Cannabidiol Effects on Depressive-like Behavior and Neuroinflammation in Female Rats Exposed to High-Fat Diet and Unpredictable Chronic Mild Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. UCMS Treatment
2.3. HFD Administration Protocol
2.4. Pharmacology
2.5. Behavioral Tests
2.6. Open Field Test
2.7. Sucrose Splash Test (SST)
2.8. Social Interaction Test (SIT)
2.9. Forced Swim Test (FST):
2.10. Weight
2.11. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Protocol
2.12. Enzyme-Linked Immunosorbent Assay (ELISA):
2.13. Statistical Analysis
2.14. Experimental Design
3. Results
3.1. The Influence of Chronic CBD Administration During UCMS and HFD on Behavior
3.1.1. FST
3.1.2. OFT
3.1.3. SST
3.1.4. SIT
3.2. The Effects of HFD, UCMS, and CBD on Body Weight and Serum Leptin Levels
3.3. The Influence of CBD Administration on the Expression of Inflammatory Markers in the vmPFC and CA1 in Female Rats Exposed to HFD and UCMS
3.3.1. nfkb1
3.3.2. tnfa
3.3.3. il1β
3.3.4. il6
3.4. Correlations Between the Behavioral Phenotype and the Expression of Neuroinflammatory Genes in the vmPFC and CA1
4. Discussion
4.1. The Influence of CBD on Behavior in Female Rats Exposed to HFD and UCMS
4.2. The Influence of CBD on Body Weight and Leptin Levels in Female Rats Exposed to HFD and UCMS Exposure
4.3. The Influence of CBD on Neuroinflammation in Female Rats Exposed to HFD and UCMS Exposure
4.4. Potential Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, X.; Wang, Y.; Zhao, F.; Cui, R.; Xie, W.; Liu, Q.; Yang, W. Shared Biological Mechanisms of Depression and Obesity: Focus on Adipokines and Lipokines. Aging 2023, 15, 5917–5950. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.; Lin, J.; Deng, Y.; Ji, Y.; Liang, C.; Wei, S.; Jing, X.; Yan, F. The Immunological Perspective of Major Depressive Disorder: Unveiling the Interactions between Central and Peripheral Immune Mechanisms. J. Neuroinflammation 2025, 22, 10. [Google Scholar] [CrossRef] [PubMed]
- Ouakinin, S.R.S.; Barreira, D.P.; Gois, C.J. Depression and Obesity: Integrating the Role of Stress, Neuroendocrine Dysfunction and Inflammatory Pathways. Front. Endocrinol. 2018, 9, 431. [Google Scholar] [CrossRef] [PubMed]
- Beurel, E.; Toups, M.; Nemeroff, C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020, 107, 234–256. [Google Scholar] [CrossRef]
- Luppino, F.S.; de Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.J.H.; Zitman, F.G. Overweight, Obesity, and Depression. Arch. Gen. Psychiatry 2010, 67, 220. [Google Scholar] [CrossRef]
- Ly, M.; Yu, G.Z.; Mian, A.; Cramer, A.; Meysami, S.; Merrill, D.A.; Samara, A.; Eisenstein, S.A.; Hershey, T.; Babulal, G.M.; et al. Neuroinflammation: A Modifiable Pathway Linking Obesity, Alzheimer’s Disease, and Depression. Am. J. Geriatr. Psychiatry 2023, 31, 853–866. [Google Scholar] [CrossRef]
- Milaneschi, Y.; Simmons, W.K.; van Rossum, E.F.C.; Penninx, B.W. Depression and Obesity: Evidence of Shared Biological Mechanisms. Mol. Psychiatry 2019, 24, 18–33. [Google Scholar] [CrossRef]
- Yu, G.; Cao, F.; Hou, T.; Cheng, Y.; Jia, B.; Yu, L.; Chen, W.; Xu, Y.; Chen, M.; Wang, Y. Astrocyte Reactivation in Medial Prefrontal Cortex Contributes to Obesity-Promoted Depressive-like Behaviors. J. Neuroinflammation 2022, 19, 166. [Google Scholar] [CrossRef]
- Hassamal, S. Chronic Stress, Neuroinflammation, and Depression: An Overview of Pathophysiological Mechanisms and Emerging Anti-Inflammatories. Front. Psychiatry 2023, 14, 1130989. [Google Scholar] [CrossRef]
- Miller, A.H.; Raison, C.L. The Role of Inflammation in Depression: From Evolutionary Imperative to Modern Treatment Target. Nat. Rev. Immunol. 2016, 16, 22–34. [Google Scholar] [CrossRef]
