Expression of Aldehyde Dehydrogenase 1A1 in Relapse-Associated Cells in Acute Myeloid Leukemia
Abstract
1. Introduction
2. Biology Underlying AML Cell Dynamics
3. Expression of ALDH1A1 in AML
- (1)
- a state of relative metabolic dormancy with varying degrees of cycling quiescence and a protection from oxidant stress mainly from a decreased generation of ROS, and secondarily from increased expression and activity of cytosolic retinaldehyde enzymes such as ALDH1A1 and ALDH1A2. It must be noted that quiescence can be induced in leukemia cells or in naive embryonic stem cells by inhibition of MYC, which, among several other effects, is accompanied by decreased one-carbon metabolism and decreased oxidant stress [88,89,90,91].
- (2)
- a state of increased metabolic activity and high capacity for proliferation, characterized by high activity of transcription factors such as MYC, and protection from oxidant stress mainly through a number of potent antioxidant enzymatic systems. A MYC-dominated cellular phenotype should generate large amounts of formaldehyde and acetaldehyde through several metabolic processes [92,93,94,95,96]. Formaldehyde and acetaldehyde in mitochondria can be removed by ALDH2 [97,98]. In zebrafish cells, formaldehyde accumulation was shown to cause organelle damage [99].
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BEAT AML | master clinical trial “Beat AML” |
ELN […] | European LeukemiaNet [year] |
DIMATE | Dimethyl AmpalThiolester |
KM | Kaplan Meier |
NCT […] | National Clinical Trials [number] |
O-GlcNAcylation | O-linked β-N-acetylglucosamine modification |
OS | Overall Survival |
TARGET | Therapeutically Applicable Research to Generate Effective Treatments |
TLR9 | Toll-like receptor 9 |
References
- Paul, R.; Dorsey, J.F.; Fan, Y. Cell Plasticity, Senescence, and Quiescence in Cancer Stem Cells: Biological and Therapeutic Implications. Pharmacol. Ther. 2022, 231, 107985. [Google Scholar] [CrossRef]
- Bonnet, D.; Dick, J.E. Human Acute Myeloid Leukemia Is Organized as a Hierarchy That Originates from a Primitive Hematopoietic Cell. Nat. Med. 1997, 3, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Q.; Konishi, H.; Duong, C.; Yoshida, S.; Davis, R.R.; Van Dyke, J.E.; Ijiri, M.; McLaughlin, B.; Kim, K.; Li, Y.; et al. A Distinct Subpopulation of Leukemia Initiating Cells in Acute Precursor B Lymphoblastic Leukemia: Quiescent Phenotype and Unique Transcriptomic Profile. Front. Oncol. 2022, 12, 972323. [Google Scholar] [CrossRef] [PubMed]
- Greaves, M. Leukaemia “firsts” in Cancer Research and Treatment. Nat. Rev. Cancer 2016, 16, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Ruszkowska-Ciastek, B.; Kwiatkowska, K.; Marques-da-Silva, D.; Lagoa, R. Cancer Stem Cells from Definition to Detection and Targeted Drugs. Int. J. Mol. Sci. 2024, 25, 3903. [Google Scholar] [CrossRef]
- Hanekamp, D.; Cloos, J.; Schuurhuis, G.J. Leukemic Stem Cells: Identification and Clinical Application. Int. J. Hematol. 2017, 105, 549–557. [Google Scholar] [CrossRef]
- Karantanos, T.; Jones, R.J. Acute Myeloid Leukemia Stem Cell Heterogeneity and Its Clinical Relevance. Adv. Exp. Med. Biol. 2019, 1139, 153–169. [Google Scholar] [CrossRef]
- Lapidot, T.; Sirard, C.; Vormoor, J.; Murdoch, B.; Hoang, T.; Caceres-Cortes, J.; Minden, M.; Paterson, B.; Caligiuri, M.A.; Dick, J.E. A Cell Initiating Human Acute Myeloid Leukaemia after Transplantation into SCID Mice. Nature 1994, 367, 645–648. [Google Scholar] [CrossRef]
- Klco, J.M.; Spencer, D.H.; Miller, C.A.; Griffith, M.; Lamprecht, T.L.; O’Laughlin, M.; Fronick, C.; Magrini, V.; Demeter, R.T.; Fulton, R.S.; et al. Functional Heterogeneity of Genetically Defined Subclones in Acute Myeloid Leukemia. Cancer Cell 2014, 25, 379–392. [Google Scholar] [CrossRef]
- Fregona, V.; Bayet, M.; Gerby, B. Oncogene-Induced Reprogramming in Acute Lymphoblastic Leukemia: Towards Targeted Therapy of Leukemia-Initiating Cells. Cancers 2021, 13, 5511. [Google Scholar] [CrossRef]
- Taussig, D.C.; Miraki-Moud, F.; Anjos-Afonso, F.; Pearce, D.J.; Allen, K.; Ridler, C.; Lillington, D.; Oakervee, H.; Cavenagh, J.; Agrawal, S.G.; et al. Anti-CD38 Antibody-Mediated Clearance of Human Repopulating Cells Masks the Heterogeneity of Leukemia-Initiating Cells. Blood 2008, 112, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Schuurhuis, G.J.; Meel, M.H.; Wouters, F.; Min, L.A.; Terwijn, M.; de Jonge, N.A.; Kelder, A.; Snel, A.N.; Zweegman, S.; Ossenkoppele, G.J.; et al. Normal Hematopoietic Stem Cells within the AML Bone Marrow Have a Distinct and Higher ALDH Activity Level than Co-Existing Leukemic Stem Cells. PLoS ONE 2013, 8, e78897. [Google Scholar] [CrossRef] [PubMed]
- Sumbly, V.; Landry, I.; Sneed, C.; Iqbal, Q.; Verma, A.; Dhokhar, T.; Masood, A.; Amaraneni, A. Leukemic Stem Cells and Advances in Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia: A Narrative Review of Clinical Trials. Stem Cell Investig. 2022, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Jorgensen, J.L.; Brooks, C.; Shi, C.; Zhang, Q.; Nogueras González, G.M.; Cavazos, A.; Pan, R.; Mu, H.; Wang, S.A.; et al. Antileukemia Efficacy and Mechanisms of Action of SL-101, a Novel Anti-CD123 Antibody Conjugate, in Acute Myeloid Leukemia. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 3385–3395. [Google Scholar] [CrossRef]
