Novel Hyperplastic Expansion of White Adipose Tissue Underlies the Metabolically Healthy Obese Phenotype of Male LFABP Null Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Adipocyte Size and Number
2.3. Preparation of Tissue and RNA Isolation
2.4. RNA Sequencing Analysis
2.5. Adipose Cholesterol Determination
2.6. Immunohistochemical (IHC) Staining for Macrophage Infiltration
2.7. Statistical Analysis
3. Results
3.1. Lfabp Deficiency Drives Hyperplastic Expansion of Inguinal WAT (iWAT) During Obesity Development
3.2. Differential Pathway Enrichment in Subcutaneous Adipose Tissue upon Lfabp Ablation and HFD-Induced Obesity Development
3.3. Lfabp Ablation Induces Distinct Transcriptional Responses in iWAT upon DIO
3.4. Lfabp Null Mice Show Altered Adipogenic Potential
3.5. Lfabp Deficiency May Enhance Cholesterol Biosynthesis and Subsequent mTORC1-Mediated iWAT Growth
3.6. Lfabp Deletion Induces iWAT Immune and Inflammatory Responses and ECM and Angiogenesis Remodeling
4. Discussion
4.1. Evidence of Hyperplastic WAT Expansion upon Lfabp Deletion and HF Feeding
4.2. Lfabp Deletion Induces Alterations in the Transcriptomic Profile of Subcutaneous Fat Suggestive of an Enhanced Adipogenic Program
4.3. Enrichment in Cholesterol-Related Pathways and Increased Cell Cholesterol Content May Contribute to Small, Insulin-Sensitive Adipocytes in the iWAT of HF-Fed LFABP−/− Mice
4.4. Lfabp Ablation Alters Immune and Inflammatory Responses in Inguinal Adipocytes upon DIO
4.5. Lfabp Deletion May Alter Inguinal Fat ECM Remodeling, Fibrosis, Inflammation, and Angiogenesis upon DIO
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LFABP−/− | Liver Fatty Acid-Binding Protein Null |
HFD | High-fat diet |
SAT | Subcutaneous adipose tissue |
WT | Wild type |
LCFAs | Long-chain fatty acids |
MAGs | Monoacylglycerols |
eCBs | Endocannabinoids |
BAs | Bile acids |
MHO | Metabolically healthy obese |
FFA | Free fatty acid |
AT | Adipose tissue |
APCs | Adipocyte progenitor cells |
ECM | Extracellular matrix |
IR | Insulin resistance |
sWAT | Subcutaneous white adipose tissue |
vWAT | Visceral WAT |
BAT | Brown adipose tissue |
DIO | Diet-induced obesity |
LFD | Low-fat diet |
MRI | Magnetic Resonance Imaging |
H&E | Hematoxylin and eosin |
CLSs | Crown-like structures |
FCV | Fat cell volume |
FCN | Fat cell number |
TAG | Triacylglycerol |
iWAT | Inguinal WAT |
eWAT | Epididymal WAT |
iBAT | Interscapular BAT |
GSEA | Gene set enrichment analysis |
MSigDB | Metabolic Signatures Database |
NES | Normalized enrichment score |
FDR | False discovery rate |
RPKM | Reads Per Kilobase per Million mapped |
DEGs | Differentially expressed genes |
PBS | Phosphate-buffered saline |
BW | Body weight |
CYP2E1 | Cytochrome P450 family 2 subfamily E member 1 |
Areg | Adipogenesis regulator |
FAM13A | Family with sequence similarity 13 member A |
Hr | Hairless |
ESRRA | Estrogen-Related Receptor α |
DUSP1 | Dual-Specificity Phosphatase 1 |
Cdkn1a | Cyclin-Dependent Kinase Inhibitor 1A |
Gadd45g | Growth Arrest and DNA-Damage-Inducible 45 Gamma |
Postn | Periostin |
Hmgcs1 | 3-hydroxy-3-methylglutaryl-CoA synthase 1 |
mTORC1 | Mechanistic Target of Rapamycin Complex 1 |
Scd2 | Stearoyl-CoA-Desaturase 2 |
Tnfrsf12a | Tumor Necrosis Factor Receptor Superfamily Member 12A |
TWEAK | TNF-like weak inducer of apoptosis |
Col | Collagen |
Lama2 | Laminin α-2 chain |
Spp1 | Osteopontin |
Ecm1 | Extracellular Matrix Protein 1 |
Thbs1 | Thrombospondin-1 |
MMP | Matrix Metalloproteinase |
TIMP2 | Tissue Metalloproteinase Inhibitor 2 |