- Yang, J.L.; Liu, D.X.; Jiang, H.; Pan, F.; Ho, C.S.; Ho, R.C. The Effects of High-Fat-Diet Combined with Chronic Unpredictable Mild Stress on Depression-like Behavior and Leptin/LepRb in Male Rats. Sci. Rep. 2016, 6, 35239. [Google Scholar] [CrossRef] [PubMed]
- Bris, Á.G.; MacDowell, K.S.; Ulecia-Morón, C.; Martín-Hernández, D.; Moreno, B.; Madrigal, J.L.M.; García-Bueno, B.; Caso, J.R.; Leza, J.C. Differential Regulation of Innate Immune System in Frontal Cortex and Hippocampus in a “Double-Hit” Neurodevelopmental Model in Rats. Neurotherapeutics 2024, 21, e00300. [Google Scholar] [CrossRef] [PubMed]
- Calcia, M.A.; Bonsall, D.R.; Bloomfield, P.S.; Selvaraj, S.; Barichello, T.; Howes, O.D. Stress and Neuroinflammation: A Systematic Review of the Effects of Stress on Microglia and the Implications for Mental Illness. Psychopharmacology 2016, 233, 1637–1650. [Google Scholar] [CrossRef] [PubMed]
- Muzio, L.; Viotti, A.; Martino, G. Microglia in Neuroinflammation and Neurodegeneration: From Understanding to Therapy. Front. Neurosci. 2021, 15, 742065. [Google Scholar] [CrossRef]
- Wang, W.; Yang, J.; Xu, J.; Yu, H.; Liu, Y.; Wang, R.; Ho, R.C.M.; Ho, C.S.H.; Pan, F. Effects of High-Fat Diet and Chronic Mild Stress on Depression-like Behaviors and Levels of Inflammatory Cytokines in the Hippocampus and Prefrontal Cortex of Rats. Neuroscience 2022, 480, 178–193. [Google Scholar] [CrossRef]
- Aslani, S.; Vieira, N.; Marques, F.; Costa, P.S.; Sousa, N.; Palha, J.A. The Effect of High-Fat Diet on Rat’s Mood, Feeding Behavior and Response to Stress. Transl. Psychiatry 2015, 5, e684. [Google Scholar] [CrossRef]
- Beilharz, J.E.; Maniam, J.; Morris, M.J. Short-Term Exposure to a Diet High in Fat and Sugar, or Liquid Sugar, Selectively Impairs Hippocampal-Dependent Memory, with Differential Impacts on Inflammation. Behav. Brain Res. 2016, 306, 1–7. [Google Scholar] [CrossRef]
- Gainey, S.J.; Kwakwa, K.A.; Bray, J.K.; Pillote, M.M.; Tir, V.L.; Towers, A.E.; Freund, G.G. Short-Term High-Fat Diet (HFD) Induced Anxiety-like Behaviors and Cognitive Impairment Are Improved with Treatment by Glyburide. Front. Behav. Neurosci. 2016, 10, 156. [Google Scholar] [CrossRef]
- Shrivastava, K.; Rosenberg, T.; Meiri, N.; Maroun, M. Age-Specific Modulation of Prefrontal Cortex LTP by Glucocorticoid Receptors Following Brief Exposure to HFD. Front. Synaptic Neurosci. 2021, 13, 722827. [Google Scholar] [CrossRef]
- Yaseen, A.; Shrivastava, K.; Zuri, Z.; Hatoum, O.A.; Maroun, M. Prefrontal Oxytocin Is Involved in Impairments in Prefrontal Plasticity and Social Memory Following Acute Exposure to High Fat Diet in Juvenile Animals. Cereb. Cortex 2019, 29, 1900–1909. [Google Scholar] [CrossRef]
- Khazen, T.; Hatoum, O.A.; Ferreira, G.; Maroun, M. Acute Exposure to a High-Fat Diet in Juvenile Male Rats Disrupts Hippocampal-Dependent Memory and Plasticity through Glucocorticoids. Sci. Rep. 2019, 9, 12270. [Google Scholar] [CrossRef] [PubMed]
- Khazen, T.; Narattil, N.R.; Ferreira, G.; Maroun, M. Hippocampal Oxytocin Is Involved in Spatial Memory and Synaptic Plasticity Deficits Following Acute High-Fat Diet Intake in Juvenile Rats. Cereb. Cortex 2023, 33, 3934–3943. [Google Scholar] [CrossRef] [PubMed]
- González Olmo, B.M.; Bettes, M.N.; DeMarsh, J.W.; Zhao, F.; Askwith, C.; Barrientos, R.M. Short-Term High-Fat Diet Consumption Impairs Synaptic Plasticity in the Aged Hippocampus via IL-1 Signaling. npj Sci. Food 2023, 7, 35. [Google Scholar] [CrossRef]
- Dallman, M.F. Stress-Induced Obesity and the Emotional Nervous System. Trends Endocrinol. Metab. 2010, 21, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Hryhorczuk, C.; Sharma, S.; Fulton, S.E. Metabolic Disturbances Connecting Obesity and Depression. Front. Neurosci. 2013, 7, 177. [Google Scholar] [CrossRef]
- Pecoraro, N.; Reyes, F.; Gomez, F.; Bhargava, A.; Dallman, M.F. Chronic Stress Promotes Palatable Feeding, Which Reduces Signs of Stress: Feedforward and Feedback Effects of Chronic Stress. Endocrinology 2004, 145, 3754–3762. [Google Scholar] [CrossRef]