- Kikushige, Y.; Miyamoto, T. Identification of TIM-3 as a Leukemic Stem Cell Surface Molecule in Primary Acute Myeloid Leukemia. Oncology 2015, 89 (Suppl. S1), 28–32. [Google Scholar] [CrossRef]
- Hosen, N.; Park, C.Y.; Tatsumi, N.; Oji, Y.; Sugiyama, H.; Gramatzki, M.; Krensky, A.M.; Weissman, I.L. CD96 Is a Leukemic Stem Cell-Specific Marker in Human Acute Myeloid Leukemia. Proc. Natl. Acad. Sci. USA 2007, 104, 11008–11013. [Google Scholar] [CrossRef]
- Krupka, C.; Kufer, P.; Kischel, R.; Zugmaier, G.; Bögeholz, J.; Köhnke, T.; Lichtenegger, F.S.; Schneider, S.; Metzeler, K.H.; Fiegl, M.; et al. CD33 Target Validation and Sustained Depletion of AML Blasts in Long-Term Cultures by the Bispecific T-Cell-Engaging Antibody AMG 330. Blood 2014, 123, 356–365. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, X.; Chen, C.; Zhu, J.; Yu, Z.; Xie, J.; Xie, L.; Bai, H.; Zhang, Y.; Fang, X.; et al. CD244 Maintains the Proliferation Ability of Leukemia Initiating Cells through SHP-2/P27kip1 Signaling. Haematologica 2017, 102, 707–718. [Google Scholar] [CrossRef]
- van Rhenen, A.; van Dongen, G.A.M.S.; Kelder, A.; Rombouts, E.J.; Feller, N.; Moshaver, B.; Stigter-van Walsum, M.; Zweegman, S.; Ossenkoppele, G.J.; Jan Schuurhuis, G. The Novel AML Stem Cell Associated Antigen CLL-1 Aids in Discrimination between Normal and Leukemic Stem Cells. Blood 2007, 110, 2659–2666. [Google Scholar] [CrossRef]
- Majeti, R.; Chao, M.P.; Alizadeh, A.A.; Pang, W.W.; Jaiswal, S.; Gibbs, K.D.; van Rooijen, N.; Weissman, I.L. CD47 Is an Adverse Prognostic Factor and Therapeutic Antibody Target on Human Acute Myeloid Leukemia Stem Cells. Cell 2009, 138, 286–299. [Google Scholar] [CrossRef]
- Paczulla, A.M.; Rothfelder, K.; Raffel, S.; Konantz, M.; Steinbacher, J.; Wang, H.; Tandler, C.; Mbarga, M.; Schaefer, T.; Falcone, M.; et al. Absence of NKG2D Ligands Defines Leukaemia Stem Cells and Mediates Their Immune Evasion. Nature 2019, 572, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Jordan, C.T.; Upchurch, D.; Szilvassy, S.J.; Guzman, M.L.; Howard, D.S.; Pettigrew, A.L.; Meyerrose, T.; Rossi, R.; Grimes, B.; Rizzieri, D.A.; et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 2000, 14, 1777–1784. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Kitamura, H.; Hijikata, A.; Tomizawa-Murasawa, M.; Tanaka, S.; Takagi, S.; Uchida, N.; Suzuki, N.; Sone, A.; Najima, Y.; et al. Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci. Transl. Med. 2010, 2, 17ra9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Venton, G.; Pérez-Alea, M.; Baier, C.; Fournet, G.; Quash, G.; Labiad, Y.; Martin, G.; Sanderson, F.; Poullin, P.; Suchon, P.; et al. Aldehyde Dehydrogenases Inhibition Eradicates Leukemia Stem Cells While Sparing Normal Progenitors. Blood Cancer J. 2016, 6, e469. [Google Scholar] [CrossRef]
- Marchand, T.; Pinho, S. Leukemic Stem Cells: From Leukemic Niche Biology to Treatment Opportunities. Front. Immunol. 2021, 12, 775128. [Google Scholar] [CrossRef]
- Quotti Tubi, L.; Canovas Nunes, S.; Brancalion, A.; Doriguzzi Breatta, E.; Manni, S.; Mandato, E.; Zaffino, F.; Macaccaro, P.; Carrino, M.; Gianesin, K.; et al. Protein Kinase CK2 Regulates AKT, NF-κB and STAT3 Activation, Stem Cell Viability and Proliferation in Acute Myeloid Leukemia. Leukemia 2017, 31, 292–300. [Google Scholar] [CrossRef]
- Sands, W.A.; Copland, M.; Wheadon, H. Targeting Self-Renewal Pathways in Myeloid Malignancies. Cell Commun. Signal. 2013, 11, 33. [Google Scholar] [CrossRef]
- Laranjeira, A.B.A.; Yang, S.X. Therapeutic Target Discovery and Drug Development in Cancer Stem Cells for Leukemia and Lymphoma: From Bench to the Clinic. Expert Opin. Drug Discov. 2016, 11, 1071–1080. [Google Scholar] [CrossRef]
- Pollyea, D.A.; Gutman, J.A.; Gore, L.; Smith, C.A.; Jordan, C.T. Targeting Acute Myeloid Leukemia Stem Cells: A Review and Principles for the Development of Clinical Trials. Haematologica 2014, 99, 1277–1284. [Google Scholar] [CrossRef]
- Haubner, S.; Perna, F.; Köhnke, T.; Schmidt, C.; Berman, S.; Augsberger, C.; Schnorfeil, F.M.; Krupka, C.; Lichtenegger, F.S.; Liu, X.; et al. Coexpression Profile of LeukemicStem Cell Markers for Combinatorial Targeted Therapy in AML. Leukemia 2019, 33, 64–74. [Google Scholar] [CrossRef]
- Hoesel, B.; Schmid, J.A. The Complexity of NF-κB Signaling in Inflammation and Cancer. Mol. Cancer 2013, 12, 86. [Google Scholar] [CrossRef] [PubMed]
- Bruserud, Ø.; Aasebø, E.; Hernandez-Valladares, M.; Tsykunova, G.; Reikvam, H. Therapeutic Targeting of Leukemic Stem Cells in Acute Myeloid Leukemia—The Biological Background for Possible Strategies. Expert Opin. Drug Discov. 2017, 12, 1053–1065. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.X.; Deeb, D.; Gao, X.; Janakiraman, N.; Chapman, R.A.; Gautam, S.C. In Vitro Analysis of the Antileukemic Effect of Tumor Necrosis Factor-Alpha Gene Therapy with Myeloid Progenitor Cells: The Role of Dendritic Cells. J. Exp. Ther. Oncol. 2003, 3, 62–71. [Google Scholar] [CrossRef]