Serpine1 | Serine Protease Inhibitor Clade E Member 1 |
PAI-1 | Plasminogen Activator Inhibitor-1 |
KO | Knockout |
Sdc4 | Syndecan 4 |
ASPCs | Adipose stem and progenitor cells |
MUFAs | Monounsaturated fatty acids |
PLs | Phospholipids |
LPS | Lipopolysaccharide |
TNFRSFs | TNFR Superfamily Members |
MSCs | Mesenchymal Stem Cells |
AEA | Anandamide |
Chol | Cholesterol |
References
- Gajda, A.M.; Storch, J. Enterocyte fatty acid-binding proteins (fabps): Different functions of liver and intestinal fabps in the intestine. Prostaglandins Leukot. Essent. Fat. Acids 2015, 93, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Storch, J.; Corsico, B. The emerging functions and mechanisms of mammalian fatty acid-binding proteins. Annu. Rev. Nutr. 2008, 28, 73–95. [Google Scholar] [CrossRef] [PubMed]
- Gajda, A.M.; Zhou, Y.X.; Agellon, L.B.; Fried, S.K.; Kodukula, S.; Fortson, W.; Patel, K.; Storch, J. Direct comparison of mice null for liver or intestinal fatty acid-binding proteins reveals highly divergent phenotypic responses to high fat feeding. J. Biol. Chem. 2013, 288, 30330–30344. [Google Scholar] [CrossRef]
- Xu, H.; Gajda, A.M.; Zhou, Y.X.; Panetta, C.; Sifnakis, Z.; Fatima, A.; Henderson, G.C.; Storch, J. Muscle metabolic reprogramming underlies the resistance of lfabp–null mice to high-fat feeding-induced decline in exercise capacity. J. Biol. Chem. 2019, 294, 15358–15372. [Google Scholar] [CrossRef]
- Krotkiewski, M.; Björntorp, P.; Sjöström, L.; Smith, U. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J. Clin. Investig. 1983, 72, 1150–1162. [Google Scholar] [CrossRef]
- Marques, B.G.; Hausman, D.B.; Martin, R.J. Association of fat cell size and paracrine growth factors in development of hyperplastic obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1998, 275, R1898–R1908. [Google Scholar] [CrossRef]
- Spalding, K.L.; Arner, E.; Westermark, P.O.; Bernard, S.; Buchholz, B.A.; Bergmann, O.; Blomqvist, L.; Hoffstedt, J.; Näslund, E.; Britton, T.; et al. Dynamics of fat cell turnover in humans. Nature 2008, 453, 783–787. [Google Scholar] [CrossRef]
- Bennett, G.; Strissel, K.J.; Defuria, J.; Wang, J.; Wu, D.; Burkly, L.C.; Obin, M.S. Deletion of tnf-like weak inducer of apoptosis (tweak) protects mice from adipose and systemic impacts of severe obesity. Obesity 2014, 22, 1485–1494. [Google Scholar] [CrossRef]
- Strissel, K.J.; Stancheva, Z.; Miyoshi, H.; Perfield, J.W.; Defuria, J.; Jick, Z.; Greenberg, A.S.; Obin, M.S. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 2007, 56, 2910–2918. [Google Scholar] [CrossRef]
- Nishimura, S.; Manabe, I.; Nagasaki, M.; Hosoya, Y.; Yamashita, H.; Fujita, H.; Ohsugi, M.; Tobe, K.; Kadowaki, T.; Nagai, R.; et al. Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. Diabetes 2007, 56, 1517–1526. [Google Scholar] [CrossRef]
- Pellegrinelli, V.; Carobbio, S.; Vidal-Puig, A. Adipose tissue plasticity: How fat depots respond differently to pathophysiological cues. Diabetologia 2016, 59, 1075–1088. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, B.; Hedjazifar, S.; Gogg, S.; Hammarstedt, A.; Smith, U. Insulin resistance and impaired adipogenesis. Trends Endocrinol. Metab. 2015, 26, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Laforest, S.; Labrecque, J.; Michaud, A.; Cianflone, K.; Tchernof, A. Adipocyte size as a determinant of metabolic disease and adipose tissue dysfunction. Crit. Rev. Clin. Lab. Sci. 2015, 52, 301–313. [Google Scholar] [CrossRef]