- Miao, Y.; Zhao, F.; Guan, W. A Novel Insight into the Antidepressant Effect of Cannabidiol: Possible Involvement of the 5-HT1A, CB1, GPR55, and PPARγ Receptors. Int. J. Neuropsychopharmacol. 2025, 28, pyae064. [Google Scholar] [CrossRef]
- Jîtcă, G.; Ősz, B.E.; Vari, C.E.; Rusz, C.-M.; Tero-Vescan, A.; Pușcaș, A. Cannabidiol: Bridge between Antioxidant Effect, Cellular Protection, and Cognitive and Physical Performance. Antioxidants 2023, 12, 485. [Google Scholar] [CrossRef]
- Bright, U.; Akirav, I. Cannabidiol Modulates Neuroinflammatory and Estrogen-Related Pathways in a Sex-Specific Manner in a Chronic Stress Model of Depression. Cells 2025, 14, 99. [Google Scholar] [CrossRef]
- Burstein, S. Cannabidiol (CBD) and Its Analogs: A Review of Their Effects on Inflammation. Bioorg. Med. Chem. 2015, 23, 1377–1385. [Google Scholar] [CrossRef]
- Atalay, S.; Jarocka-Karpowicz, I.; Skrzydlewska, E. Antioxidative and Anti-Inflammatory Properties of Cannabidiol. Antioxidants 2019, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Martinez Naya, N.; Kelly, J.; Corna, G.; Golino, M.; Abbate, A.; Toldo, S. Molecular and Cellular Mechanisms of Action of Cannabidiol. Molecules 2023, 28, 5980. [Google Scholar] [CrossRef]
- Shoval, G.; Shbiro, L.; Hershkovitz, L.; Hazut, N.; Zalsman, G.; Mechoulam, R.; Weller, A. Prohedonic Effect of Cannabidiol in a Rat Model of Depression. Neuropsychobiology 2016, 73, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Yang, Z.; Zhang, T. Phase Coupling Between Hippocampal CA1 and Prefrontal Cortex in a Depression-Model Rats Indicating Impaired Synaptic Plasticity. In Advances in Cognitive Neurodynamics (IV); Liljenström, H., Ed.; Advances in Cognitive Neurodynamics; Springer: Dordrecht, The Netherlands, 2015; pp. 283–288. [Google Scholar]
- Afridi, R.; Suk, K. Neuroinflammatory Basis of Depression: Learning From Experimental Models. Front. Cell. Neurosci. 2021, 15, 691067. [Google Scholar] [CrossRef]
- Willner, P.; Muscat, R.; Papp, M. Chronic Mild Stress-Induced Anhedonia: A Realistic Animal Model of Depression. Neurosci. Biobehav. Rev. 1992, 16, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Burstein, O.; Doron, R. The Unpredictable Chronic Mild Stress Protocol for Inducing Anhedonia in Mice. J. Vis. Exp. 2018, 140, 58184. [Google Scholar] [CrossRef]
- Fang, L.Z.; Lily Vidal, J.A.; Hawlader, O.; Hirasawa, M. High-fat Diet-induced Elevation of Body Weight Set Point in Male Mice. Obesity 2023, 31, 1000–1010. [Google Scholar] [CrossRef]
- Garman, T.S.; Setlow, B.; Orsini, C.A. Effects of a High-Fat Diet on Impulsive Choice in Rats. Physiol. Behav. 2021, 229, 113260. [Google Scholar] [CrossRef]
- Buettner, R.; Schölmerich, J.; Bollheimer, L.C. High-fat Diets: Modeling the Metabolic Disorders of Human Obesity in Rodents. Obesity 2007, 15, 798–808. [Google Scholar] [CrossRef]
- Bright, U.; Akirav, I. Cannabidiol Modulates Alterations in PFC MicroRNAs in a Rat Model of Depression. Int. J. Mol. Sci. 2023, 24, 2052. [Google Scholar] [CrossRef]
- Portugalov, A.; Akirav, I. FAAH Inhibition Reverses Depressive-like Behavior and Sex-Specific Neuroinflammatory Alterations Induced by Early Life Stress. Cells 2024, 13, 1881. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Luo, Y.; Wang, H.; Kuang, S.; Liang, G.; Yang, Y.; Mai, S.; Yang, J. Re-Evaluation of the Interrelationships among the Behavioral Tests in Rats Exposed to Chronic Unpredictable Mild Stress. PLoS ONE 2017, 12, e0185129. [Google Scholar] [CrossRef] [PubMed]
- Zaidan, H.; Ramaswami, G.; Barak, M.; Li, J.B.; Gaisler-Salomon, I. Pre-Reproductive Stress and Fluoxetine Treatment in Rats Affect Offspring A-to-I RNA Editing, Gene Expression and Social Behavior. Environ. Epigenetics 2018, 4, dvy021. [Google Scholar] [CrossRef] [PubMed]