- Spiekermann, K.; Biethahn, S.; Wilde, S.; Hiddemann, W.; Alves, F. Constitutive Activation of STAT Transcription Factors in Acute Myelogenous Leukemia. Eur. J. Haematol. 2001, 67, 63–71. [Google Scholar] [CrossRef]
- Ward, A.C.; Touw, I.; Yoshimura, A. The Jak-Stat Pathway in Normal and Perturbed Hematopoiesis. Blood 2000, 95, 19–29. [Google Scholar] [CrossRef]
- Venton, G.; Colle, J.; Tichadou, A.; Quessada, J.; Baier, C.; Labiad, Y.; Perez, M.; De Lassus, L.; Loosveld, M.; Arnoux, I.; et al. Reactive Oxygen Species and Aldehyde Dehydrogenase 1A as Prognosis and Theragnostic Biomarker in Acute Myeloid Leukaemia Patients. J. Cell. Mol. Med. 2024, 28, e70011. [Google Scholar] [CrossRef]
- Noronha, N.; Durette, C.; Cahuzac, M.; E Silva, B.; Courtois, J.; Humeau, J.; Sauvat, A.; Hardy, M.-P.; Vincent, K.; Laverdure, J.-P.; et al. Autophagy Degrades Immunogenic Endogenous Retroelements Induced by 5-Azacytidine in Acute Myeloid Leukemia. Leukemia 2024, 38, 1019–1031. [Google Scholar] [CrossRef]
- Bestion, E.; Costello, R.; Mezouar, S.; Halfon, P. Autophagy in Cancer Resistance: New Combinatorial Strategy for Cancer Therapy. Leukemia 2024, 38, 2289–2290. [Google Scholar] [CrossRef]
- Farge, T.; Saland, E.; de Toni, F.; Aroua, N.; Hosseini, M.; Perry, R.; Bosc, C.; Sugita, M.; Stuani, L.; Fraisse, M.; et al. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. Cancer Discov. 2017, 7, 716–735. [Google Scholar] [CrossRef]
- Duy, C.; Li, M.; Teater, M.; Meydan, C.; Garrett-Bakelman, F.E.; Lee, T.C.; Chin, C.R.; Durmaz, C.; Kawabata, K.C.; Dhimolea, E.; et al. Chemotherapy Induces Senescence-Like Resilient Cells Capable of Initiating AML Recurrence. Cancer Discov. 2021, 11, 1542–1561. [Google Scholar] [CrossRef]
- Boyd, A.L.; Aslostovar, L.; Reid, J.; Ye, W.; Tanasijevic, B.; Porras, D.P.; Shapovalova, Z.; Almakadi, M.; Foley, R.; Leber, B.; et al. Identification of Chemotherapy-Induced Leukemic-Regenerating Cells Reveals a Transient Vulnerability of Human AML Recurrence. Cancer Cell 2018, 34, 483–498.e5. [Google Scholar] [CrossRef] [PubMed]
- Costello, R.T.; Mallet, F.; Gaugler, B.; Sainty, D.; Arnoulet, C.; Gastaut, J.A.; Olive, D. Human Acute Myeloid Leukemia CD34+/CD38- Progenitor Cells Have Decreased Sensitivity to Chemotherapy and Fas-Induced Apoptosis, Reduced Immunogenicity, and Impaired Dendritic Cell Transformation Capacities. Cancer Res. 2000, 60, 4403–4411. [Google Scholar] [PubMed]
- Farge, T.; Nakhle, J.; Lagarde, D.; Cognet, G.; Polley, N.; Castellano, R.; Nicolau, M.-L.; Bosc, C.; Sabatier, M.; Sahal, A.; et al. CD36 Drives Metastasis and Relapse in Acute Myeloid Leukemia. Cancer Res. 2023, 83, 2824–2838. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.B.; Fillmore, C.M.; Jiang, G.; Shapira, S.D.; Tao, K.; Kuperwasser, C.; Lander, E.S. Stochastic State Transitions Give Rise to Phenotypic Equilibrium in Populations of Cancer Cells. Cell 2011, 146, 633–644. [Google Scholar] [CrossRef]
- Florio, D.; Marasco, D. Could Targeting NPM1c+ Misfolding Be a Promising Strategy for Combating Acute Myeloid Leukemia? Int. J. Mol. Sci. 2024, 25, 811. [Google Scholar] [CrossRef]
- Warfvinge, R.; Geironson, L.; Sommarin, M.N.E.; Lang, S.; Karlsson, C.; Roschupkina, T.; Stenke, L.; Stentoft, J.; Olsson-Strömberg, U.; Hjorth-Hansen, H.; et al. Single-Cell Molecular Analysis Defines Therapy Response and Immunophenotype of Stem Cell Subpopulations in CML. Blood 2017, 129, 2384–2394. [Google Scholar] [CrossRef]
- Liau, B.B.; Sievers, C.; Donohue, L.K.; Gillespie, S.M.; Flavahan, W.A.; Miller, T.E.; Venteicher, A.S.; Hebert, C.H.; Carey, C.D.; Rodig, S.J.; et al. Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance. Cell Stem Cell 2017, 20, 233–246.e7. [Google Scholar] [CrossRef]
- Rodrigues, F.S.; Karoutas, A.; Ruhland, S.; Rabas, N.; Rizou, T.; Di Blasio, S.; Ferreira, R.M.M.; Bridgeman, V.L.; Goldstone, R.; Sopena, M.L.; et al. Bidirectional Activation of Stem-like Programs between Metastatic Cancer and Alveolar Type 2 Cells within the Niche. Dev. Cell 2024, 59, 2398–2413.e8. [Google Scholar] [CrossRef]
- Quesenberry, P.J.; Colvin, G.A.; Lambert, J.-F. The Chiaroscuro Stem Cell: A Unified Stem Cell Theory. Blood 2002, 100, 4266–4271. [Google Scholar] [CrossRef]
- Quesenberry, P.J.; Goldberg, L.; Aliotta, J.; Dooner, M. Marrow Hematopoietic Stem Cells Revisited: They Exist in a Continuum and Are Not Defined by Standard Purification Approaches; Then There Are the Microvesicles. Front. Oncol. 2014, 4, 56. [Google Scholar] [CrossRef]