- Rydén, M.; Anderson, D.P.; Bergström, I.B.; Arner, P. Adipose tissue and metabolic alterations: Regional differences in fat cell size and number matter, but differently: A cross-sectional study. J. Clin. Endocrinol. Metab. 2014, 99, E1870–E1876. [Google Scholar] [CrossRef]
- Hammarstedt, A.; Gogg, S.; Hedjazifar, S.; Nerstedt, A.; Smith, U. Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physiol. Rev. 2018, 98, 1911–1941. [Google Scholar] [CrossRef]
- Arner, E.; Westermark, P.O.; Spalding, K.L.; Britton, T.; Rydén, M.; Frisén, J.; Bernard, S.; Arner, P. Adipocyte turnover: Relevance to human adipose tissue morphology. Diabetes 2010, 59, 105–109. [Google Scholar] [CrossRef]
- Sun, K.; Kusminski, C.M.; Scherer, P.E. Adipose tissue remodeling and obesity. J. Clin. Investig. 2011, 121, 2094–2101. [Google Scholar] [CrossRef]
- Martin, G.G.; Danneberg, H.; Kumar, L.S.; Atshaves, B.P.; Erol, E.; Bader, M.; Schroeder, F.; Binas, B. Decreased liver fatty acid binding capacity and altered liver lipid distribution in mice lacking the liver fatty acid-binding protein gene. J. Biol. Chem. 2003, 278, 21429–21438. [Google Scholar] [CrossRef]
- Lagakos, W.S.; Gajda, A.M.; Agellon, L.; Binas, B.; Choi, V.; Mandap, B.; Russnak, T.; Zhou, Y.X.; Storch, J. Different functions of intestinal and liver-type fatty acid-binding proteins in intestine and in whole body energy homeostasis. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300, G803–G814. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Galarraga, M.; Campion, J.; Munoz-Barrutia, A.; Boque, N.; Moreno, H.; Martinez, J.A.; Milagro, F.; Ortiz-de-Solorzano, C. Adiposoft: Automated software for the analysis of white adipose tissue cellularity in histological sections. J. Lipid Res. 2012, 53, 2791–2796. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Lee, M.-J.; Ido, Y.; Fried, S.K. High-fat diet-induced obesity regulates mmp3 to modulate depot- and sex-dependent adipose expansion in c57bl/6j mice. Am. J. Physiol. Endocrinol. Metab. 2017, 312, E58–E71. [Google Scholar] [CrossRef]
- Jo, J.; Gavrilova, O.; Pack, S.; Jou, W.; Mullen, S.; Sumner, A.E.; Cushman, S.W.; Periwal, V. Hypertrophy and/or hyperplasia: Dynamics of adipose tissue growth. PLoS Comput. Biol. 2009, 5, e1000324. [Google Scholar] [CrossRef]
- Mootha, V.K.; Lindgren, C.M.; Eriksson, K.-F.; Subramanian, A.; Sihag, S.; Lehar, J.; Puigserver, P.; Carlsson, E.; Ridderstråle, M.; Laurila, E.; et al. Pgc-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 2003, 34, 267–273. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Liberzon, A.; Subramanian, A.; Pinchback, R.; Thorvaldsdóttir, H.; Tamayo, P.; Mesirov, J.P. Molecular signatures database (msigdb) 3.0. Bioinformatics 2011, 27, 1739–1740. [Google Scholar] [CrossRef]
- Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, P.; Jill; Tamayo, P. The molecular signatures database hallmark gene set collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for rna-seq data with deseq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The string database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Storch, J.; Zhou, Y.X.; Lagakos, W.S. Metabolism of apical versus basolateral sn-2-monoacylglycerol and fatty acids in rodent small intestine. J. Lipid Res. 2008, 49, 1762–1769. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Zachara, M.; Rainer, P.Y.; Hashimi, H.; Russeil, J.M.; Alpern, D.; Ferrero, R.; Litovchenko, M.; Deplancke, B. Mammalian adipogenesis regulator (areg) cells use retinoic acid signalling to be non- and anti-adipogenic in age-dependent manner. EMBO J. 2022, 41, e108206. [Google Scholar] [CrossRef] [PubMed]
