Advanced Paternal Age and Sperm Proteome Dynamics: A Possible Explanation for Age-Associated Male Fertility Decline
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Density Gradient Centrifugation
2.3. Protein Extraction and Trypsin Treatment
2.4. Phosphopeptides’ Enrichment
2.5. LC-MS/MS Analysis
2.6. LC-LC/MS Data Analysis
2.7. Bioinformatic Analysis
2.8. Protein Extraction and Slot Blot
2.9. Statistical Analyses
3. Results
3.1. Sperm from Men of Advanced Age Present Alterations in the Proteome
3.1.1. Identification of Differentially Expressed Proteins
3.1.2. Functional Analysis of Differentially Expressed Proteins Between Groups
3.2. Advanced Paternal Age Is Associated with Alterations in the Sperm Phosphoproteome
3.2.1. Identification and Quantification of Phosphopeptides in Human Sperm Processed by Density Gradient Centrifugation
3.2.2. Differences in Phosphorylated Proteins Between Age Groups
3.2.3. Functional Analysis of Differentially Expressed Phosphorylated Proteins Between Groups
3.3. Integrative Network of Altered Proteins and Phosphorylated Proteins in Sperm of Men Older than 40 Years
Validation of Identified Proteins by Slot Blot
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barratt, C.L.R.; De Jonge, C.J.; Sharpe, R.M. ‘Man Up’: The Importance and Strategy for Placing Male Reproductive Health Centre Stage in the Political and Research Agenda. Hum. Reprod. 2018, 33, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Skakkebæk, N.E.; Lindahl-Jacobsen, R.; Levine, H.; Andersson, A.-M.; Jørgensen, N.; Main, K.M.; Lidegaard, Ø.; Priskorn, L.; Holmboe, S.A.; Bräuner, E.V.; et al. Environmental Factors in Declining Human Fertility. Nat. Rev. Endocrinol. 2022, 18, 139–157. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Mean Age of Women at Childbirth and at Birth of First Child. Available online: https://ec.europa.eu/eurostat/databrowser/view/tps00017/default/table?lang=en (accessed on 16 March 2023).
- Bala, R.; Singh, V.; Rajender, S.; Singh, K. Environment, Lifestyle, and Female Infertility. Reprod. Sci. 2021, 28, 617–638. [Google Scholar] [CrossRef] [PubMed]
- Frick, A.P. Advanced Maternal Age and Adverse Pregnancy Outcomes. Best Pract. Res. Clin. Obstet. Gynaecol. 2021, 70, 92–100. [Google Scholar] [CrossRef]
- Santiago, J.; Silva, J.V.; Alves, M.G.; Oliveira, P.F.; Fardilha, M. Testicular Aging: An Overview of Ultrastructural, Cellular, and Molecular Alterations. J. Gerontol. Ser. A 2019, 74, 860–871. [Google Scholar] [CrossRef]
- Johnson, S.L.; Dunleavy, J.; Gemmell, N.J.; Nakagawa, S. Consistent Age-Dependent Declines in Human Semen Quality: A Systematic Review and Meta-Analysis. Ageing Res. Rev. 2015, 19, 22–33. [Google Scholar] [CrossRef]
- Kidd, S.A.; Eskenazi, B.; Wyrobek, A.J. Effects of Male Age on Semen Quality and Fertility: A Review of the Literature. Fertil. Steril. 2001, 75, 237–248. [Google Scholar] [CrossRef]
- Bertoncelli Tanaka, M.; Agarwal, A.; Esteves, S.C. Paternal Age and Assisted Reproductive Technology: Problem Solver or Trouble Maker? Panminerva Med. 2019, 61, 138–151. [Google Scholar] [CrossRef]
- Halvaei, I.; Litzky, J.; Esfandiari, N. Advanced Paternal Age: Effects on Sperm Parameters, Assisted Reproduction Outcomes and Offspring Health. Reprod. Biol. Endocrinol. 2020, 18, 110. [Google Scholar] [CrossRef]
- Ashapkin, V.; Suvorov, A.; Pilsner, J.R.; Krawetz, S.A.; Sergeyev, O. Age-Associated Epigenetic Changes in Mammalian Sperm: Implications for Offspring Health and Development. Hum. Reprod. Update 2023, 29, 24–44. [Google Scholar] [CrossRef]
- Gonzalez, D.C.; Ory, J.; Blachman-Braun, R.; Nackeeran, S.; Best, J.C.; Ramasamy, R. Advanced Paternal Age and Sperm DNA Fragmentation: A Systematic Review. World J. Mens. Health 2022, 40, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Powanda, P.; Robaire, B. Oxidative Stress and Reproductive Function in the Aging Male. Biology 2020, 9, 282. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Wang, S.X.; Tehmina; Feng, Y.; Zhang, R.F.; Li, X.Y.; Sun, Q.; Ding, J. Age-Related Decline of Male Fertility: Mitochondrial Dysfunction and the Antioxidant Interventions. Pharmaceuticals 2022, 15, 519. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.; Jodar, M.; Oliva, R. The Contribution of Human Sperm Proteins to the Development and Epigenome of the Preimplantation Embryo. Hum. Reprod. Update 2018, 24, 535–555. [Google Scholar] [CrossRef]