- Mishra, B.; Ivashkiv, L.B. Interferons and Epigenetic Mechanisms in Training, Priming and Tolerance of Monocytes and Hematopoietic Progenitors. Immunol. Rev. 2024, 323, 257–275. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Wang, F.; Zeng, A.; Murison, A.; Tomczak, K.; Hao, D.; Jelloul, F.Z.; Wang, B.; Barrodia, P.; Liang, S.; et al. Single-Cell Chromatin Accessibility Profiling of Acute Myeloid Leukemia Reveals Heterogeneous Lineage Composition Upon Therapy-Resistance. Commun. Biol. 2023, 6, 765. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Boccalatte, F.; Xu, J.; Gambi, G.; Nadorp, B.; Akter, F.; Mullin, C.; Melnick, A.F.; Choe, E.; McCarter, A.C.; et al. Native Stem Cell Transcriptional Circuits Define Cardinal Features of High-Risk Leukemia. J. Exp. Med. 2025, 222, e20231349. [Google Scholar] [CrossRef]
- Vlahopoulos, S.; Pan, L.; Varisli, L.; Dancik, G.M.; Karantanos, T.; Boldogh, I. OGG1 as an Epigenetic Reader Affects NFκB: What This Means for Cancer. Cancers 2023, 16, 148. [Google Scholar] [CrossRef] [PubMed]
- Vlahopoulos, S.A. Divergent Processing of Cell Stress Signals as the Basis of Cancer Progression: Licensing NFκB on Chromatin. Int. J. Mol. Sci. 2024, 25, 8621. [Google Scholar] [CrossRef]
- SanMiguel, J.M.; Eudy, E.; Loberg, M.A.; Miles, L.A.; Stearns, T.; Mistry, J.J.; Rauh, M.J.; Levine, R.L.; Trowbridge, J.J. Cell Origin-Dependent Cooperativity of Mutant Dnmt3a and Npm1 in Clonal Hematopoiesis and Myeloid Malignancy. Blood Adv. 2022, 6, 3666–3677. [Google Scholar] [CrossRef]
- Lai, Q.; Hamamoto, K.; Luo, H.; Zaroogian, Z.; Zhou, C.; Lesperance, J.; Zha, J.; Qiu, Y.; Guryanova, O.A.; Huang, S.; et al. NPM1 Mutation Reprograms Leukemic Transcription Network via Reshaping TAD Topology. Leukemia 2023, 37, 1732–1736. [Google Scholar] [CrossRef]
- Corces, M.R.; Buenrostro, J.D.; Wu, B.; Greenside, P.G.; Chan, S.M.; Koenig, J.L.; Snyder, M.P.; Pritchard, J.K.; Kundaje, A.; Greenleaf, W.J.; et al. Lineage-Specific and Single-Cell Chromatin Accessibility Charts Human Hematopoiesis and Leukemia Evolution. Nat. Genet. 2016, 48, 1193–1203. [Google Scholar] [CrossRef]
- van Dijk, A.D.; Hoff, F.W.; Qiu, Y.; Hubner, S.E.; Go, R.L.; Ruvolo, V.R.; Leonti, A.R.; Gerbing, R.B.; Gamis, A.S.; Aplenc, R.; et al. Chromatin Profiles Are Prognostic of Clinical Response to Bortezomib-Containing Chemotherapy in Pediatric Acute Myeloid Leukemia: Results from the COG AAML1031 Trial. Cancers 2024, 16, 1448. [Google Scholar] [CrossRef]
- Swann, J.W.; Olson, O.C.; Passegué, E. Made to Order: Emergency Myelopoiesis and Demand-Adapted Innate Immune Cell Production. Nat. Rev. Immunol. 2024, 24, 596–613. [Google Scholar] [CrossRef]
- Nuno, K.; Azizi, A.; Koehnke, T.; Lareau, C.; Ediriwickrema, A.; Corces, M.R.; Satpathy, A.T.; Majeti, R. Convergent Epigenetic Evolution Drives Relapse in Acute Myeloid Leukemia. eLife 2024, 13, e93019. [Google Scholar] [CrossRef] [PubMed]
- Domingues, A.F.; Kulkarni, R.; Giotopoulos, G.; Gupta, S.; Vinnenberg, L.; Arede, L.; Foerner, E.; Khalili, M.; Adao, R.R.; Johns, A.; et al. Loss of Kat2a Enhances Transcriptional Noise and Depletes Acute Myeloid Leukemia Stem-like Cells. eLife 2020, 9, e51754. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Duan, Y.; Wang, J.; Liu, Y.; Zhao, Y.; Wang, H.; Zhang, L.; Chen, Z.-S.; Hu, Z.; Wei, L. Histone Deacetylase Inhibitor I3 Induces the Differentiation of Acute Myeloid Leukemia Cells with t (8; 21) or MLL Gene Translocation and Leukemic Stem-Like Cells. J. Oncol. 2022, 2022, 3345536. [Google Scholar] [CrossRef]
- Jalnapurkar, S.S.; Pawar, A.S.; George, S.S.; Antony, C.; Somers, P.; Grana, J.; Feist, V.K.; Gurbuxani, S.; Paralkar, V.R. PHF6 Suppresses Self-Renewal of Leukemic Stem Cells in AML. Leukemia 2024, 38, 1938–1948. [Google Scholar] [CrossRef]
- Kellaway, S.G.; Potluri, S.; Keane, P.; Blair, H.J.; Ames, L.; Worker, A.; Chin, P.S.; Ptasinska, A.; Derevyanko, P.K.; Adamo, A.; et al. Leukemic Stem Cells Activate Lineage Inappropriate Signalling Pathways to Promote Their Growth. Nat. Commun. 2024, 15, 1359. [Google Scholar] [CrossRef]
- Choi, H.-S.; Kim, B.S.; Yoon, S.; Oh, S.-O.; Lee, D. Leukemic Stem Cells and Hematological Malignancies. Int. J. Mol. Sci. 2024, 25, 6639. [Google Scholar] [CrossRef]
- Waclawiczek, A.; Hamilton, A.; Rouault-Pierre, K.; Abarrategi, A.; Albornoz, M.G.; Miraki-Moud, F.; Bah, N.; Gribben, J.; Fitzgibbon, J.; Taussig, D.; et al. Mesenchymal Niche Remodeling Impairs Hematopoiesis via Stanniocalcin 1 in Acute Myeloid Leukemia. J. Clin. Investig. 2020, 130, 3038–3050. [Google Scholar] [CrossRef]
- Chen, L.; Pronk, E.; van Dijk, C.; Bian, Y.; Feyen, J.; van Tienhoven, T.; Yildirim, M.; Pisterzi, P.; de Jong, M.M.E.; Bastidas, A.; et al. A Single-Cell Taxonomy Predicts Inflammatory Niche Remodeling to Drive Tissue Failure and Outcome in Human AML. Blood Cancer Discov. 2023, 4, 394–417. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S.; He, F.; Tian, Y.; Hu, H.; Gao, L.; Zhang, L.; Chen, A.; Hu, Y.; Fan, L.; et al. Single-Cell Transcriptomics Reveals Multiple Chemoresistant Properties in Leukemic Stem and Progenitor Cells in Pediatric AML. Genome Biol. 2023, 24, 199. [Google Scholar] [CrossRef]