- Fathzadeh, M.; Li, J.; Rao, A.; Cook, N.; Chennamsetty, I.; Seldin, M.; Zhou, X.; Sangwung, P.; Gloudemans, M.J.; Keller, M.; et al. Fam13a affects body fat distribution and adipocyte function. Nat. Commun. 2020, 11, 1465. [Google Scholar] [CrossRef]
- Kumpf, S.; Mihlan, M.; Goginashvili, A.; Grandl, G.; Gehart, H.; Godel, A.; Schmidt, J.; Müller, J.; Bezzi, M.; Ittner, A.; et al. Hairless promotes pparγ expression and is required for white adipogenesis. EMBO Rep. 2012, 13, 1012–1020. [Google Scholar] [CrossRef]
- Ijichi, N.; Ikeda, K.; Horie-Inoue, K.; Yagi, K.; Okazaki, Y.; Inoue, S. Estrogen-related receptor α modulates the expression of adipogenesis-related genes during adipocyte differentiation. Biochem. Biophys. Res. Commun. 2007, 358, 813–818. [Google Scholar] [CrossRef]
- Ferguson, B.S.; Nam, H.; Stephens, J.M.; Morrison, R.F. Mitogen-dependent regulation of dusp1 governs erk and p38 signaling during early 3t3-l1 adipocyte differentiation. J. Cell. Physiol. 2016, 231, 1562–1574. [Google Scholar] [CrossRef]
- Shin, H.R.; Citron, Y.R.; Wang, L.; Tribouillard, L.; Goul, C.S.; Stipp, R.; Sugasawa, Y.; Jain, A.; Samson, N.; Lim, C.-Y.; et al. Lysosomal gpcr-like protein lychos signals cholesterol sufficiency to mtorc1. Science 2022, 377, 1290–1298. [Google Scholar] [CrossRef]
- Crewe, C.; Zhu, Y.; Paschoal, V.A.; Joffin, N.; Ghaben, A.L.; Gordillo, R.; Oh, D.Y.; Liang, G.; Horton, J.D.; Scherer, P.E. Srebp-regulated adipocyte lipogenesis is dependent on substrate availability and redox modulation of mtorc1. JCI Insight 2019, 4, e129397. [Google Scholar] [CrossRef]
- Tiller, G.; Fischer-Posovszky, P.; Laumen, H.; Finck, A.; Skurk, T.; Keuper, M.; Brinkmann, U.; Wabitsch, M.; Link, D.; Hauner, H. Effects of tweak (tnf superfamily member 12) on differentiation, metabolism, and secretory function of human primary preadipocytes and adipocytes. Endocrinology 2009, 150, 5373–5383. [Google Scholar] [CrossRef]
- Girgenrath, M.; Weng, S.; Kostek, C.A.; Browning, B.; Wang, M.; Brown, S.A.; Winkles, J.A.; Michaelson, J.S.; Allaire, N.; Schneider, P.; et al. Tweak, via its receptor fn14, is a novel regulator of mesenchymal progenitor cells and skeletal muscle regeneration. EMBO J. 2006, 25, 5826–5839. [Google Scholar] [CrossRef]
- Vendrell, J.; Chacón, M.R. Tweak: A new player in obesity and diabetes. Front. Immunol. 2013, 4, 488. [Google Scholar] [CrossRef]
- Alexaki, V.-I.; Notas, G.; Pelekanou, V.; Kampa, M.; Valkanou, M.; Theodoropoulos, P.; Stathopoulos, E.N.; Tsapis, A.; Castanas, E. Adipocytes as immune cells: Differential expression of tweak, baff, and april and their receptors (fn14, baff-r, taci, and bcma) at different stages of normal and pathological adipose tissue development. J. Immunol. 2009, 183, 5948–5956. [Google Scholar] [CrossRef]
- Balsara, R.D.; Ploplis, V.A. Plasminogen activator inhibitor-1: The double-edged sword in apoptosis. Thromb. Haemost. 2008, 100, 1029–1036. [Google Scholar] [CrossRef]
- Chen, S.; Li, Y.; Zhu, Y.; Fei, J.; Song, L.; Sun, G.; Guo, L.; Li, X. Serpine1 overexpression promotes malignant progression and poor prognosis of gastric cancer. J. Oncol. 2022, 2022, 2647825. [Google Scholar] [CrossRef]
- Takayama, Y.; Hattori, N.; Hamada, H.; Masuda, T.; Omori, K.; Akita, S.; Iwamoto, H.; Fujitaka, K.; Kohno, N. Inhibition of pai-1 limits tumor angiogenesis regardless of angiogenic stimuli in malignant pleural mesothelioma. Cancer Res. 2016, 76, 3285–3294. [Google Scholar] [CrossRef]