- Amaral, A.; Castillo, J.; Ramalho-Santos, J.; Oliva, R. The Combined Human Sperm Proteome: Cellular Pathways and Implications for Basic and Clinical Science. Hum. Reprod. Update 2014, 20, 40–62. [Google Scholar] [CrossRef]
- Liu, F.-J.; Liu, X.; Han, J.-L.; Wang, Y.-W.; Jin, S.-H.; Liu, X.-X.; Liu, J.; Wang, W.-T.; Wang, W.-J. Aged Men Share the Sperm Protein PATE1 Defect with Young Asthenozoospermia Patients. Hum. Reprod. 2015, 30, 861–869. [Google Scholar] [CrossRef]
- Guo, Y.; Li, J.; Hao, F.; Yang, Y.; Yang, H.; Chang, Q.; Kong, P.; Liu, W.; Jiao, X.; Teng, X. A New Perspective on Semen Quality of Aged Male: The Characteristics of Metabolomics and Proteomics. Front. Endocrinol. 2022, 13, 1058250. [Google Scholar] [CrossRef]
- Serrano, R.; Garcia-Marin, L.J.; Bragado, M.J. Sperm Phosphoproteome: Unraveling Male Infertility. Biology 2022, 11, 659. [Google Scholar] [CrossRef]
- Urizar-Arenaza, I.; Osinalde, N.; Akimov, V.; Puglia, M.; Candenas, L.; Pinto, F.M.; Muñoa-Hoyos, I.; Gianzo, M.; Matorras, R.; Irazusta, J.; et al. Phosphoproteomic and Functional Analyses Reveal Sperm-Specific Protein Changes Downstream of Kappa Opioid Receptor in Human Spermatozoa. Mol. Cell. Proteom. 2019, 18, S118–S131. [Google Scholar] [CrossRef]
- Ficarro, S.; Chertihin, O.; Westbrook, V.A.; White, F.; Jayes, F.; Kalab, P.; Marto, J.A.; Shabanowitz, J.; Herr, J.C.; Hunt, D.F.; et al. Phosphoproteome Analysis of Capacitated Human Sperm. Evidence of Tyrosine Phosphorylation of a Kinase-Anchoring Protein 3 and Valosin-Containing Protein/P97 during Capacitation. J. Biol. Chem. 2003, 278, 11579–11589. [Google Scholar] [CrossRef]
- Syifa, N.; Yang, J.T.; Wu, C.S.; Lin, M.H.; Wu, W.L.; Lai, C.W.; Ku, S.H.; Liang, S.Y.; Hung, Y.C.; Chou, C.-T.; et al. Phosphoproteomics and Bioinformatics Analyses Reveal Key Roles of Gsk-3 and Akap4 in Mouse Sperm Capacitation. Int. J. Mol. Sci. 2020, 21, 7283. [Google Scholar] [CrossRef] [PubMed]
- Parte, P.P.; Rao, P.; Redij, S.; Lobo, V.; D’Souza, S.J.; Gajbhiye, R.; Kulkarni, V. Sperm Phosphoproteome Profiling by Ultra Performance Liquid Chromatography Followed by Data Independent Analysis (LC–MSE) Reveals Altered Proteomic Signatures in Asthenozoospermia. J. Proteom. 2012, 75, 5861–5871. [Google Scholar] [CrossRef] [PubMed]
- Martin-Hidalgo, D.; Serrano, R.; Zaragoza, C.; Garcia-Marin, L.J.; Bragado, M.J. Human Sperm Phosphoproteome Reveals Differential Phosphoprotein Signatures That Regulate Human Sperm Motility. J. Proteom. 2020, 215, 103654. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen; World Health Organization: Geneva, Switzerland, 2010; ISBN 9789241547789. [Google Scholar]
- Chiva, C.; Olivella, R.; Borràs, E.; Espadas, G.; Pastor, O.; Solé, A.; Sabidó, E. QCloud: A Cloud-Based Quality Control System for Mass Spectrometry-Based Proteomics Laboratories. PLoS ONE 2018, 13, e0189209. [Google Scholar] [CrossRef]
- Olivella, R.; Chiva, C.; Serret, M.; Mancera, D.; Cozzuto, L.; Hermoso, A.; Borràs, E.; Espadas, G.; Morales, J.; Pastor, O.; et al. QCloud2: An Improved Cloud-Based Quality-Control System for Mass-Spectrometry-Based Proteomics Laboratories. J. Proteome Res. 2021, 20, 2010–2013. [Google Scholar] [CrossRef]
- Zhang, X.; Smits, A.H.; van Tilburg, G.B.; Ovaa, H.; Huber, W.; Vermeulen, M. Proteome-Wide Identification of Ubiquitin Interactions Using UbIA-MS. Nat. Protoc. 2018, 13, 530–550. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene Lists (2021 Update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Azpiazu, R.; Amaral, A.; Castillo, J.; Estanyol, J.M.; Guimerà, M.; Ballescà, J.L.; Balasch, J.; Oliva, R. High-Throughput Sperm Differential Proteomics Suggests That Epigenetic Alterations Contribute to Failed Assisted Reproduction. Hum. Reprod. 2014, 29, 1225–1237. [Google Scholar] [CrossRef]