- Antony, M.L.; Chang, D.; Noble-Orcutt, K.E.; Kay, A.; Jensen, J.L.; Mohei, H.; Myers, C.L.; Sachs, K.; Sachs, Z. CD69 Marks a Subpopulation of Acute Myeloid Leukemia with Enhanced Colony Forming Capacity and a Unique Signaling Activation State. Leuk. Lymphoma 2023, 64, 1262–1274. [Google Scholar] [CrossRef]
- Sachs, K.; Sarver, A.L.; Noble-Orcutt, K.E.; LaRue, R.S.; Antony, M.L.; Chang, D.; Lee, Y.; Navis, C.M.; Hillesheim, A.L.; Nykaza, I.R.; et al. Single-Cell Gene Expression Analyses Reveal Distinct Self-Renewing and Proliferating Subsets in the Leukemia Stem Cell Compartment in Acute Myeloid Leukemia. Cancer Res. 2020, 80, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Selheim, F.; Aasebø, E.; Reikvam, H.; Bruserud, Ø.; Hernandez-Valladares, M. Proteomic Comparison of Acute Myeloid Leukemia Cells and Normal CD34+ Bone Marrow Cells: Studies of Leukemia Cell Differentiation and Regulation of Iron Metabolism/Ferroptosis. Proteomes 2025, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chng, W.-J. Unveiling Novel Insights in Acute Myeloid Leukemia through Single-Cell RNA Sequencing. Front. Oncol. 2024, 14, 1365330. [Google Scholar] [CrossRef] [PubMed]
- Naldini, M.M.; Casirati, G.; Barcella, M.; Rancoita, P.M.V.; Cosentino, A.; Caserta, C.; Pavesi, F.; Zonari, E.; Desantis, G.; Gilioli, D.; et al. Longitudinal Single-Cell Profiling of Chemotherapy Response in Acute Myeloid Leukemia. Nat. Commun. 2023, 14, 1285. [Google Scholar] [CrossRef]
- Lu, J.; Cannizzaro, E.; Meier-Abt, F.; Scheinost, S.; Bruch, P.-M.; Giles, H.A.; Lütge, A.; Hüllein, J.; Wagner, L.; Giacopelli, B.; et al. Multi-Omics Reveals Clinically Relevant Proliferative Drive Associated with mTOR-MYC-OXPHOS Activity in Chronic Lymphocytic Leukemia. Nat. Cancer 2021, 2, 853–864. [Google Scholar] [CrossRef]
- Zaytseva, O.; Quinn, L.M. Controlling the Master: Chromatin Dynamics at the MYC Promoter Integrate Developmental Signaling. Genes 2017, 8, 118. [Google Scholar] [CrossRef]
- Dancik, G.M.; Varisli, L.; Tolan, V.; Vlahopoulos, S. Aldehyde Dehydrogenase Genes as Prospective Actionable Targets in Acute Myeloid Leukemia. Genes 2023, 14, 1807. [Google Scholar] [CrossRef]
- Dancik, G.M.; Voutsas, I.F.; Vlahopoulos, S. Lower RNA Expression of ALDH1A1 Distinguishes the Favorable Risk Group in Acute Myeloid Leukemia. Mol. Biol. Rep. 2022, 49, 3321–3331. [Google Scholar] [CrossRef]
- Gasparetto, M.; Pei, S.; Minhajuddin, M.; Khan, N.; Pollyea, D.A.; Myers, J.R.; Ashton, J.M.; Becker, M.W.; Vasiliou, V.; Humphries, K.R.; et al. Targeted Therapy for a Subset of Acute Myeloid Leukemias That Lack Expression of Aldehyde Dehydrogenase 1A1. Haematologica 2017, 102, 1054–1065. [Google Scholar] [CrossRef]
- Madaci, L.; Colle, J.; Venton, G.; Farnault, L.; Loriod, B.; Costello, R. The Contribution of Single-Cell Analysis of Acute Leukemia in the Therapeutic Strategy. Biomark. Res. 2021, 9, 50. [Google Scholar] [CrossRef]
- Gerber, J.M.; Zeidner, J.F.; Morse, S.; Blackford, A.L.; Perkins, B.; Yanagisawa, B.; Zhang, H.; Morsberger, L.; Karp, J.; Ning, Y.; et al. Association of Acute Myeloid Leukemia’s Most Immature Phenotype with Risk Groups and Outcomes. Haematologica 2016, 101, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, M.Z.; Adamiak, M.; Plonka, M.; Abdel-Latif, A.; Ratajczak, J. Mobilization of Hematopoietic Stem Cells as a Result of Innate Immunity-Mediated Sterile Inflammation in the Bone Marrow Microenvironment-the Involvement of Extracellular Nucleotides and Purinergic Signaling. Leukemia 2018, 32, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.; Ai, L.; Lei, M.; Duan, Y.; Tang, C.; Zhang, J.; Gao, Y.; Li, X.; Zhu, C.; Zhang, Y.; et al. Single-Cell Epigenetic and Clonal Analysis Decodes Disease Progression in Pediatric Acute Myeloid Leukemia. Blood 2025, 145, 1211–1224. [Google Scholar] [CrossRef]
- Hoang, V.T.; Buss, E.C.; Wang, W.; Hoffmann, I.; Raffel, S.; Zepeda-Moreno, A.; Baran, N.; Wuchter, P.; Eckstein, V.; Trumpp, A.; et al. The Rarity of ALDH(+) Cells Is the Key to Separation of Normal versus Leukemia Stem Cells by ALDH Activity in AML Patients. Int. J. Cancer 2015, 137, 525–536. [Google Scholar] [CrossRef]
- Tyner, J.W.; Tognon, C.E.; Bottomly, D.; Wilmot, B.; Kurtz, S.E.; Savage, S.L.; Long, N.; Schultz, A.R.; Traer, E.; Abel, M.; et al. Functional Genomic Landscape of Acute Myeloid Leukaemia. Nature 2018, 562, 526–531. [Google Scholar] [CrossRef]
- Maxson, J.E.; Ries, R.E.; Wang, Y.-C.; Gerbing, R.B.; Kolb, E.A.; Thompson, S.L.; Guidry Auvil, J.M.; Marra, M.A.; Ma, Y.; Zong, Z.; et al. CSF3R Mutations Have a High Degree of Overlap with CEBPA Mutations in Pediatric AML. Blood 2016, 127, 3094–3098. [Google Scholar] [CrossRef]
- Goldman, M.J.; Craft, B.; Hastie, M.; Repečka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; et al. Visualizing and Interpreting Cancer Genomics Data via the Xena Platform. Nat. Biotechnol. 2020, 38, 675–678. [Google Scholar] [CrossRef]
- Takeishi, S.; Matsumoto, A.; Onoyama, I.; Naka, K.; Hirao, A.; Nakayama, K.I. Ablation of Fbxw7 Eliminates Leukemia-Initiating Cells by Preventing Quiescence. Cancer Cell 2013, 23, 347–361. [Google Scholar] [CrossRef]