- Giacoia, E.G.; Miyake, M.; Lawton, A.; Goodison, S.; Rosser, C.J. Pai-1 leads to g1-phase cell-cycle progression through cyclin d3/cdk4/6 upregulation. Mol. Cancer Res. 2014, 12, 322–334. [Google Scholar] [CrossRef]
- Datta, R.; Podolsky, M.J.; Atabai, K. Fat fibrosis: Friend or foe? JCI Insight 2018, 3, e122289. [Google Scholar] [CrossRef]
- Le Lay, S.; Krief, S.; Farnier, C.; Lefrère, I.; Le Liepvre, X.; Bazin, R.; Ferré, P.; Dugail, I. Cholesterol, a cell size-dependent signal that regulates glucose metabolism and gene expression in adipocytes*210. J. Biol. Chem. 2001, 276, 16904–16910. [Google Scholar] [CrossRef]
- Lackey, D.E.; Burk, D.H.; Ali, M.R.; Mostaedi, R.; Smith, W.H.; Park, J.; Scherer, P.E.; Seay, S.A.; McCoin, C.S.; Bonaldo, P.; et al. Contributions of adipose tissue architectural and tensile properties toward defining healthy and unhealthy obesity. Am. J. Physiol. Endocrinol. Metab. 2013, 306, E233–E246. [Google Scholar] [CrossRef]
- Kim, S.M.; Lun, M.; Wang, M.; Senyo, S.E.; Guillermier, C.; Patwari, P.; Steinhauser, M.L. Loss of white adipose hyperplastic potential is associated with enhanced susceptibility to insulin resistance. Cell Metab. 2014, 20, 1049–1058. [Google Scholar] [CrossRef]
- Choe, S.S.; Huh, J.Y.; Hwang, I.J.; Kim, J.I.; Kim, J.B. Adipose tissue remodeling: Its role in energy metabolism and metabolic disorders. Front. Endocrinol. 2016, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Lessard, J.; Laforest, S.; Pelletier, M.; Leboeuf, M.; Blackburn, L.; Tchernof, A. Low abdominal subcutaneous preadipocyte adipogenesis is associated with visceral obesity, visceral adipocyte hypertrophy, and a dysmetabolic state. Adipocyte 2014, 3, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Schwalie, P.C.; Dong, H.; Zachara, M.; Russeil, J.; Alpern, D.; Akchiche, N.; Caprara, C.; Sun, W.; Schlaudraff, K.U.; Soldati, G.; et al. A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature 2018, 559, 103–108. [Google Scholar] [CrossRef]
- Zong, H.; Armoni, M.; Harel, C.; Karnieli, E.; Pessin, J.E. Cytochrome p-450 cyp2e1 knockout mice are protected against high-fat diet-induced obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E532–E539. [Google Scholar] [CrossRef]
- Luo, J.; Sladek, R.; Carrier, J.; Bader, J.-A.; Richard, D.; Giguère, V. Reduced fat mass in mice lacking orphan nuclear receptor estrogen-related receptor α. Mol. Cell. Biol. 2003, 23, 7947–7956. [Google Scholar] [CrossRef]
- Ju, D.; He, J.; Zhao, L.; Zheng, X.; Yang, G. Estrogen related receptor α-induced adipogenesis is pgc-1β-dependent. Mol. Biol. Rep. 2012, 39, 3343–3354. [Google Scholar] [CrossRef]
- Tripathi, M.; Yen, P.M.; Singh, B.K. Estrogen-related receptor alpha: An under-appreciated potential target for the treatment of metabolic diseases. Int. J. Mol. Sci. 2020, 21, 1645. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Postigo, M.; Tinahones, A.; El Bekay, R.; Malagón, M.M.; Tinahones, F.J. The role of autophagy in white adipose tissue function: Implications for metabolic health. Metabolites 2020, 10, 179. [Google Scholar] [CrossRef]
- Marcelin, G.; Da Cunha, C.; Gamblin, C.; Suffee, N.; Rouault, C.; Leclerc, A.; Lacombe, A.; Sokolovska, N.; Gautier, E.L.; Clément, K.; et al. Autophagy inhibition blunts pdgfra adipose progenitors’ cell-autonomous fibrogenic response to high-fat diet. Autophagy 2020, 16, 2156–2166. [Google Scholar] [CrossRef]