- Santiago, J.; Silva, J.V.; Fardilha, M. First Insights on the Presence of the Unfolded Protein Response in Human Spermatozoa. Int. J. Mol. Sci. 2019, 20, 5518. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.T.K.; Robaire, B. Advanced Paternal Age and Future Generations. Front. Endocrinol. 2022, 13, 897101. [Google Scholar] [CrossRef] [PubMed]
- Morshedi, M.; Duran, H.E.; Taylor, S.; Oehninger, S. Efficacy and Pregnancy Outcome of Two Methods of Semen Preparation for Intrauterine Insemination: A Prospective Randomized Study. Fertil. Steril. 2003, 79, 1625–1632. [Google Scholar] [CrossRef] [PubMed]
- Karamahmutoglu, H.; Erdem, A.; Erdem, M.; Mutlu, M.F.; Bozkurt, N.; Oktem, M.; Ercan, D.D.; Gumuslu, S. The Gradient Technique Improves Success Rates in Intrauterine Insemination Cycles of Unexplained Subfertile Couples When Compared to Swim up Technique; a Prospective Randomized Study. J. Assist. Reprod. Genet. 2014, 31, 1139–1145. [Google Scholar] [CrossRef]
- Neri, Q.V.; Lee, B.; Rosenwaks, Z.; Machaca, K.; Palermo, G.D. Understanding Fertilization through Intracytoplasmic Sperm Injection (ICSI). Cell Calcium 2014, 55, 24–37. [Google Scholar] [CrossRef]
- Cardona Barberán, A.; Boel, A.; Vanden Meerschaut, F.; Stoop, D.; Heindryckx, B. SPERM FACTORS AND EGG ACTIVATION: Fertilization Failure after Human ICSI and the Clinical Potential of PLCZ1. Reproduction 2022, 164, F39–F51. [Google Scholar] [CrossRef]
- Zhao, S.; Cui, Y.; Guo, S.; Liu, B.; Bian, Y.; Zhao, S.; Chen, Z.; Zhao, H. Novel Variants in ACTL7A and PLCZ1 Are Associated with Male Infertility and Total Fertilization Failure. Clin. Genet. 2023, 103, 603–608. [Google Scholar] [CrossRef]
- Hirose, N.; Kikuchi, Y.; Kageyama, A.; Sugita, H.; Sakurai, M.; Kawata, Y.; Terakawa, J.; Wakayama, T.; Ito, J.; Kashiwazaki, N. Successful Production of Offspring Derived from Phospholipase C Zeta-Deficient Sperm by Additional Artificial Activation. Life 2023, 13, 980. [Google Scholar] [CrossRef]
- Moreno, R.D. Differential Expression of Lysosomal Associated Membrane Protein (LAMP-1) during Mammalian Spermiogenesis. Mol. Reprod. Dev. 2003, 66, 202–209. [Google Scholar] [CrossRef]
- Guyonnet, B.; Zabet-Moghaddam, M.; SanFrancisco, S.; Cornwall, G.A. Isolation and Proteomic Characterization of the Mouse Sperm Acrosomal Matrix. Mol. Cell. Proteom. 2012, 11, 758–774. [Google Scholar] [CrossRef]
- Narmadha, G.; Yenugu, S. In Silico and Biochemical Characterization of Lysozyme-Like Proteins in the Rat. PLoS ONE 2016, 11, e0161909. [Google Scholar] [CrossRef] [PubMed]
- Narmadha, G.; Yenugu, S. Immunization against Lysozyme-like Proteins Affect Sperm Function and Fertility in the Rat. J. Reprod. Immunol. 2016, 118, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Vadnais, M.L.; Cao, W.; Aghajanian, H.K.; Haig-Ladewig, L.; Lin, A.M.; Al-Alao, O.; Gerton, G.L. Adenine Nucleotide Metabolism and a Role for AMP in Modulating Flagellar Waveforms in Mouse Sperm1. Biol. Reprod. 2014, 90, 128. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, Q.; Wang, W.; Liu, F. Aberrant Expression of Sperm-specific Glycolytic Enzymes Are Associated with Poor Sperm Quality. Mol. Med. Rep. 2019, 19, 2471–2478. [Google Scholar] [CrossRef]
- D’Amours, O.; Frenette, G.; Fortier, M.; Leclerc, P.; Sullivan, R. Proteomic Comparison of Detergent-Extracted Sperm Proteins from Bulls with Different Fertility Indexes. Reproduction 2010, 139, 545–556. [Google Scholar] [CrossRef]
- Xie, M.; Zhang, G.; Zhang, H.; Chen, F.; Chen, Y.; Zhuang, Y.; Huang, Z.; Zou, F.; Liu, M.; An, G.; et al. Adenylate Kinase 1 Deficiency Disrupts Mouse Sperm Motility under Conditions of Energy Stress. Biol. Reprod. 2020, 103, 1121–1131. [Google Scholar] [CrossRef]
- Zhang, R.; Liang, C.; Guo, X.; Bao, P.; Pei, J.; Wu, F.; Yin, M.; Chu, M.; Yan, P. Quantitative Phosphoproteomics Analyses Reveal the Regulatory Mechanisms Related to Frozen-Thawed Sperm Capacitation and Acrosome Reaction in Yak (Bos Grunniens). Front. Physiol. 2022, 13, 1013082. [Google Scholar] [CrossRef]
- Danshina, P.V.; Geyer, C.B.; Dai, Q.; Goulding, E.H.; Willis, W.D.; Kitto, G.B.; McCarrey, J.R.; Eddy, E.M.; O’Brien, D.A. Phosphoglycerate Kinase 2 (PGK2) Is Essential for Sperm Function and Male Fertility in Mice. Biol. Reprod. 2010, 82, 136–145. [Google Scholar] [CrossRef]