- Aleksandrova, K.V.; Vorobev, M.L.; Suvorova, I.I. mTOR Pathway Occupies a Central Role in the Emergence of Latent Cancer Cells. Cell Death Dis. 2024, 15, 176. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Q.; Chen, W.; Gong, Z.; Kang, B.; Sui, M.; Huang, L.; Wang, Y.-J. PRODH Safeguards Human Naive Pluripotency by Limiting Mitochondrial Oxidative Phosphorylation and Reactive Oxygen Species Production. EMBO Rep. 2024, 25, 2015–2044. [Google Scholar] [CrossRef]
- Khoa, L.T.P.; Yang, W.; Shan, M.; Zhang, L.; Mao, F.; Zhou, B.; Li, Q.; Malcore, R.; Harris, C.; Zhao, L.; et al. Quiescence Enables Unrestricted Cell Fate in Naive Embryonic Stem Cells. Nat. Commun. 2024, 15, 1721. [Google Scholar] [CrossRef]
- Purhonen, J.; Klefström, J.; Kallijärvi, J. MYC-an Emerging Player in Mitochondrial Diseases. Front. Cell Dev. Biol. 2023, 11, 1257651. [Google Scholar] [CrossRef] [PubMed]
- Tenney, L.; Pham, V.N.; Brewer, T.F.; Chang, C.J. A Mitochondrial-Targeted Activity-Based Sensing Probe for Ratiometric Imaging of Formaldehyde Reveals Key Regulators of the Mitochondrial One-Carbon Pool. Chem. Sci. 2024, 15, 8080–8088. [Google Scholar] [CrossRef] [PubMed]
- Nikiforov, M.A.; Chandriani, S.; O’Connell, B.; Petrenko, O.; Kotenko, I.; Beavis, A.; Sedivy, J.M.; Cole, M.D. A Functional Screen for Myc-Responsive Genes Reveals Serine Hydroxymethyltransferase, a Major Source of the One-Carbon Unit for Cell Metabolism. Mol. Cell. Biol. 2002, 22, 5793–5800. [Google Scholar] [CrossRef]
- Antoshechkin, A.G. Physiological Model of the Stimulative Effects of Alcohol in Low-to-Moderate Doses. Ann. N. Y. Acad. Sci. 2002, 957, 288–291. [Google Scholar] [CrossRef]
- Arumugam, M.K.; Gopal, T.; Kalari Kandy, R.R.; Boopathy, L.K.; Perumal, S.K.; Ganesan, M.; Rasineni, K.; Donohue, T.M.; Osna, N.A.; Kharbanda, K.K. Mitochondrial Dysfunction-Associated Mechanisms in the Development of Chronic Liver Diseases. Biology 2023, 12, 1311. [Google Scholar] [CrossRef]
- Klyosov, A.A. Kinetics and Specificity of Human Liver Aldehyde Dehydrogenases toward Aliphatic, Aromatic, and Fused Polycyclic Aldehydes. Biochemistry 1996, 35, 4457–4467. [Google Scholar] [CrossRef]
- Dancik, G.M.; Voutsas, I.F.; Vlahopoulos, S. Aldehyde Dehydrogenase Enzyme Functions in Acute Leukemia Stem Cells. Front. Biosci. Sch. Ed. 2022, 14, 8. [Google Scholar] [CrossRef]
- Xin, F.; Tian, Y.; Gao, C.; Guo, B.; Wu, Y.; Zhao, J.; Jing, J.; Zhang, X. A Two-Photon Fluorescent Probe for Basal Formaldehyde Imaging in Zebrafish and Visualization of Mitochondrial Damage Induced by FA Stress. Analyst 2019, 144, 2297–2303. [Google Scholar] [CrossRef]
- Bonetti, P.; Davoli, T.; Sironi, C.; Amati, B.; Pelicci, P.G.; Colombo, E. Nucleophosmin and Its AML-Associated Mutant Regulate c-Myc Turnover through Fbw7 Gamma. J. Cell Biol. 2008, 182, 19–26. [Google Scholar] [CrossRef]
- Andresen, V.; Erikstein, B.S.; Mukherjee, H.; Sulen, A.; Popa, M.; Sørnes, S.; Reikvam, H.; Chan, K.-P.; Hovland, R.; McCormack, E.; et al. Anti-Proliferative Activity of the NPM1 Interacting Natural Product Avrainvillamide in Acute Myeloid Leukemia. Cell Death Dis. 2016, 7, e2497. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.S. NPM1-Mutated Acute Myeloid Leukemia: Recent Developments and Open Questions. Pathobiol. J. Immunopathol. Mol. Cell. Biol. 2024, 91, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, L.; Gundry, M.C.; Sorcini, D.; Guzman, A.G.; Huang, Y.-H.; Ramabadran, R.; Gionfriddo, I.; Mezzasoma, F.; Milano, F.; Nabet, B.; et al. Mutant NPM1 Maintains the Leukemic State through HOX Expression. Cancer Cell 2018, 34, 499–512.e9. [Google Scholar] [CrossRef]
- Mouchel, P.L.; Bérard, E.; Tavitian, S.; Gadaud, N.; Vergez, F.; Rieu, J.B.; Luquet, I.; Sarry, A.; Huguet, F.; Largeaud, L.; et al. Vitamin C and D Supplementation in Acute Myeloid Leukemia. Blood Adv. 2023, 7, 6886–6897. [Google Scholar] [CrossRef] [PubMed]
- Liccardo, F.; Śniegocka, M.; Tito, C.; Iaiza, A.; Ottone, T.; Divona, M.; Travaglini, S.; Mattei, M.; Cicconi, R.; Miglietta, S.; et al. Retinoic Acid and Proteotoxic Stress Induce AML Cell Death Overcoming Stromal Cell Protection. J. Exp. Clin. Cancer Res. 2023, 42, 223. [Google Scholar] [CrossRef]
- Győrffy, B. Discovery and Ranking of the Most Robust Prognostic Biomarkers in Serous Ovarian Cancer. GeroScience 2023, 45, 1889–1898. [Google Scholar] [CrossRef]
- Dorokhov, Y.L.; Sheshukova, E.V.; Bialik, T.E.; Komarova, T.V. Human Endogenous Formaldehyde as an Anticancer Metabolite: Its Oxidation Downregulation May Be a Means of Improving Therapy. BioEssays News Rev. Mol. Cell. Dev. Biol. 2018, 40, e1800136. [Google Scholar] [CrossRef]
- Komarova, T.V.; Sheshukova, E.V.; Kosobokova, E.N.; Kosorukov, V.S.; Shindyapina, A.V.; Lipskerov, F.A.; Shpudeiko, P.S.; Byalik, T.E.; Dorokhov, Y.L. The Biological Activity of Bispecific Trastuzumab/Pertuzumab Plant Biosimilars May Be Drastically Boosted by Disulfiram Increasing Formaldehyde Accumulation in Cancer Cells. Sci. Rep. 2019, 9, 16168. [Google Scholar] [CrossRef]