- Zhang, C.; He, Y.; Okutsu, M.; Ong, L.C.; Jin, Y.; Zheng, L.; Chow, P.; Yu, S.; Zhang, M.; Yan, Z. Autophagy is involved in adipogenic differentiation by repressesing proteasome-dependent pparγ2 degradation. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E530–E539. [Google Scholar] [CrossRef]
- Ro, S.-H.; Jang, Y.; Bae, J.; Kim, I.M.; Schaecher, C.; Shomo, Z.D. Autophagy in adipocyte browning: Emerging drug target for intervention in obesity. Front. Physiol. 2019, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Giguère, V.; Yang, N.; Segui, P.; Evans, R.M. Identification of a new class of steroid hormone receptors. Nature 1988, 331, 91–94. [Google Scholar] [CrossRef]
- Xia, H.; Dufour, C.R.; Giguère, V. Errα as a bridge between transcription and function: Role in liver metabolism and disease. Front. Endocrinol. 2019, 10, 206. [Google Scholar] [CrossRef]
- Deblois, G.; Giguère, V. Functional and physiological genomics of estrogen-related receptors (errs) in health and disease. Biochim. Biophys. Acta Mol. Basis Disease 2011, 1812, 1032–1040. [Google Scholar] [CrossRef]
- Casaburi, I.; Chimento, A.; De Luca, A.; Nocito, M.; Sculco, S.; Avena, P.; Trotta, F.; Rago, V.; Sirianni, R.; Pezzi, V. Cholesterol as an endogenous erralpha agonist: A new perspective to cancer treatment. Front. Endocrinol. 2018, 9, 525. [Google Scholar] [CrossRef]
- Kim, Y.-C.; Gomez, F.E.; Fox, B.G.; Ntambi, J.M. Differential regulation of the stearoyl-coa desaturase genes by thiazolidinediones in 3t3-l1 adipocytes. J. Lipid Res. 2000, 41, 1310–1316. [Google Scholar] [CrossRef]
- Kim, Y.-C.; Ntambi, J.M. Regulation of stearoyl-coa desaturase genes: Role in cellular metabolism and preadipocyte differentiation. Biochem. Biophys. Res. Commun. 1999, 266, 1–4. [Google Scholar] [CrossRef]
- De Luca, M.; Vecchie’, D.; Athmanathan, B.; Gopalkrishna, S.; Valcin, J.A.; Swain, T.M.; Sertie, R.; Wekesa, K.; Rowe, G.C.; Bailey, S.M.; et al. Genetic deletion of syndecan-4 alters body composition, metabolic phenotypes, and the function of metabolic tissues in female mice fed a high-fat diet (running title: Sdc4 deficiency affects metabolic phenotypes). Nutrients 2019, 11, 2810. [Google Scholar] [CrossRef]
- Crandall, D.L.; Quinet, E.M.; El Ayachi, S.; Hreha, A.L.; Leik, C.E.; Savio, D.A.; Juhan-Vague, I.; Alessi, M.-C. Modulation of adipose tissue development by pharmacological inhibition of pai-1. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2209–2215. [Google Scholar] [CrossRef]
- Li, J.; Yu, X.; Pan, W.; Unger, R.H. Gene expression profile of rat adipose tissue at the onset of high-fat-diet obesity. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E1334–E1341. [Google Scholar] [CrossRef]
- Li, J.; Takaishi, K.; Cook, W.; Mccorkle, S.K.; Unger, R.H. Insig-1 “brakes” lipogenesis in adipocytes and inhibits differentiation of preadipocytes. Proc. Natl. Acad. Sci. USA 2003, 100, 9476–9481. [Google Scholar] [CrossRef] [PubMed]
- Hemmings, B.A.; Restuccia, D.F. Pi3k-pkb/akt pathway. Cold Spring Harb. Perspect. Biol. 2012, 4, a011189. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.J. Lkb1 and amp-activated protein kinase control of mtor signalling and growth. Acta Physiol. 2009, 196, 65–80. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.A.N.; Cheng, E.; Williams, M.S.; Winkles, J.A. Tweak-independent fn14 self-association and nf-κb activation is mediated by the c-terminal region of the fn14 cytoplasmic domain. PLoS ONE 2013, 8, e65248. [Google Scholar] [CrossRef]
- Qi, X.; Lei, M.; Qin, L.; Xie, M.; Zhao, D.; Wang, J. Endogenous tweak is critical for regulating the function of mouse uterine natural killer cells in an immunological model of pregnancy loss. Immunology 2016, 148, 70–82. [Google Scholar] [CrossRef]