- Shen, S.; Wang, J.; Liang, J.; He, D. Comparative Proteomic Study between Human Normal Motility Sperm and Idiopathic Asthenozoospermia. World J. Urol. 2013, 31, 1395–1401. [Google Scholar] [CrossRef]
- Légaré, C.; Droit, A.; Fournier, F.; Bourassa, S.; Force, A.; Cloutier, F.; Tremblay, R.; Sullivan, R. Investigation of Male Infertility Using Quantitative Comparative Proteomics. J. Proteome Res. 2014, 13, 5403–5414. [Google Scholar] [CrossRef]
- Liu, X.-X.; Zhang, H.; Shen, X.-F.; Liu, F.-J.; Liu, J.; Wang, W.-J. Characteristics of Testis-Specific Phosphoglycerate Kinase 2 and Its Association with Human Sperm Quality. Hum. Reprod. 2015, 31, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Bavelloni, A.; Piazzi, M.; Faenza, I.; Raffini, M.; D’Angelo, A.; Cattini, L.; Cocco, L.; Blalock, W.L. Prohibitin 2 Represents a Novel Nuclear AKT Substrate during All- Trans Retinoic Acid–Induced Differentiation of Acute Promyelocytic Leukemia Cells. FASEB J. 2014, 28, 2009–2019. [Google Scholar] [CrossRef] [PubMed]
- Santiago, J.; Santos, M.A.S.; Fardilha, M.; Silva, J.V. Stress Response Pathways in the Male Germ Cells and Gametes. Mol. Hum. Reprod. 2020, 26, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sabeti, P.; Pourmasumi, S.; Rahiminia, T.; Akyash, F.; Talebi, A.R. Etiologies of Sperm Oxidative Stress. Int. J. Reprod. Biomed. 2016, 14, 231–240. [Google Scholar] [CrossRef]
- Calle-Guisado, V.; Bragado, M.J.; García-Marín, L.J.; González-Fernández, L. HSP90 Maintains Boar Spermatozoa Motility and Mitochondrial Membrane Potential during Heat Stress. Anim. Reprod. Sci. 2017, 187, 13–19. [Google Scholar] [CrossRef]
Parameter\Group | ≤30 Years (G1; n = 66) | 31–35 Years (G2; n = 96) | 36–40 Years (G3; n = 100) | >40 Years (G4; n = 71) |
---|---|---|---|---|
Age (years) | 25.0 ± 4.97 | 34.2 ± 0.84 | 37.8 ± 0.84 | 44.6 ± 5.94 |
Semen parameters | ||||
Semen volume (mL) | 4.375 ± 2.75 | 3.2 ± 1.2 | 3.8 ± 1.15 | 4.0 ± 1.84 |
Sperm concentration (106/mL) | 96.5 ± 99.07 | 81.0 ± 28.18 | 76.2 ± 67.59 | 61.0 ± 51.42 |
Total sperm counts (106) | 252.8 ± 147.24 | 269.8 ± 178.83 | 235.0 ± 103.79 | 189.4 ± 81.56 |
Total motility (%) | 58.75 ± 7.80 | 75.0 ± 5.79 | 63.4 ± 5.94 | 65.6 ± 8.41 |
Progressive motility (%) | 39.75 ± 6.5 | 58.8 ± 7.19 | 48.6 ± 4.93 | 47.4 ± 11.19 |
Non-progressive motility (%) | 19.00 ± 5.83 | 16.2 ± 1.48 | 14.8 ± 4.76 | 14.2 ± 3.96 |
Immobility (%) | 41.25 ± 7.80 | 25.00 ± 5.79 | 36.6 ± 5.94 | 38.4 ± 8.17 |
Morphological normal sperm (%) | 7.0 ± 2.00 | 7.6 ± 1.52 | 6.75 ± 2.07 | 6.0 ± 1.73 |
Head defects (%) | 84.0 ± 3.61 | 85.6 ± 4.34 | 86.8 ± 4.09 | 86.2 ± 7.26 |
Midpiece defects (%) | 47.67 ± 2.31 | 43.8 ± 7.50 | 52.8 ± 9.44 | 51.2 ± 7.53 |
Principal piece defects (%) | 23.67 ± 4.51 | 20.4 ± 6.43 | 22.2 ± 3.96 | 24.4 ± 5.13 |
Teratozoospermic index | 1.67 ± 0.10 | 1.62 ± 0.11 | 1.75 ± 0.11 | 1.72 ± 0.14 |
Protein ID | Protein Name | Gene Name | p-Value | FDR | Log2 (Fold Change) |
---|---|---|---|---|---|
G1 vs. G2 | |||||
Q9NWV4 | CXXC motif containing zinc binding protein | CZIB | 0.019 | n.s. | 2.36 |
Q9BVA1 | Tubulin beta-2B chain | TUBB2B | 0.024 | n.s. | 2.31 |
P39210 | Protein Mpv17 | MPV17 | 0.023 | n.s. | 2.11 |
A4D1T9 | Probable inactive serine protease 37 | PRSS37 | 0.032 | n.s. | 1.98 |
Q15257 | Serine/threonine-protein phosphatase 2A activator | PTPA | 0.017 | n.s. | 1.74 |
P49841 | Glycogen synthase kinase-3 beta | GSK3B | 0.017 | n.s. | 1.71 |
Q9UJW0 | Dynactin subunit 4 | DCTN4 | 0.011 | n.s. | 1.69 |
Q9C099 | Leucine-rich repeat and coiled-coil domain-containing protein 1 | LRRCC1 | 0.016 | n.s. | 1.59 |
P55060 | Exportin-2 | CSE1L | 0.045 | n.s. | −1.83 |
P16444 | Dipeptidase 1 | DPEP1 | 0.039 | n.s. | −2.1 |
G1 vs. G3 | |||||
P11279 | Lysosome-associated membrane glycoprotein 1 | LAMP1 | 0.047 | n.s. | 2.32 |
Q5VZ72 | Izumo sperm-egg fusion protein 3 | IZUMO3 | 0.029 | n.s. | 1.51 |
Q96S96 | Phosphatidylethanolamine-binding protein 4 | PEBP4 | 0.007 | n.s. | 2.18 |
Q96LI6 | Heat shock transcription factor, Y-linked | HSFY2 | 0.016 | n.s. | 1.55 |