- Planchez, B.; Surget, A.; Belzung, C. Animal Models of Major Depression: Drawbacks and Challenges. J. Neural Transm. 2019, 126, 1383–1408. [Google Scholar] [CrossRef]
- Nollet, M. Models of Depression: Unpredictable Chronic Mild Stress in Mice. Curr. Protoc. 2021, 1, e208. [Google Scholar] [CrossRef]
- Bear, T.; Roy, N.; Dalziel, J.; Butts, C.; Coad, J.; Young, W.; Parkar, S.G.; Hedderley, D.; Dinnan, H.; Martell, S.; et al. Anxiety-like Behavior in Female Sprague Dawley Rats Associated with Cecal Clostridiales. Microorganisms 2023, 11, 1773. [Google Scholar] [CrossRef]
- Calhoun, C.A.; Lattouf, C.; Lewis, V.; Barrientos, H.; Donaldson, S.T. Chronic Mild Stress Induces Differential Depression-like Symptoms and c-Fos and 5HT1A Protein Levels in High-Anxiety Female Long Evans Rats. Behav. Brain Res. 2023, 438, 114202. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, J.; Zhang, Y.; Li, V.; Kong, J.; He, J.; Li, X.-M. Unpredictable Chronic Mild Stress Induces Anxiety and Depression-like Behaviors and Inactivates AMP-Activated Protein Kinase in Mice. Brain Res. 2014, 1576, 81–90. [Google Scholar] [CrossRef]
- Dalla, C.; Antoniou, K.; Drossopoulou, G.; Xagoraris, M.; Kokras, N.; Sfikakis, A.; Papadopoulou-Daifoti, Z. Chronic Mild Stress Impact: Are Females More Vulnerable? Neuroscience 2005, 135, 703–714. [Google Scholar] [CrossRef]
- Woodruff, J.L.; Bykalo, M.K.; Loyo-Rosado, F.Z.; Maissy, E.S.; Sadek, A.T.; Hersey, M.; Erichsen, J.M.; Maxwell, N.D.; Wilson, M.A.; Wood, S.K.; et al. Differential Effects of High-Fat Diet on Endocrine, Metabolic and Depressive-like Behaviors in Male and Female Rats. Appetite 2024, 199, 107389. [Google Scholar] [CrossRef]
- Isingrini, E.; Camus, V.; Le Guisquet, A.-M.; Pingaud, M.; Devers, S.; Belzung, C. Association between Repeated Unpredictable Chronic Mild Stress (UCMS) Procedures with a High Fat Diet: A Model of Fluoxetine Resistance in Mice. PLoS ONE 2010, 5, e10404. [Google Scholar] [CrossRef] [PubMed]
- Debler, R.A.; Madison, C.A.; Hillbrick, L.; Gallegos, P.; Safe, S.; Chapkin, R.S.; Eitan, S. Selective Aryl Hydrocarbon Receptor Modulators Can Act as Antidepressants in Obese Female Mice. J. Affect Disord. 2023, 333, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Shbiro, L.; Hen-Shoval, D.; Hazut, N.; Rapps, K.; Dar, S.; Zalsman, G.; Mechoulam, R.; Weller, A.; Shoval, G. Effects of Cannabidiol in Males and Females in Two Different Rat Models of Depression. Physiol. Behav. 2019, 201, 59–63. [Google Scholar] [CrossRef]
- Campos, A.C.; Ferreira, F.R.; Guimarães, F.S. Cannabidiol Blocks Long-Lasting Behavioral Consequences of Predator Threat Stress: Possible Involvement of 5HT1A Receptors. J. Psychiatr. Res. 2012, 46, 1501–1510. [Google Scholar] [CrossRef]
- Blessing, E.M.; Steenkamp, M.M.; Manzanares, J.; Marmar, C.R. Cannabidiol as a Potential Treatment for Anxiety Disorders. Neurotherapeutics 2015, 12, 825–836. [Google Scholar] [CrossRef]
- Gáll, Z.; Farkas, S.; Albert, Á.; Ferencz, E.; Vancea, S.; Urkon, M.; Kolcsár, M. Effects of Chronic Cannabidiol Treatment in the Rat Chronic Unpredictable Mild Stress Model of Depression. Biomolecules 2020, 10, 801. [Google Scholar] [CrossRef]
- de Mello Schier, A.R.; de Oliveira Ribeiro, N.P.; de Oliveira e Silva, A.C.; Hallak, J.E.C.; Crippa, J.A.S.; Nardi, A.E.; Zuardi, A.W. Cannabidiol, a Cannabis Sativa Constituent, as an Anxiolytic Drug. Rev. Bras. Psiquiatr. 2012, 34, S104–S117. [Google Scholar] [CrossRef]
- Schier, A.; Ribeiro, N.; Coutinho, D.; Machado, S.; Arias-Carrion, O.; Crippa, J.; Zuardi, A.; Nardi, A.; Silva, A. Antidepressant-like and Anxiolytic-like Effects of Cannabidiol: A Chemical Compound of Cannabis Sativa. CNS Neurol. Disord. Drug Targets 2014, 13, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Micale, V.; Di Marzo, V.; Sulcova, A.; Wotjak, C.T.; Drago, F. Endocannabinoid System and Mood Disorders: Priming a Target for New Therapies. Pharmacol. Ther. 2013, 138, 18–37. [Google Scholar] [CrossRef]