- Wu, G.; Tawfeeq, H.R.; Lackey, A.I.; Zhou, Y.; Sifnakis, Z.; Zacharisen, S.M.; Xu, H.; Doran, J.M.; Sampath, H.; Zhao, L.; et al. Gut microbiota and phenotypic changes induced by ablation of liver- and intestinal-type fatty acid-binding proteins. Nutrients 2022, 14, 1762. [Google Scholar] [CrossRef]
- Diolintzi, A. The Role of Liver Fatty Acid-Binding Protein (LFABP; FABP1) in Adipose Tissues Cellularity and Function: Implications of Interorgan Signaling. Ph.D. Thesis, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA, 2023. [Google Scholar]
- Heng, Y.; Zhang, X.; Borggrewe, M.; Van Weering, H.R.J.; Brummer, M.L.; Nijboer, T.W.; Joosten, L.A.B.; Netea, M.G.; Boddeke, E.W.G.M.; Laman, J.D.; et al. Systemic administration of β-glucan induces immune training in microglia. J. Neuroinflamm. 2021, 18, 57. [Google Scholar] [CrossRef]
- Pandey, M.; Tuncman, G.; Hotamisligil, G.S.; Samad, F. Divergent roles for p55 and p75 tnf-α receptors in the induction of plasminogen activator inhibitor-1. Am. J. Pathol. 2003, 162, 933–941. [Google Scholar] [CrossRef]
- Mariman, E.C.M.; Wang, P. Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell. Mol. Life Sci. 2010, 67, 1277–1292. [Google Scholar] [CrossRef]
- Lilla, J.; Stickens, D.; Werb, Z. Metalloproteases and adipogenesis: A weighty subject. Am. J. Pathol. 2002, 160, 1551–1554. [Google Scholar] [CrossRef]
- Gregoire, F.M.; Smas, C.M.; Sul, H.S. Understanding adipocyte differentiation. Physiol. Rev. 1998, 78, 783–809. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, Y.; Zhou, X.; Chen, D.; Ouyang, G.; Liu, Y.; Cui, D. Periostin deficiency attenuates lipopolysaccharide- and obesity-induced adipose tissue fibrosis. FEBS Lett. 2021, 595, 2099–2112. [Google Scholar] [CrossRef]
- Nakazeki, F.; Nishiga, M.; Horie, T.; Nishi, H.; Nakashima, Y.; Baba, O.; Kuwabara, Y.; Nishino, T.; Nakao, T.; Ide, Y.; et al. Loss of periostin ameliorates adipose tissue inflammation and fibrosis in vivo. Sci. Rep. 2018, 8, 8553. [Google Scholar] [CrossRef]
- Rangaswami, H.; Bulbule, A.; Kundu, G.C. Osteopontin: Role in cell signaling and cancer progression. Trends Cell Biol. 2006, 16, 79–87. [Google Scholar] [CrossRef]
- Chen, Q.; Shou, P.; Zhang, L.; Xu, C.; Zheng, C.; Han, Y.; Li, W.; Huang, Y.; Zhang, X.; Shao, C.; et al. An osteopontin-integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells. Stem Cells 2014, 32, 327–337. [Google Scholar] [CrossRef]
- Scroyen, I.; Jacobs, F.; Cosemans, L.; Geest, B.D.; Lijnen, R. Effect of plasminogen activator inhibitor-1 on adipogenesis in vivo. Thromb. Haemost. 2009, 101, 388–393. [Google Scholar] [CrossRef]
- Bajou, K.; Masson, V.; Gerard, R.D.; Schmitt, P.M.; Albert, V.; Praus, M.; Lund, L.R.; Frandsen, T.L.; Brunner, N.; Dano, K.; et al. The plasminogen activator inhibitor pai-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. J. Cell Biol. 2001, 152, 777–784. [Google Scholar] [CrossRef]
- Bajou, K.; Noël, A.; Gerard, R.D.; Masson, V.; Brunner, N.; Holst-Hansen, C.; Skobe, M.; Fusenig, N.E.; Carmeliet, P.; Collen, D.; et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat. Med. 1998, 4, 923–928. [Google Scholar] [CrossRef]
- Liang, X.; Kanjanabuch, T.; Mao, S.-L.; Hao, C.-M.; Tang, Y.-W.; Declerck, P.J.; Hasty, A.H.; Wasserman, D.H.; Fogo, A.B.; Ma, L.-J. Plasminogen activator inhibitor-1 modulates adipocyte differentiation. Am. J. Physiol. Endocrinol. Metab. 2006, 290, E103–E113. [Google Scholar] [CrossRef]