- Umansky, C.; Morellato, A.E.; Rieckher, M.; Scheidegger, M.A.; Martinefski, M.R.; Fernández, G.A.; Pak, O.; Kolesnikova, K.; Reingruber, H.; Bollini, M.; et al. Endogenous Formaldehyde Scavenges Cellular Glutathione Resulting in Redox Disruption and Cytotoxicity. Nat. Commun. 2022, 13, 745. [Google Scholar] [CrossRef]
- Tang, C.; Pang, X.; Guo, Z.; Guo, R.; Liu, L.; Chen, X. Dual Action of Acidic Microenvironment on the Enrichment of the Active Metabolite of Disulfiram in Tumor Tissues. Drug Metab. Dispos. Biol. Fate Chem. 2021, 49, 434–441. [Google Scholar] [CrossRef]
- Zhu, L.; Pei, W.; Thiele, I.; Mahadevan, R. Integration of a Physiologically-Based Pharmacokinetic Model with a Whole-Body, Organ-Resolved Genome-Scale Model for Characterization of Ethanol and Acetaldehyde Metabolism. PLoS Comput. Biol. 2021, 17, e1009110. [Google Scholar] [CrossRef] [PubMed]
- Reikvam, H. Inhibition of NF-κB Signaling Alters Acute Myelogenous Leukemia Cell Transcriptomics. Cells 2020, 9, 1677. [Google Scholar] [CrossRef] [PubMed]
- Rae, C.; Langa, S.; Tucker, S.J.; MacEwan, D.J. Elevated NF-kappaB Responses and FLIP Levels in Leukemic but Not Normal Lymphocytes: Reduction by Salicylate Allows TNF-Induced Apoptosis. Proc. Natl. Acad. Sci. USA 2007, 104, 12790–12795. [Google Scholar] [CrossRef]
- Ke, B.; Li, A.; Fu, H.; Kong, C.; Liu, T.; Zhu, Q.; Zhang, Y.; Zhang, Z.; Chen, C.; Jin, C. PARP-1 Inhibitors Enhance the Chemosensitivity of Leukemia Cells by Attenuating NF-κB Pathway Activity and DNA Damage Response Induced by Idarubicin. Acta Biochim. Biophys. Sin. 2022, 54, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Fan, J.; Francis, J.M.; Georghiou, G.; Hergert, S.; Li, S.; Gambe, R.; Zhou, C.W.; Yang, C.; Xiao, S.; et al. Integrated Single-Cell Genetic and Transcriptional Analysis Suggests Novel Drivers of Chronic Lymphocytic Leukemia. Genome Res. 2017, 27, 1300–1311. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, P.; Lu, Z.; Yu, Z.; Qian, P. Decoding Leukemia at the Single-Cell Level: Clonal Architecture, Classification, Microenvironment, and Drug Resistance. Exp. Hematol. Oncol. 2024, 13, 12. [Google Scholar] [CrossRef]
- Pei, S.; Shelton, I.T.; Gillen, A.E.; Stevens, B.M.; Gasparetto, M.; Wang, Y.; Liu, L.; Liu, J.; Brunetti, T.M.; Engel, K.; et al. A Novel Type of Monocytic Leukemia Stem Cell Revealed by the Clinical Use of Venetoclax-Based Therapy. Cancer Discov. 2023, 13, 2032–2049. [Google Scholar] [CrossRef]
- Chimge, N.-O.; Chen, M.-H.; Nguyen, C.; Zhao, Y.; Wu, X.; Gonzalez, P.G.; Ogana, H.; Hurwitz, S.; Teo, J.-L.; Chen, X.; et al. A Deeply Quiescent Subset of CML LSC Depend on FAO yet Avoid Deleterious ROS by Suppressing Mitochondrial Complex I. Curr. Mol. Pharmacol. 2024, 17, e060923220758. [Google Scholar] [CrossRef]
- Stetson, L.C.; Balasubramanian, D.; Ribeiro, S.P.; Stefan, T.; Gupta, K.; Xu, X.; Fourati, S.; Roe, A.; Jackson, Z.; Schauner, R.; et al. Single Cell RNA Sequencing of AML Initiating Cells Reveals RNA-Based Evolution during Disease Progression. Leukemia 2021, 35, 2799–2812. [Google Scholar] [CrossRef]
- Schauner, R.; Cress, J.; Hong, C.; Wald, D.; Ramakrishnan, P. Single Cell and Bulk RNA Expression Analyses Identify Enhanced Hexosamine Biosynthetic Pathway and O-GlcNAcylation in Acute Myeloid Leukemia Blasts and Stem Cells. Front. Immunol. 2024, 15, 1327405. [Google Scholar] [CrossRef]
- Rendeiro, A.F.; Krausgruber, T.; Fortelny, N.; Zhao, F.; Penz, T.; Farlik, M.; Schuster, L.C.; Nemc, A.; Tasnády, S.; Réti, M.; et al. Chromatin Mapping and Single-Cell Immune Profiling Define the Temporal Dynamics of Ibrutinib Response in CLL. Nat. Commun. 2020, 11, 577. [Google Scholar] [CrossRef] [PubMed]
- Pozzo, F.; Forestieri, G.; Vit, F.; Ianna, G.; Tissino, E.; Bittolo, T.; Papotti, R.; Gaglio, A.; Terzi di Bergamo, L.; Steffan, A.; et al. Early Reappearance of Intraclonal Proliferative Subpopulations in Ibrutinib-Resistant Chronic Lymphocytic Leukemia. Leukemia 2024, 38, 1712–1721. [Google Scholar] [CrossRef]
- Radzisheuskaya, A.; Peña-Rømer, I.; Lorenzini, E.; Koche, R.; Zhan, Y.; Shliaha, P.V.; Cooper, A.J.; Fan, Z.; Shlyueva, D.; Johansen, J.V.; et al. An Alternative NURF Complex Sustains Acute Myeloid Leukemia by Regulating the Accessibility of Insulator Regions. EMBO J. 2023, 42, e114221. [Google Scholar] [CrossRef] [PubMed]
- Cabal-Hierro, L.; van Galen, P.; Prado, M.A.; Higby, K.J.; Togami, K.; Mowery, C.T.; Paulo, J.A.; Xie, Y.; Cejas, P.; Furusawa, T.; et al. Chromatin Accessibility Promotes Hematopoietic and Leukemia Stem Cell Activity. Nat. Commun. 2020, 11, 1406. [Google Scholar] [CrossRef]
- França, G.S.; Baron, M.; King, B.R.; Bossowski, J.P.; Bjornberg, A.; Pour, M.; Rao, A.; Patel, A.S.; Misirlioglu, S.; Barkley, D.; et al. Cellular Adaptation to Cancer Therapy along a Resistance Continuum. Nature 2024, 631, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Terpstra, W.; Prins, A.; Ploemacher, R.E.; Wognum, B.W.; Wagemaker, G.; Löwenberg, B.; Wielenga, J.J. Long-Term Leukemia-Initiating Capacity of a CD34-Subpopulation of Acute Myeloid Leukemia. Blood 1996, 87, 2187–2194. [Google Scholar] [CrossRef]