P31150 | Rab GDP dissociation inhibitor alpha | GDI1 | 0.028 | n.s. | 1.55 |
Q9GZT6 | Coiled-coil domain-containing protein 90B, mitochondrial | CCDC90B | 0.025 | n.s. | 1.5 |
Q5H943 | Kita-kyushu lung cancer antigen 1 | CT83 | 0.039 | n.s. | 1.54 |
Q96M69 | Leucine-rich repeat and guanylate kinase domain-containing protein | LRGUK | 0.017 | n.s. | 1.84 |
Q6UWQ5 | Lysozyme-like protein 1 | LYZL1 | 0.020 | n.s. | 2.5 |
P31689 | DnaJ homolog subfamily A member 1 | DNAJA1 | 0.032 | n.s. | −1.66 |
Q8N6Q1 | Transmembrane and coiled-coil domain-containing protein 5A | TMCO5A | 0.010 | n.s. | −1.65 |
P00414 | Cytochrome c oxidase subunit 3 | MT-CO3 | 0.013 | n.s. | −3.01 |
G1 vs. G4 | |||||
P11279 | Lysosome-associated membrane glycoprotein 1 | LAMP1 | 0.045 | n.s. | 2.35 |
G2 vs. G3 | |||||
Q9BVA1 | Tubulin beta-2B chain | TUBB2B | 0.010 | n.s. | −2.58 |
P59666 | Neutrophil defensin 3 | DEFA3 | 0.041 | n.s. | −3.45 |
P13073 | Cytochrome c oxidase subunit 4 isoform 1, mitochondrial | COX4I1 | 0.048 | n.s. | −1.87 |
Q96N23 | Cilia- and flagella-associated protein 54 | CFAP54 | 0.046 | n.s. | −1.62 |
P00568 | Adenylate kinase isoenzyme 1 | AK1 | 0.002 | n.s. | −2.2 |
P35613 | Basigin | BSG | 0.037 | n.s. | −1.67 |
Q96M69 | Leucine-rich repeat and guanylate kinase domain-containing protein | LRGUK | 0.021 | n.s. | 1.67 |
Q6UWQ5 | Lysozyme-like protein 1 | LYZL1 | 0.012 | n.s. | 2.57 |
Q86YW0 | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase zeta-1 | PLCZ1 | 0.026 | n.s. | 1.58 |
P31689 | DnaJ homolog subfamily A member 1 | DNAJA1 | 0.035 | n.s. | −1.54 |
O14683 | Tumor protein p53-inducible protein 11 | TP53I11 | 0.019 | n.s. | 1.69 |
Q93052 | Lipoma-preferred partner | LPP | 0.008 | n.s. | 1.73 |
P00414 | Cytochrome c oxidase subunit 3 | MT-CO3 | 0.041 | n.s. | −2.25 |
O75935 | Dynactin subunit 3 | DCTN3 | 0.007 | n.s. | 1.84 |
A8MTL0 | IQ domain-containing protein F5 | IQCF5 | 0.028 | n.s. | 2.19 |
P16444 | Dipeptidase 1 | DPEP1 | 0.041 | n.s. | 1.96 |
G2 vs. G4 | |||||
P13073 | Cytochrome c oxidase subunit 4 isoform 1, mitochondrial | COX4I1 | 0.018 | n.s. | −2.29 |
Q00059 | Transcription factor A, mitochondrial | TFAM | 0.039 | n.s. | −1.88 |
P00441 | Superoxide dismutase [Cu-Zn] | SOD1 | 0.023 | n.s. | −2.13 |
P00568 | Adenylate kinase isoenzyme 1 | AK1 | 0.002 | n.s. | −2.18 |
P53602 | Diphosphomevalonate decarboxylase | MVD | 0.029 | n.s. | −1.66 |
O14949 | Cytochrome b-c1 complex subunit 8 | UQCRQ | 0.047 | n.s. | −1.65 |
P55145 | Mesencephalic astrocyte-derived neurotrophic factor | MANF | 0.017 | n.s. | −1.53 |
P35613 | Basigin | BSG | 0.005 | n.s. | −2.35 |
Q08830 | Fibrinogen-like protein 1 | FGL1 | 0.004 | n.s. | 2.23 |
P56851 | Epididymal secretory protein E3-beta | EDDM3B | 0.036 | n.s. | 2.19 |
O14683 | Tumor protein p53-inducible protein 11 | TP53I11 | 0.018 | n.s. | 1.72 |
Q93052 | Lipoma-preferred partner | LPP | 0.003 | n.s. | 1.98 |
A8MTL0 | IQ domain-containing protein F5 | IQCF5 | 0.002 | n.s. | 3.38 |
G3 vs. G4 | |||||
Q96S96 | Phosphatidylethanolamine-binding protein 4 | PEBP4 | 0.007 | n.s. | −2.09 |
P25685 | DnaJ homolog subfamily B member 1 | DNAJB1 | 0.019 | n.s. | −1.52 |
Q02543 | 60S ribosomal protein L18a | RPL18A | 0.004 | n.s. | 1.62 |
Q9BY14 | Testis-expressed protein 101 | TEX101 | 0.034 | n.s. | −1.74 |
O75071 | EF-hand calcium-binding domain-containing protein 14 | EFCAB14 | 0.001 | n.s. | −2.05 |
P31689 | DnaJ homolog subfamily A member 1 | DNAJA1 | 0.001 | n.s. | 2.6 |
O43464 | Serine protease HTRA2, mitochondrial | HTRA2 | 0.015 | n.s. | −1.99 |
Q5TEC6 | Histone HIST2H3PS2 | H3-2 | 0.024 | n.s. | 4.39 |
Q8N6Q1 | Transmembrane and coiled-coil domain-containing protein 5A | TMCO5A | 0.008 | n.s. | 1.61 |
Q9NQC3 | Reticulon-4 | RTN4 | 0.006 | n.s. | 1.7 |
P00414 | Cytochrome c oxidase subunit 3 | MT-CO3 | 0.034 | n.s. | 2.35 |
Protein ID | Protein Name (Gene Name) | P-Sites | p-Value | FDR | Log2 (Fold Change) |
---|---|---|---|---|---|
G1 vs. G2 | |||||
P0C881 | Radial spoke head 10 homolog B (RSPH10B) | S366 | 0.038 | n.s. | −2.72 |
Q13200 | 26S proteasome non-ATPase regulatory subunit 2 (PSMD2) | S361 | 0.023 | n.s. | −2.62 |