- Opęchowska, A.; Karpiuk, K.; Zahorodnii, A.; Harasim-Symbor, E.; Chabowski, A.; Konstantynowicz-Nowicka, K. Anti-Inflammatory Effects of Cannabidiol in Early Stages of Neuroinflammation Induced by High-Fat Diet in Cerebral Cortex of Rats. Toxicol. Appl. Pharmacol. 2024, 484, 116856. [Google Scholar] [CrossRef]
- da Silva Rodrigues, F.; Jantsch, J.; de Farias Fraga, G.; Dias, V.S.; Eller, S.; De Oliveira, T.F.; Giovenardi, M.; Guedes, R.P. Cannabidiol Treatment Improves Metabolic Profile and Decreases Hypothalamic Inflammation Caused by Maternal Obesity. Front. Nutr. 2023, 10, 1150189. [Google Scholar] [CrossRef]
- Huang, Y.; Wan, T.; Pang, N.; Zhou, Y.; Jiang, X.; Li, B.; Gu, Y.; Huang, Y.; Ye, X.; Lian, H.; et al. Cannabidiol Protects Livers against Nonalcoholic Steatohepatitis Induced by High-fat High Cholesterol Diet via Regulating NF-κB and NLRP3 Inflammasome Pathway. J. Cell. Physiol. 2019, 234, 21224–21234. [Google Scholar] [CrossRef] [PubMed]
- Berk, K.; Konstantynowicz-Nowicka, K.; Charytoniuk, T.; Harasim-Symbor, E.; Chabowski, A. Distinct Effects of Cannabidiol on Sphingolipid Metabolism in Subcutaneous and Visceral Adipose Tissues Derived from High-Fat-Diet-Fed Male Wistar Rats. Int. J. Mol. Sci. 2022, 23, 5382. [Google Scholar] [CrossRef]
- Charytoniuk, T.; Sztolsztener, K.; Bielawiec, P.; Chabowski, A.; Konstantynowicz-Nowicka, K.; Harasim-Symbor, E. Cannabidiol Downregulates Myocardial de Novo Ceramide Synthesis Pathway in a Rat Model of High-Fat Diet-Induced Obesity. Int. J. Mol. Sci. 2022, 23, 2232. [Google Scholar] [CrossRef]
- García-Gutiérrez, M.S.; Navarro, D.; Austrich-Olivares, A.; Manzanares, J. Unveiling Behavioral and Molecular Neuroadaptations Related to the Antidepressant Action of Cannabidiol in the Unpredictable Chronic Mild Stress Model. Front. Pharmacol. 2023, 14, 1171646. [Google Scholar] [CrossRef]
- Silote, G.P.; Sartim, A.; Sales, A.; Eskelund, A.; Guimarães, F.S.; Wegener, G.; Joca, S. Emerging Evidence for the Antidepressant Effect of Cannabidiol and the Underlying Molecular Mechanisms. J. Chem. Neuroanat. 2019, 98, 104–116. [Google Scholar] [CrossRef]
- Xu, C.; Chang, T.; Du, Y.; Yu, C.; Tan, X.; Li, X. Pharmacokinetics of Oral and Intravenous Cannabidiol and Its Antidepressant-like Effects in Chronic Mild Stress Mouse Model. Environ. Toxicol. Pharmacol. 2019, 70, 103202. [Google Scholar] [CrossRef]
- Alam, M.; Kauter, K.; Brown, L. Naringin Improves Diet-Induced Cardiovascular Dysfunction and Obesity in High Carbohydrate, High Fat Diet-Fed Rats. Nutrients 2013, 5, 637–650. [Google Scholar] [CrossRef]
- Deng, X.-Y.; Li, H.-Y.; Chen, J.-J.; Li, R.-P.; Qu, R.; Fu, Q.; Ma, S.-P. Thymol Produces an Antidepressant-like Effect in a Chronic Unpredictable Mild Stress Model of Depression in Mice. Behav. Brain Res. 2015, 291, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Krishna, S.; Lin, Z.; de La Serre, C.B.; Wagner, J.J.; Harn, D.H.; Pepples, L.M.; Djani, D.M.; Weber, M.T.; Srivastava, L.; Filipov, N.M. Time-Dependent Behavioral, Neurochemical, and Metabolic Dysregulation in Female C57BL/6 Mice Caused by Chronic High-Fat Diet Intake. Physiol. Behav. 2016, 157, 196–208. [Google Scholar] [CrossRef]
- Campos, A.C.; Fogaça, M.V.; Sonego, A.B.; Guimarães, F.S. Cannabidiol, Neuroprotection and Neuropsychiatric Disorders. Pharmacol. Res. 2016, 112, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Hughes, B.; Herron, C.E. Cannabidiol Reverses Deficits in Hippocampal LTP in a Model of Alzheimer’s Disease. Neurochem. Res. 2019, 44, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Gao, X.; Guo, Q.; Liang, H.; Yao, L.; Li, W.; Ma, B.; Wu, N.; Han, X.; Li, J. Cannabidiol Ameliorates PTSD-like Symptoms by Inhibiting Neuroinflammation through Its Action on CB2 Receptors in the Brain of Male Mice. Brain Behav. Immun. 2024, 119, 945–964. [Google Scholar] [CrossRef]