- Valk, P.J.M.; Verhaak, R.G.W.; Beijen, M.A.; Erpelinck, C.A.J.; Barjesteh van Waalwijk van Doorn-Khosrovani, S.; Boer, J.M.; Beverloo, H.B.; Moorhouse, M.J.; van der Spek, P.J.; Löwenberg, B.; et al. Prognostically Useful Gene-Expression Profiles in Acute Myeloid Leukemia. N. Engl. J. Med. 2004, 350, 1617–1628. [Google Scholar] [CrossRef]
- Metzeler, K.H.; Hummel, M.; Bloomfield, C.D.; Spiekermann, K.; Braess, J.; Sauerland, M.-C.; Heinecke, A.; Radmacher, M.; Marcucci, G.; Whitman, S.P.; et al. An 86-Probe-Set Gene-Expression Signature Predicts Survival in Cytogenetically Normal Acute Myeloid Leukemia. Blood 2008, 112, 4193–4201. [Google Scholar] [CrossRef]
- Herold, T.; Metzeler, K.H.; Vosberg, S.; Hartmann, L.; Röllig, C.; Stölzel, F.; Schneider, S.; Hubmann, M.; Zellmeier, E.; Ksienzyk, B.; et al. Isolated Trisomy 13 Defines a Homogeneous AML Subgroup with High Frequency of Mutations in Spliceosome Genes and Poor Prognosis. Blood 2014, 124, 1304–1311. [Google Scholar] [CrossRef]
- Verhaak, R.G.W.; Wouters, B.J.; Erpelinck, C.A.J.; Abbas, S.; Beverloo, H.B.; Lugthart, S.; Löwenberg, B.; Delwel, R.; Valk, P.J.M. Prediction of Molecular Subtypes in Acute Myeloid Leukemia Based on Gene Expression Profiling. Haematologica 2009, 94, 131–134. [Google Scholar] [CrossRef]
- de Jonge, H.J.M.; Valk, P.J.M.; Veeger, N.J.G.M.; ter Elst, A.; den Boer, M.L.; Cloos, J.; de Haas, V.; van den Heuvel-Eibrink, M.M.; Kaspers, G.J.L.; Zwaan, C.M.; et al. High VEGFC Expression Is Associated with Unique Gene Expression Profiles and Predicts Adverse Prognosis in Pediatric and Adult Acute Myeloid Leukemia. Blood 2010, 116, 1747–1754. [Google Scholar] [CrossRef]
- Raponi, M.; Lancet, J.E.; Fan, H.; Dossey, L.; Lee, G.; Gojo, I.; Feldman, E.J.; Gotlib, J.; Morris, L.E.; Greenberg, P.L.; et al. A 2-Gene Classifier for Predicting Response to the Farnesyltransferase Inhibitor Tipifarnib in Acute Myeloid Leukemia. Blood 2008, 111, 2589–2596. [Google Scholar] [CrossRef] [PubMed]
NPM1MT (HR, P, FDR) | NMP1 WT (HR, P, FDR) | AML TOTAL (HR, P, FDR) | OVERALL SURVIVAL |
1.21, 0.3, 100% | 1.99, 6.6 × 10−10, 1% | 1.47, 1.3 × 10−10, 1% | ALDH1A1 |
2.19, 0.00012, 1% | 2.08, 4.4 × 10−9, 1% | 1.81, <1 × 10−16, 1% | ALDH2 |
NPM1MT (HR, P, FDR) | NMP1 WT (HR, P, FDR) | AML TOTAL (HR, P, FDR) | EVENT-FREE SURVIVAL |
0.79, 0.26, 100% | 2.43, 1.8 × 10−9, 1% | 1.7, 2.1 × 10−6, 1% | ALDH1A1 |
2.35, 0.00029, 2% | 1.98, 1.1 × 10−5, 1% | 1.75, 6.1 × 10−5, 1% | ALDH2 |
NPM1MT (HR, P, FDR) | NMP1 WT (HR, P, FDR) | AML TOTAL (HR, P, FDR) | POST-PROGRESSION SURVIVAL |
1.53, 0.097, 100% | 1.54, 0.0083, >50% | 1.61, 0.00063, 5% | ALDH1A1 |
1.95, 0.0031, 10% | 1.54, 0.016, >50% | 1.43, 0.0056, 50% | ALDH2 |
NPM1MT (HR, P, FDR) | NMP1 WT (HR, P, FDR) | AML TOTAL (HR, P, FDR) | OVERALL SURVIVAL |
GSE1159 | |||
1.25, 0.46, 100% | 2.37, 3.7 × 10−6, 1% | 1.62, 0.0014, 20% | ALDH1A1 |
1.94, 0.024, >50% | 2.31, 8.3 × 10−6, 1% | 2.08, 4.4 × 10−9, 1% | ALDH2 |
GSE6891 | |||
1.27, 0.28, 100% | 1.92, 2.3 × 10−6, 1% | 1.51, 0.00013, 1% | ALDH1A1 |
2.62, 0.00069, 5% | 2.06, 7 × 10−6, 1% | 1.92, 4.3 × 10−8, 1% | ALDH2 |
NPM1MT (HR, P, FDR) | NMP1 WT (HR, P, FDR) | AML TOTAL (HR, P, FDR) | EVENT-FREE SURVIVAL |
GSE1159 | |||
0.63, 0.18, 100% | 2.4, 5 × 10−4, 3% | 1.6, 0.021, >50% | ALDH1A1 |
3.19, 0.022, 50% | 2.49, 0.00039, 2% | 1.9, 0.0021, 20% | ALDH2 |
GSE6891 | |||
0.71, 0.2, 100% | 2.47, 5.9 × 10−7, 1% | 1.82, 9.9 × 10−6, 1% | ALDH1A1 |
2.84, 0.0016, 10% | 1.84, 0.0014, 10% | 1.6, 0.00098, 10% | ALDH2 |
NPM1MT (HR, P, FDR) | NMP1 WT (HR, P, FDR) | AML TOTAL (HR, P, FDR) | POST-PROGRESSION SURVIVAL |
GSE1159 | |||
2.05, 0.14, 100% | 1.79, 0.04, >50% | 1.53, 0.05, >50% | ALDH1A1 |
1.82, 0.22, 100% | 2.12, 0.0087, 20% | 1.49, 0.09, 100% | ALDH2 |
GSE6891 | |||
1.48, 0.2, 100% | 1.71, 0.0079, 50% | 1.7, 0.0012, 10% | ALDH1A1 |
2.23, 0.0048, 10% | 1.69, 0.029, >50% | 1.5, 0.014, >50% | ALDH2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costello, R.; Dancik, G.M.; Dubiau, A.; Madaci, L.; Vlahopoulos, S. Expression of Aldehyde Dehydrogenase 1A1 in Relapse-Associated Cells in Acute Myeloid Leukemia. Cells 2025, 14, 1038. https://doi.org/10.3390/cells14131038
Costello R, Dancik GM, Dubiau A, Madaci L, Vlahopoulos S. Expression of Aldehyde Dehydrogenase 1A1 in Relapse-Associated Cells in Acute Myeloid Leukemia. Cells. 2025; 14(13):1038. https://doi.org/10.3390/cells14131038
Chicago/Turabian StyleCostello, Régis, Garrett M. Dancik, Anaïs Dubiau, Lamia Madaci, and Spiros Vlahopoulos. 2025. "Expression of Aldehyde Dehydrogenase 1A1 in Relapse-Associated Cells in Acute Myeloid Leukemia" Cells 14, no. 13: 1038. https://doi.org/10.3390/cells14131038
APA StyleCostello, R., Dancik, G. M., Dubiau, A., Madaci, L., & Vlahopoulos, S. (2025). Expression of Aldehyde Dehydrogenase 1A1 in Relapse-Associated Cells in Acute Myeloid Leukemia. Cells, 14(13), 1038. https://doi.org/10.3390/cells14131038