P60900 | Proteasome subunit alpha type-6 (PSMA6) | S2 | 0.030 | n.s. | −2.59 |
Q96RL7 | Vacuolar protein sorting-associated protein 13A (VPS13A) | S1416 | 0.034 | n.s. | −2.56 |
O14556 | Glyceraldehyde-3-phosphate dehydrogenase, testis-specific (GAPDHS) | S282 | 0.002 | n.s. | −2.36 |
Q5CZC0 | Fibrous sheath-interacting protein 2 (FSIP2) | S6374 | 0.021 | n.s. | −2.26 |
Q8IYX1 | TBC1 domain family member 21 (TBC1D21) | S5 | 0.031 | n.s. | −2.17 |
Q5JQC9 | A-kinase anchor protein 4 (AKAP4) | S447 | 0.026 | n.s. | −2.24 |
S254 | 0.023 | n.s. | 2.61 | ||
Q5T9G4 | Armadillo repeat-containing protein 12 (ARMC12) | T94 | 0.010 | n.s. | 1.6 |
P01042 | Kininogen-1 (KNG1) | S332 | 0.035 | n.s. | 2.12 |
Q16563 | Synaptophysin-like protein 1 (SYPL1) | S245 | 0.035 | n.s. | 2.29 |
P26373 | 60S ribosomal protein L13 (RPL13) | S106 | 0.002 | n.s. | 2.61 |
Q9NWH7 | Spermatogenesis-associated protein 6 (SPATA6) | S265 | 0.002 | n.s. | 2.72 |
Q8IZ16 | Uncharacterized protein C7orf61 (C7orf61) | S34 | 0.016 | n.s. | 3.3 |
G1 vs. G3 | |||||
Q5JX71 | Protein FAM209A (FAM209A) | S141 | 0.005 | n.s. | −3.29 |
Q92685 | Dol-P-Man:Man(5)GlcNAc(2)-PP-Dol alpha-1,3-mannosyltransferase (ALG3) | S11 | 0.007 | n.s. | −3.18 |
Q5JX69 | Protein FAM209B (FAM209B) | S143 | 0.031 | n.s. | −2.63 |
Q53SZ7 | Proline-rich protein 30 (PRR30) | S188 | 0.030 | n.s. | −2.49 |
Q8N4P6 | Leucine-rich repeat-containing protein 71 (LRRC71) | S113 | 0.009 | n.s. | −2.24 |
Q5JQC9 | A-kinase anchor protein 4 (AKAP4) | S447 | 0.008 | n.s. | −2.4 |
Y303 | 0.006 | n.s. | −2.38 | ||
S254 | 0.028 | n.s. | 2.94 | ||
Q8TBY8 | Polyamine-modulated factor 1-binding protein 1 (PMFBP1) | S765 | 0.044 | n.s. | −2.39 |
Q5CZC0 | Fibrous sheath-interacting protein 2 (FSIP2) | S6374 | 0.007 | n.s. | −2.19 |
Q9UPU5 | Ubiquitin carboxyl-terminal hydrolase 24 (USP24) | S2047 | 0.048 | n.s. | −2.1 |
P60900 | Proteasome subunit alpha type-6 (PSMA6) | S175 | 0.005 | n.s. | 1.52 |
Q9H0B3 | IQ domain-containing protein N (IQCN) | S1057 | 0.048 | n.s. | 1.58 |
Q96JB1 | Dynein heavy chain 8, axonemal (DNAH8) | S959 | 0.010 | n.s. | 1.91 |
Q5T9G4 | Armadillo repeat-containing protein 12 (ARMC12) | S334 | 0.009 | n.s. | 1.91 |
T94 | 0.001 | n.s. | 2.44 | ||
P29803 | Pyruvate dehydrogenase E1 component subunit alpha, testis-specific form, mitochondrial (PDHA2) | S237 | 0.018 | n.s. | 2.19 |
Q96IV0 | Peptide-N(4)-(N-acetyl-beta-glucosaminyl)asparagine amidase (NGLY1) | S94 | 0.043 | n.s. | 2.05 |
P26373 | 60S ribosomal protein L13 (RPL13) | S106 | 0.003 | n.s. | 2.41 |
P61006 | Ras-related protein Rab-8A (RAB8A) | S185 | 0.036 | n.s. | 2.44 |
Q04837 | Single-stranded DNA-binding protein, mitochondrial (SSBP1) | Y73 | 0.011 | n.s. | 2.46 |
P08559 | Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial (PDHA1) | T231 | 0.044 | n.s. | 2.62 |
S232 | 0.029 | n.s. | 2.72 | ||
S291 | 0.004 | n.s. | 3.85 | ||
Q8N9V2 | Probable E3 ubiquitin-protein ligase TRIML1 (TRIML1) | S67 | 0.004 | n.s. | 2.65 |
P49368 | T-complex protein 1 subunit gamma (CCT3) | S252 | 0.039 | n.s. | 2.67 |
P08238 | Heat shock protein HSP 90-beta (HSP90AB1) | S226 | 0.014 | n.s. | 2.7 |
Q9Y6C9 | Mitochondrial carrier homolog 2 (MTCH2) | S114 | 0.014 | n.s. | 2.83 |
P01042 | Kininogen-1 (KNG1) | S332 | 0.003 | n.s. | 3.12 |
Q9NTI2 | Phospholipid-transporting ATPase IB (ATP8A2) | S46 | 0.040 | n.s. | 3.37 |
Q86UC2 | Radial spoke head protein 3 homolog (RSPH3) | T243 | 0.016 | n.s. | 3.49 |
A6NJI9 | Leucine-rich repeat-containing protein 72 (LRRC72) | S21 | 0.005 | n.s. | 3.98 |
Q5BJF6 | Outer dense fiber protein 2 (ODF2) | S109 | 0.003 | n.s. | 4.19 |
Q8IZ16 | Uncharacterized protein C7orf61 (C7orf61) | S34 | 0.002 | n.s. | 4.61 |
G1 vs. G4 | |||||
Q9Y5Y5 | Peroxisomal membrane protein PEX16 (PEX16) | S183 | 0.018 | n.s. | −2.31 |
Q14990 | Outer dense fiber protein 1 (ODF1) | S5 | 0.008 | n.s. | −2.18 |
O75969 | A-kinase anchor protein 3 (AKAP3) | S170 | 0.026 | n.s. | −2.08 |
Q8IYX1 | TBC1 domain family member 21 (TBC1D21) | S5 | 0.049 | n.s. | −1.96 |
Q5JQC9 | A-kinase anchor protein 4 (AKAP4) | Y303 | 0.026 | n.s. | −1.92 |
S447 | 0.032 | n.s. | −1.91 | ||
S254 | 0.006 | n.s. | 3.35 | ||