- Miller, E.S.; Apple, C.G.; Kannan, K.B.; Funk, Z.M.; Plazas, J.M.; Efron, P.A.; Mohr, A.M. Chronic Stress Induces Persistent Low-Grade Inflammation. Am. J. Surg. 2019, 218, 677–683. [Google Scholar] [CrossRef]
- Mumtaz, F.; Khan, M.I.; Zubair, M.; Dehpour, A.R. Neurobiology and Consequences of Social Isolation Stress in Animal Model—A Comprehensive Review. Biomed. Pharmacother. 2018, 105, 1205–1222. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, M.K.; Bolton, J.L. Stressed Microglia: Neuroendocrine–Neuroimmune Interactions in the Stress Response. Endocrinology 2023, 164, bqad088. [Google Scholar] [CrossRef]
- Alotiby, A. Immunology of Stress: A Review Article. J. Clin. Med. 2024, 13, 6394. [Google Scholar] [CrossRef]
- Marsland, A.L.; Walsh, C.; Lockwood, K.; John-Henderson, N.A. The Effects of Acute Psychological Stress on Circulating and Stimulated Inflammatory Markers: A Systematic Review and Meta-Analysis. Brain Behav. Immun. 2017, 64, 208–219. [Google Scholar] [CrossRef]
- Tang, L.; Cai, N.; Zhou, Y.; Liu, Y.; Hu, J.; Li, Y.; Yi, S.; Song, W.; Kang, L.; He, H. Acute Stress Induces an Inflammation Dominated by Innate Immunity Represented by Neutrophils in Mice. Front. Immunol. 2022, 13, 1014296. [Google Scholar] [CrossRef]
- Sivanathan, S.; Thavartnam, K.; Arif, S.; Elegino, T.; McGowan, P.O. Chronic High Fat Feeding Increases Anxiety-like Behaviour and Reduces Transcript Abundance of Glucocorticoid Signalling Genes in the Hippocampus of Female Rats. Behav. Brain Res. 2015, 286, 265–270. [Google Scholar] [CrossRef]
- Frank, M.G.; Watkins, L.R.; Maier, S.F. Stress- and Glucocorticoid-Induced Priming of Neuroinflammatory Responses: Potential Mechanisms of Stress-Induced Vulnerability to Drugs of Abuse. Brain Behav. Immun. 2011, 25, S21–S28. [Google Scholar] [CrossRef]
- Delpech, J.-C.; Madore, C.; Nadjar, A.; Joffre, C.; Wohleb, E.S.; Layé, S. Microglia in Neuronal Plasticity: Influence of Stress. Neuropharmacology 2015, 96, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Dubé, C.M.; Rice, C.J.; Baram, T.Z. Rapid Loss of Dendritic Spines after Stress Involves Derangement of Spine Dynamics by Corticotropin-Releasing Hormone. J. Neurosci. 2008, 28, 2903–2911. [Google Scholar] [CrossRef] [PubMed]
- Rimmele, T.S.; Li, S.; Andersen, J.V.; Westi, E.W.; Rotenberg, A.; Wang, J.; Aldana, B.I.; Selkoe, D.J.; Aoki, C.J.; Dulla, C.G.; et al. Neuronal Loss of the Glutamate Transporter GLT-1 Promotes Excitotoxic Injury in the Hippocampus. Front. Cell. Neurosci. 2021, 15, 788262. [Google Scholar] [CrossRef]
- Haroon, E.; Miller, A.H.; Sanacora, G. Inflammation, Glutamate, and Glia: A Trio of Trouble in Mood Disorders. Neuropsychopharmacology 2017, 42, 193–215. [Google Scholar] [CrossRef] [PubMed]
- Rebai, R.; Jasmin, L.; Boudah, A. Agomelatine Effects on Fat-Enriched Diet Induced Neuroinflammation and Depression-like Behavior in Rats. Biomed. Pharmacother. 2021, 135, 111246. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Han, Q.-Q.; Gong, W.-Q.; Pan, D.-H.; Wang, L.-Z.; Hu, W.; Yang, M.; Li, B.; Yu, J.; Liu, Q. Microglial Activation Mediates Chronic Mild Stress-Induced Depressive- and Anxiety-like Behavior in Adult Rats. J. Neuroinflammation 2018, 15, 21. [Google Scholar] [CrossRef]
- Kaltschmidt, B.; Ndiaye, D.; Korte, M.; Pothion, S.; Arbibe, L.; Prüllage, M.; Pfeiffer, J.; Lindecke, A.; Staiger, V.; Israël, A.; et al. NF-ΚB Regulates Spatial Memory Formation and Synaptic Plasticity through Protein Kinase A/CREB Signaling. Mol. Cell. Biol. 2006, 26, 2936–2946. [Google Scholar] [CrossRef]
