-Guilbert, K.; Ot’alora G, M.; Garas, W.; Paleos, C.; Gorman, I.; et al. MDMA-assisted therapy for severe PTSD: A randomized, double-blind, placebo-controlled phase 3 study. Nat. Med. 2021, 27, 1025–1033. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rasmusson, A.M.; Marx, C.E.; Jain, S.; Farfel, G.M.; Tsai, J.; Sun, X.; Geracioti, T.D.; Hamner, M.B.; Lohr, J.; Rosse, R.; et al. A randomized controlled trial of ganaxolone in posttraumatic stress disorder. Psychopharmacology 2017, 234, 2245–2257. [Google Scholar] [CrossRef] [PubMed]
- Grzesińska, A.; Ogłodek, E.A. Involvement of Matrix Metalloproteinases (MMP-2 and MMP-9), Inflammasome NLRP3, and Gamma-Aminobutyric Acid (GABA) Pathway in Cellular Mechanisms of Neuroinflammation in PTSD. Int. J. Mol. Sci. 2025, 26, 5662. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Olaimat, A.R.; Jafarzadehbalagafsheh, P.; Gol, M.; Costa, A.M.; Biagini, G.; Lucchi, C. Trilostane: Beyond Cushing’s Syndrome. Animals 2025, 15, 415. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Diprose, W.; Sundram, F.; Menkes, D.B. Psychiatric comorbidity in psychogenic nonepileptic seizures compared with epilepsy. Epilepsy Behav. 2016, 56, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Deligiannidis, K.M.; Meltzer-Brody, S. Neurosteroid treatment of postpartum depression and beyond. Br. J. Psychiatry 2025, 226, 340–342. [Google Scholar] [CrossRef] [PubMed]
- Nagpurkar, K.; Ghive, P.; Kale, M.; Nistane, N.; Taksande, B.; Umekar, M.; Trivedi, R. Neurosteroids as emerging therapeutics for treatment-resistant depression: Mechanisms and clinical potential. Neuroscience 2025, 577, 300–314. [Google Scholar] [CrossRef] [PubMed]
- Berlant, J. Topiramate as a therapy for chronic posttraumatic stress disorder. Psychiatry 2006, 3, 40–45. [Google Scholar] [PubMed] [PubMed Central]
- Thompson, S.I.; El-Saden, S.M. Lamotrigine for Treating Anger in Veterans with Posttraumatic Stress Disorder. Clin. Neuropharmacol. 2021, 44, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Raskind, M.A.; Peskind, E.R.; Chow, B.; Harris, C.; Davis-Karim, A.; Holmes, H.A.; Hart, K.L.; McFall, M.; Mellman, T.A.; Reist, C.; et al. Trial of Prazosin for Post-Traumatic Stress Disorder in Military Veterans. N. Engl. J. Med. 2018, 378, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Back, S.E.; McCauley, J.L.; Korte, K.J.; Gros, D.F.; Leavitt, V.; Gray, K.M.; Hamner, M.B.; DeSantis, S.M.; Malcolm, R.; Brady, K.T.; et al. A Double-Blind, Randomized, Controlled Pilot Trial of N-Acetylcysteine in Veterans with Posttraumatic Stress Disorder and Substance Use Disorders. J. Clin. Psychiatry 2016, 77, e1439–e1446. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dow, C.T.; Kidess, Z. Proposing Bromo-epi-androsterone (BEA) for perioperative neurocognitive disorders with Interleukin-6 as a druggable target. J. Clin. Anesth. 2025, 101, 111736. [Google Scholar] [CrossRef] [PubMed]
- Dow, C.T. Proposing Bromo-Epi-Androsterone (BEA) for Stiff Person Syndrome (SPS). Microorganisms 2025, 13, 824. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
PTSD Animal Model Summary | |||
---|---|---|---|
Model | Description | PTSD Feature Modeled | References |
Fear Conditioning | Tone-shock pairing | Persistent fear, amygdala circuits | Flandreau [58] Maren [59] |
Stress-Enhanced Fear Learning (SEFL) | Stressor precedes conditioning | Fear over- consolidation | Rau [60] Pennington [61] |
Single Prolonged Stress (SPS) | Restraint → swim → ether | HPA dysregulation, extinction deficits | Liberzon [62] Knox [63] |
Social Isolation/ Chronic Unpredictable Stress | Isolation and/or unpredictable mild stress | Impaired extinction, reduced neurosteroids | Locci [64] Serra [65] |
Arousal-Based Individual Screening (AIS) | Trauma + screening for hyperarousal | Individual vulnerability/resilience | Torrisi [66] Ritov [67] |
Sleep/Physiologic Models | Disrupted REM/NREM after stress | Sleep fragmentation, hyperarousal | Grafe [68] Jung [69] |
TLR2/PGE2 in Social Defeat Stress | 10-day intruder- aggressor exposure | Social avoidance, anxiety-like behavior | Nie [70] Ishikawa [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dow, C.T.; Obaid, L. Proposing Bromo-Epi-Androsterone (BEA) for Post-Traumatic Stress Disorder (PTSD). Cells 2025, 14, 1120. https://doi.org/10.3390/cells14141120
Dow CT, Obaid L. Proposing Bromo-Epi-Androsterone (BEA) for Post-Traumatic Stress Disorder (PTSD). Cells. 2025; 14(14):1120. https://doi.org/10.3390/cells14141120
Chicago/Turabian StyleDow, Coad Thomas, and Liam Obaid. 2025. "Proposing Bromo-Epi-Androsterone (BEA) for Post-Traumatic Stress Disorder (PTSD)" Cells 14, no. 14: 1120. https://doi.org/10.3390/cells14141120
APA StyleDow, C. T., & Obaid, L. (2025). Proposing Bromo-Epi-Androsterone (BEA) for Post-Traumatic Stress Disorder (PTSD). Cells, 14(14), 1120. https://doi.org/10.3390/cells14141120