P36969 | Phospholipid hydroperoxide glutathione peroxidase (GPX4) | S40 | 0.029 | n.s. | 1.52 |
O15355 | Protein phosphatase 1G (PPM1G) | S517 | 0.035 | n.s. | 1.57 |
Q9H5L6 | DNA transposase THAP9 (THAP9) | S87 | 0.048 | n.s. | 1.61 |
Q8IWZ5 | Tripartite motif-containing protein 42 (TRIM42) | S123 | 0.037 | n.s. | 1.74 |
A6NEC2 | Puromycin-sensitive aminopeptidase-like protein (NPEPPSL1) | S39 | 0.010 | n.s. | 1.76 |
Q6NX45 | Zinc finger protein 774 (ZNF774) | S192 | 0.047 | n.s. | 1.78 |
Q96JB1 | Dynein heavy chain 8, axonemal (DNAH8) | S959 | 0.007 | n.s. | 1.83 |
Q9P0V9 | Septin-10 (SEPTIN10) | S214 | 0.026 | n.s. | 1.85 |
Q9UKJ8 | Disintegrin and metalloproteinase domain-containing protein 21 (ADAM21) | S670 | 0.019 | n.s. | 1.94 |
Q9Y6C9 | Mitochondrial carrier homolog 2 (MTCH2) | S114 | 0.048 | n.s. | 2.08 |
Q9BT78 | COP9 signalosome complex subunit 4 (COPS4) | S297 | 0.018 | n.s. | 2.09 |
P45974 | Ubiquitin carboxyl-terminal hydrolase 5 (USP5) | S783 | 0.046 | n.s. | 2.13 |
Q15185 | Prostaglandin E synthase 3 (PTGES3) | S82 | 0.044 | n.s. | 2.23 |
Q9BWH2 | FUN14 domain-containing protein 2 (FUNDC2) | S151 | 0.042 | n.s. | 2.25 |
A0A1B0GTY4 | Testis-expressed protein 50 (TEX50) | S142 | 0.022 | n.s. | 2.27 |
Q6ZUB1 | Spermatogenesis-associated protein 31E1 (SPATA31E1) | S462 | 0.045 | n.s. | 2.31 |
O43847 | Nardilysin (NRDC) | S94 | 0.042 | n.s. | 2.33 |
A0A1B0GTH6 | Casein kinase II subunit alpha-interacting protein (CSNKA2IP) | S212 | 0.033 | n.s. | 2.35 |
P07205 | Phosphoglycerate kinase 2 (PGK2) | S175 | 0.012 | n.s. | 2.42 |
S174 | 0.001 | 0.092 | 3.13 | ||
P08238 | Heat shock protein HSP 90-beta (HSP90AB1) | S226 | 0.011 | n.s. | 2.75 |
P26373 | 60S ribosomal protein L13 (RPL13) | S106 | 0.001 | 0.092 | 2.77 |
P01042 | Kininogen-1 (KNG1) | S332 | 0.008 | n.s. | 2.77 |
P55072 | Transitional endoplasmic reticulum ATPase (VCP) | S13 | 0.021 | n.s. | 2.8 |
P78371 | T-complex protein 1 subunit beta (CCT2) | S470 | 0.033 | n.s. | 2.89 |
P08559 | Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial (PDHA1) | S291 | 0.034 | n.s. | 2.91 |
P04554 | Protamine-2 (PRM2) | S10 | 0.034 | n.s. | 3.53 |
Q5BJF6 | Outer dense fiber protein 2 (ODF2) | S109 | 0.007 | n.s. | 3.71 |
Q8IZ16 | Uncharacterized protein C7orf61 (C7orf61) | S34 | 0.003 | n.s. | 4.01 |
Q8N9V2 | Probable E3 ubiquitin-protein ligase TRIML1 (TRIML1) | S67 | 0.000 | 0.036 | 4.17 |
P22223 | Cadherin-3 (CDH3) | T741 | 0.020 | n.s. | 5.32 |
T737 | 0.028 | n.s. | 4.74 | ||
G2 vs. G3 | |||||
Q5JX71 | Protein FAM209A (FAM209A) | S141 | 0.024 | n.s. | −3.91 |
Q5JX69 | Protein FAM209B (FAM209B) | S143 | 0.003 | n.s. | −3.64 |
Q5JQC9 | A-kinase anchor protein 4 (AKAP4) | S536 | 0.044 | n.s. | −3.1 |
Q16563 | Synaptophysin-like protein 1 (SYPL1) | S245 | 0.005 | n.s. | −3 |
Q8N4P6 | Leucine-rich repeat-containing protein 71 (LRRC71) | S113 | 0.048 | n.s. | −1.53 |
Q9H0B3 | IQ domain-containing protein N (IQCN) | S1171 | 0.012 | n.s. | −2.47 |
S1057 | 0.033 | n.s. | 1.78 | ||
T720 | 0.012 | n.s. | 2.43 | ||
Q92685 | Dol-P-Man:Man(5)GlcNAc(2)-PP-Dol alpha-1,3-mannosyltransferase (ALG3) | S11 | 0.030 | n.s. | −2.34 |
Q9NWH7 | Spermatogenesis-associated protein 6 (SPATA6) | S265 | 0.007 | n.s. | −2.21 |
O60423 | Phospholipid-transporting ATPase IK (ATP8B3) | S891 | 0.022 | n.s. | 1.52 |
Q96JB1 | Dynein heavy chain 8, axonemal (DNAH8) | S959 | 0.015 | n.s. | 1.53 |
Q17R55 | Protein FAM187B (FAM187B) | S362 | 0.049 | n.s. | 1.85 |
Q96M32 | Adenylate kinase 7 (AK7) | S61 | 0.026 | n.s. | 1.99 |
Q9Y6C9 | Mitochondrial carrier homolog 2 (MTCH2) | S114 | 0.016 | n.s. | 2.57 |
P60900 | Proteasome subunit alpha type-6 (PSMA6) | S175 | 0.000 | 0,0088 | 2.74 |
S2 | 0.000 | 0,0726 | 3.89 | ||
Q2TAA8 | Translin-associated factor X-interacting protein 1 (TSNAXIP1) | T318 | 0.005 | n.s. | 3.26 |
Q5T601 | Adhesion G-protein coupled receptor F1 (ADGRF1) | S871 | 0.033 | n.s. | 3.6 |
A6NJI9 | Leucine-rich repeat-containing protein 72 (LRRC72) | S21 | 0.002 | n.s. | 4.16 |
G2 vs. G4 | |||||
Q5JX69 | Protein FAM209B (FAM209B) | S143 | 0.033 | n.s. | −2.43 |
Q9NWH7 | Spermatogenesis-associated protein 6 (SPATA6) | S265 | 0.008 | n.s. | −2.22 |