- Marín-Burgin, A.; Schinder, A.F. Requirement of Adult-Born Neurons for Hippocampus-Dependent Learning. Behav. Brain Res. 2012, 227, 391–399. [Google Scholar] [CrossRef]
- Ji, Y.; Lu, Y.; Yang, F.; Shen, W.; Tang, T.T.-T.; Feng, L.; Duan, S.; Lu, B. Acute and Gradual Increases in BDNF Concentration Elicit Distinct Signaling and Functions in Neurons. Nat. Neurosci. 2010, 13, 302–309. [Google Scholar] [CrossRef]
- Pizzi, M.; Spano, P. Distinct Roles of Diverse Nuclear Factor-ΚB Complexes in Neuropathological Mechanisms. Eur. J. Pharmacol. 2006, 545, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Imielski, Y.; Schwamborn, J.C.; Lüningschrör, P.; Heimann, P.; Holzberg, M.; Werner, H.; Leske, O.; Püschel, A.W.; Memet, S.; Heumann, R.; et al. Regrowing the Adult Brain: NF-ΚB Controls Functional Circuit Formation and Tissue Homeostasis in the Dentate Gyrus. PLoS ONE 2012, 7, e30838. [Google Scholar] [CrossRef] [PubMed]
- Bortolotto, V.; Cuccurazzu, B.; Canonico, P.L.; Grilli, M. NF-κB Mediated Regulation of Adult Hippocampal Neurogenesis: Relevance to Mood Disorders and Antidepressant Activity. Biomed. Res. Int. 2014, 2014, 612798. [Google Scholar] [CrossRef]
- Meffert, M.K.; Baltimore, D. Physiological Functions for Brain NF-ΚB. Trends Neurosci. 2005, 28, 37–43. [Google Scholar] [CrossRef]
- Ashton, J.; Glass, M. The Cannabinoid CB2 Receptor as a Target for Inflammation-Dependent Neurodegeneration. Curr. Neuropharmacol. 2007, 5, 73–80. [Google Scholar] [CrossRef]
- Avolio, E.; Fazzari, G.; Mele, M.; Alò, R.; Zizza, M.; Jiao, W.; Di Vito, A.; Barni, T.; Mandalà, M.; Canonaco, M. Unpredictable Chronic Mild Stress Paradigm Established Effects of Pro- and Anti-Inflammatory Cytokine on Neurodegeneration-Linked Depressive States in Hamsters with Brain Endothelial Damages. Mol. Neurobiol. 2017, 54, 6446–6458. [Google Scholar] [CrossRef]
- Brás, J.P.; Guillot de Suduiraut, I.; Zanoletti, O.; Monari, S.; Meijer, M.; Grosse, J.; Barbosa, M.A.; Santos, S.G.; Sandi, C.; Almeida, M.I. Stress-Induced Depressive-like Behavior in Male Rats Is Associated with Microglial Activation and Inflammation Dysregulation in the Hippocampus in Adulthood. Brain Behav. Immun. 2022, 99, 397–408. [Google Scholar] [CrossRef]
- Uzzan, S.; Azab, A.N. Anti-TNF-α Compounds as a Treatment for Depression. Molecules 2021, 26, 2368. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.; Vila-Verde, C.; Guimarães, F.S.; Joca, S.R.; Lisboa, S.F. The NLRP3 Inflammasome in Stress Response: Another Target for the Promiscuous Cannabidiol. Curr. Neuropharmacol. 2023, 21, 284–308. [Google Scholar] [CrossRef]
- de Paiva, I.H.R.; Maciel, L.M.; da Silva, R.S.; Mendonça, I.P.; de Souza, J.R.B.; Peixoto, C.A. Prebiotics Modulate the Microbiota–Gut–Brain Axis and Ameliorate Anxiety and Depression-like Behavior in HFD-Fed Mice. Food Res. Int. 2024, 182, 114153. [Google Scholar] [CrossRef]
- Zhang, H.-N.; Yu, X.-B.; Tang, C.-R.; Cao, Y.-C.; Yang, F.; Xu, L.-M.; Sun, R.-L.; Ye, Z.; Wang, Y.-X.; Liang, J. Atorvastatin Ameliorates Depressive Behaviors and Neuroinflammatory in Streptozotocin-Induced Diabetic Mice. Psychopharmacology 2020, 237, 695–705. [Google Scholar] [CrossRef]
- Koo, J.W.; Duman, R.S. IL-1β Is an Essential Mediator of the Antineurogenic and Anhedonic Effects of Stress. Proc. Natl. Acad. Sci. USA 2008, 105, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Pazos, M.R.; Mohammed, N.; Lafuente, H.; Santos, M.; Martínez-Pinilla, E.; Moreno, E.; Valdizan, E.; Romero, J.; Pazos, A.; Franco, R.; et al. Mechanisms of Cannabidiol Neuroprotection in Hypoxic–Ischemic Newborn Pigs: Role of 5HT1A and CB2 Receptors. Neuropharmacology 2013, 71, 282–291. [Google Scholar] [CrossRef]
- Liu, Y.; Ho, R.C.-M.; Mak, A. Interleukin (IL)-6, Tumour Necrosis Factor Alpha (TNF-α) and Soluble Interleukin-2 Receptors (SIL-2R) Are Elevated in Patients with Major Depressive Disorder: A Meta-Analysis and Meta-Regression. J. Affect Disord. 2012, 139, 230–239. [Google Scholar] [CrossRef]
- Caviedes, A.; Lafourcade, C.; Soto, C.; Wyneken, U. BDNF/NF-ΚB Signaling in the Neurobiology of Depression. Curr. Pharm. Des. 2017, 23, 3154–3163. [Google Scholar] [CrossRef]
- Kokras, N.; Dalla, C. Preclinical Sex Differences in Depression and Antidepressant Response: Implications for Clinical Research. J. Neurosci. Res. 2017, 95, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Mir, F.R.; Rivarola, M.A. Sex Differences in Anxiety and Depression: What Can (and Cannot) Preclinical Studies Tell Us? Sexes 2022, 3, 141–163. [Google Scholar] [CrossRef]
- Baldini, I.; Casagrande, B.P.; Estadella, D. Depression and Obesity among Females, Are Sex Specificities Considered? Arch. Womens Ment. Health 2021, 24, 851–866. [Google Scholar] [CrossRef]
- Bartolomucci, A.; Leopardi, R. Stress and Depression: Preclinical Research and Clinical Implications. PLoS ONE 2009, 4, e4265. [Google Scholar] [CrossRef]
Group | Leptin Concentration (Mean ± SD) |
---|---|
HFD—No UCMS—Vehicle | 1251.67 ± 698.95 |
HFD—UCMS—CBD | 848.33 ± 513.85 |
HFD—UCMS—Vehicle | 1120 ± 622.98 |
HFD—No UCMS—CBD | 1171.43 ± 745.84 |
No HFD—No UCMS—CBD | 1022.14 ± 537.62 |
No HFD—No UCMS—Vehicle | 1364.29 ± 653.52 |
No HFD—UCMS—CBD | 1235 ± 601.81 |
No HFD—UCMS—Vehicle | 1003.33 ± 557.67 |
FST–Climbing | SST–Time of Grooming | SST–Latency | OFT–Distance | OFT–Freezing | OFT–Time in Center | |
---|---|---|---|---|---|---|
nfκb1–vmPFC | r = 0.198 p = 0.102 | r = −0.029 p = 0.813 | r = 0.049 p = 0.689 | r = −0.252 * p = 0.037 | r = 0.235 p = 0.052 | r = 0.259 * p = 0.032 |
nfκb1–CA1 | r = 0.348 ** p = 0.002 | r = 0.287 * p = 0.012 | r = −0.179 p = 0.121 | r = 0.209 p = 0.07 | r = −0.136 p = 0.241 | r = −0.009 p = 0.94 |
tnfα–vmPFC | r = −0.072 p = 0.599 | r = −0.139 p = 0.31 | r = 0.038 p = 0.785 | r = −0.683 *** p = <0.001 | r = 0.475 *** p = <0.001 | r = 0.024 p = 0.863 |
tnfα–CA1 | r = 0.331 ** p = 0.007 | r = 0.014 p = 0.913 | r = −0.262 * p = 0.033 | r = 0.368 ** p = 0.002 | r = −0.233 p = 0.06 | r = −0.067 p = 0.593 |
il6–vmPFC | r = 0.071 p = 0.661 | r = 0.132 p = 0.416 | r = 0.033 p = 0.839 | r = 0.143 p = 0.38 | r = −0.106 p = 0.515 | r = 0.077 p = 0.637 |
il6–CA1 | r = 0.147 p = 0.364 | r = 0.027 p = 0.87 | r = −0.129 p = 0.428 | r = 0.101 p = 0.535 | r = −0.031 p = 0.849 | r = 0.031 p = 0.849 |
il1β–vmPFC | r = −0.15 p = 0.356 | r = 0.132 p = 0.418 | r = 0.176 p = 0.278 | r = −0.261 p = 0.104 | r = 0.17 p = 0.296 | r = 0.142 p = 0.381 |
il1β–CA1 | r = 0.006 p = 0.971 | r = 0.031 p = 0.847 | r = −0.058 p = 0.72 | r = −0.004 p = 0.982 | r = 0.087 p = 0.593 | r = −0.343 * p = 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabbag, T.; Kritman, M.; Akirav, I. Cannabidiol Effects on Depressive-like Behavior and Neuroinflammation in Female Rats Exposed to High-Fat Diet and Unpredictable Chronic Mild Stress. Cells 2025, 14, 938. https://doi.org/10.3390/cells14120938
Sabbag T, Kritman M, Akirav I. Cannabidiol Effects on Depressive-like Behavior and Neuroinflammation in Female Rats Exposed to High-Fat Diet and Unpredictable Chronic Mild Stress. Cells. 2025; 14(12):938. https://doi.org/10.3390/cells14120938
Chicago/Turabian StyleSabbag, Tal, Milly Kritman, and Irit Akirav. 2025. "Cannabidiol Effects on Depressive-like Behavior and Neuroinflammation in Female Rats Exposed to High-Fat Diet and Unpredictable Chronic Mild Stress" Cells 14, no. 12: 938. https://doi.org/10.3390/cells14120938
APA StyleSabbag, T., Kritman, M., & Akirav, I. (2025). Cannabidiol Effects on Depressive-like Behavior and Neuroinflammation in Female Rats Exposed to High-Fat Diet and Unpredictable Chronic Mild Stress. Cells, 14(12), 938. https://doi.org/10.3390/cells14120938