Q9BXF9 | Tektin-3 (TEKT3) | S64 | 0.027 | n.s. | −2.14 |
P04075 | Fructose-bisphosphate aldolase A (ALDOA) | S39 | 0.048 | n.s. | 1.61 |
Q9Y4P3 | Transducin beta-like protein 2 (TBL2) | S298 | 0.009 | n.s. | 1.65 |
O60423 | Phospholipid-transporting ATPase IK (ATP8B3) | S891 | 0.016 | n.s. | 1.7 |
Q96DY2 | Dynein regulatory complex protein 10 (IQCD) | S133 | 0.009 | n.s. | 1.94 |
P07205 | Phosphoglycerate kinase 2 (PGK2) | S174 | 0.003 | n.s. | 2.35 |
Q2TAA8 | Translin-associated factor X-interacting protein 1 (TSNAXIP1) | T318 | 0.011 | n.s. | 2.81 |
Q6ZUB1 | Spermatogenesis-associated protein 31E1 (SPATA31E1) | S1057 | 0.012 | n.s. | 2.83 |
Q02383 | Semenogelin-2 (SEMG2) | S352 | 0.046 | n.s. | 3.18 |
Q8N9V2 | Probable E3 ubiquitin-protein ligase TRIML1 (TRIML1) | S67 | 0.002 | n.s. | 3.41 |
P60900 | Proteasome subunit alpha type-6 (PSMA6) | S2 | 0.000 | 0,099 | 4.21 |
Q9UKJ8 | Disintegrin and metalloproteinase domain-containing protein 21 (ADAM21) | S670 | 0.003 | n.s. | 2.48 |
P40617 | ADP-ribosylation factor-like protein 4A (ARL4A) | S143 | 0.023 | n.s. | 2.3 |
Q8IYF3 | Testis-expressed protein 11 (TEX11) | S367 | 0.044 | n.s. | 1.82 |
Q9NX74 | tRNA-dihydrouridine(20) synthase [NAD(P)+]-like (DUS2) | T369 | 0.016 | n.s. | 1.94 |
O15523 | ATP-dependent RNA helicase DDX3Y (DDX3Y) | S408 | 0.041 | n.s. | 2.32 |
Q5T601 | Adhesion G-protein coupled receptor F1 (ADGRF1) | S867 | 0.044 | n.s. | 3.49 |
S871 | 0.026 | n.s. | 3.78 | ||
P0C881 | Radial spoke head 10 homolog B (RSPH10B) | S366 | 0.041 | n.s. | 2.51 |
G3 vs. G4 | |||||
O75969 | A-kinase anchor protein 3 (AKAP3) | S170 | 0.006 | n.s. | −3.37 |
S176 | 0.013 | n.s. | −2.75 | ||
S208 | 0.046 | n.s. | 2.47 | ||
P48729 | Casein kinase I isoform alpha (CSNK1A1) | S4 | 0.008 | n.s. | −3.33 |
Q14997 | Proteasome activator complex subunit 4 (PSME4) | S293 | 0.003 | n.s. | −3.18 |
Q5JQC9 | A-kinase anchor protein 4 (AKAP4) | S817 | 0.032 | n.s. | −2.17 |
P61006 | Ras-related protein Rab-8A (RAB8A) | S185 | 0.047 | n.s. | −2.16 |
P55072 | Transitional endoplasmic reticulum ATPase (VCP) | S3 | 0.024 | n.s. | −1.98 |
P60900 | Proteasome subunit alpha type-6 (PSMA6) | S175 | 0.005 | n.s. | −1.63 |
Q6ZUB1 | Spermatogenesis-associated protein 31E1 (SPATA31E1) | S462 | 0.032 | n.s. | 1.52 |
P04075 | Fructose-bisphosphate aldolase A (ALDOA) | S39 | 0.028 | n.s. | 1.52 |
P07205 | Phosphoglycerate kinase 2 (PGK2) | S174 | 0.014 | n.s. | 1.83 |
Q16563 | Synaptophysin-like protein 1 (SYPL1) | S245 | 0.015 | n.s. | 2.28 |
Q8TBY8 | Polyamine-modulated factor 1-binding protein 1 (PMFBP1) | S765 | 0.015 | n.s. | 2.5 |
Q5CZC0 | Fibrous sheath-interacting protein 2 (FSIP2) | S3641 | 0.001 | n.s. | 2.55 |
Q9H0B3 | IQ domain-containing protein N (IQCN) | S1171 | 0.001 | n.s. | 3.23 |
Q5JX71 | Protein FAM209A (FAM209A) | S141 | 0.002 | n.s. | 6.95 |
Q9UKJ8 | Disintegrin and metalloproteinase domain-containing protein 21 (ADAM21) | S670 | 0.046 | n.s. | 1.53 |
Q92685 | Dol-P-Man:Man(5)GlcNAc(2)-PP-Dol alpha-1,3-mannosyltransferase (ALG3) | S11 | 0.004 | n.s. | 3.23 |
O15523 | ATP-dependent RNA helicase DDX3Y (DDX3Y) | S408 | 0.047 | n.s. | 2.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santiago, J.; Silva, J.V.; Santos, M.A.S.; Fardilha, M. Advanced Paternal Age and Sperm Proteome Dynamics: A Possible Explanation for Age-Associated Male Fertility Decline. Cells 2025, 14, 813. https://doi.org/10.3390/cells14110813
Santiago J, Silva JV, Santos MAS, Fardilha M. Advanced Paternal Age and Sperm Proteome Dynamics: A Possible Explanation for Age-Associated Male Fertility Decline. Cells. 2025; 14(11):813. https://doi.org/10.3390/cells14110813
Chicago/Turabian StyleSantiago, Joana, Joana V. Silva, Manuel A. S. Santos, and Margarida Fardilha. 2025. "Advanced Paternal Age and Sperm Proteome Dynamics: A Possible Explanation for Age-Associated Male Fertility Decline" Cells 14, no. 11: 813. https://doi.org/10.3390/cells14110813
APA StyleSantiago, J., Silva, J. V., Santos, M. A. S., & Fardilha, M. (2025). Advanced Paternal Age and Sperm Proteome Dynamics: A Possible Explanation for Age-Associated Male Fertility Decline. Cells, 14(11), 813. https://doi.org/10.3390/cells14110813