- Keophiphath, M.; Achard, V.; Henegar, C.; Rouault, C.; Cle, K.; Lacasa, D. Macrophage-secreted factors promote a profibrotic phenotype in human preadipocytes. Mol. Endocrinol. 2009, 23, 11–24. [Google Scholar] [CrossRef]
- Li, Y.; Periwal, V.; Cushman, S.W.; Stenkula, K.G. Adipose cell hypertrophy precedes the appearance of small adipocytes by 3 days in c57bl/6 mouse upon changing to a high fat diet. Adipocyte 2016, 5, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Romani, P.; Benedetti, G.; Cusan, M.; Arboit, M.; Cirillo, C.; Wu, X.; Rouni, G.; Kostourou, V.; Aragona, M.; Giampietro, C.; et al. Mitochondrial mechanotransduction through mief1 coordinates the nuclear response to forces. Nat. Cell Biol. 2024, 26, 2046–2060. [Google Scholar] [CrossRef]
- Tian, L.; Potus, F.; Wu, D.; Dasgupta, A.; Chen, K.H.; Mewburn, J.; Lima, P.; Archer, S.L. Increased drp1-mediated mitochondrial fission promotes proliferation and collagen production by right ventricular fibroblasts in experimental pulmonary arterial hypertension. Front. Physiol. 2018, 9, 828. [Google Scholar] [CrossRef] [PubMed]
Parameter | LFD | p-Value LFABP−/− vs. WT | HFD | p-Value LFABP−/− vs. WT | p-Value HFD vs. LFD | |||
---|---|---|---|---|---|---|---|---|
WT | LFABP−/− | WT | LFABP−/− | WT | LFABP−/− | |||
Week 12 BW, g (n = 10) | 28.4 ± 1.5 | 30.7 ± 2.3 | p = 0.212 | 34.4 ± 2.0 | 43.6 ± 3.9 | p < 0.001 | p < 0.001 | p < 0.001 |
Weight gain over 12 wk, g (n = 10) | 4.2 ± 1.7 | 4.8 ± 1.2 | p = 0.888 | 10.6 ± 2.6 | 17.5 ± 1.6 | p < 0.001 | p < 0.001 | p < 0.001 |
Fat mass, g (n = 10) | 2.7 ± 1.1 | 6.7 ± 2.2 | p < 0.001 | 8.3 ± 1.7 | 15.4 ± 2.3 | p < 0.001 | p < 0.001 | p < 0.001 |
Fat mass, %BW (n = 10) | 10 ± 3.9 | 21.6 ± 5.8 | p < 0.001 | 24.2 ± 4.6 | 36.6 ± 3.7 | p < 0.001 | p < 0.001 | p < 0.001 |
Adiposity Index, % (n = 10) | 4.8 ± 0.9 | 8.2 ± 1.1 | p < 0.001 | 8.2 ± 1.1 | 10.8 ± 0.8 | p < 0.001 | p < 0.001 | p < 0.001 |
Lean mass, g (n = 10) | 23.4 ± 2.1 | 22.9 ± 0.9 | p = 0.899 | 25.3 ± 2.1 | 25.8 ± 1.8 | p = 0.929 | p = 0.112 | p = 0.005 |
Lean mass, %BW (n = 10) | 85.1 ± 5.2 | 74.8 ± 5.3 | p < 0.001 | 73.7 ± 5.5 | 62.5 ± 4.6 | p < 0.001 | p < 0.001 | p < 0.001 |
iWAT, g (n = 10) | 0.4 ± 0.1 | 0.7 ± 0.2 | p < 0.001 | 0.8 ± 0.2 | 1.4 ± 0.2 | p < 0.001 | p < 0.001 | p < 0.001 |
iWAT, %BW (n = 10) | 1.4 ± 0.3 | 2.4 ± 0.6 | p = 0.001 | 2.3 ± 0.7 | 3.2 ± 0.4 | p < 0.001 | p = 0.005 | p = 0.003 |
iWAT FCV, pL (n = 5) | 21.4 ± 6.8 | 46.6 ± 16.3 | p = 0.642 | 222 ± 64.1 | 45.6 ± 7.8 | p < 0.001 | p < 0.001 | p >0.999 |
iWAT FCN per depot, millions (n = 5–6) | 31.2 ± 15.6 | 20.6 ± 5.4 | p = 0.244 | 4.7 ± 2.7 | 23.6 ± 7.8 | p = 0.001 | p = 0.009 | p = 0.925 |
eWAT, g (n = 10) | 0.6 ± 0.2 | 0.8 ± 0.3 | p = 0.070 | 1.3 ± 0.2 | 1.9 ± 0.2 | p < 0.001 | p < 0.001 | p < 0.001 |
eWAT, %BW (n = 10) | 2.1 ± 0.5 | 2.7 ± 0.8 | p = 0.160 | 3.7 ± 0.5 | 4.5 ± 0.5 | p = 0.024 | p < 0.001 | p < 0.001 |
eWAT FCV, pL (n = 5) | 52.5 ± 9.7 | 113 ± 27.1 | p = 0.327 | 296 ± 50.4 | 247 ± 92.6 | p = 0.510 | p < 0.001 | p = 0.007 |
eWAT FCN per depot, millions (n = 5) | 16 ± 5.4 | 8.1 ± 1.9 | p = 0.005 | 4.2 ± 0.5 | 8.9 ± 2.4 | p = 0.127 | p < 0.001 | p = 0.974 |
iBAT, g (n = 10) | 0.1 ± 0.0 | 0.2 ± 0.1 | p < 0.001 | 0.1 ± 0.0 | 0.4 ± 0.1 | p < 0.001 | p = 0.301 | p < 0.001 |
iBAT, %BW (n = 10) | 0.3 ± 0.1 | 0.8 ± 0.2 | p < 0.001 | 0.4 ± 0.1 | 0.8 ± 0.2 | p < 0.001 | p = 0.885 | p = 0.609 |
Brown adipocyte area, um2 (n = 5) | 374 ± 79.7 | 537 ± 89.1 | p = 0.038 | 449 ± 83.1 | 658 ± 90.2 | p = 0.007 | p = 0.528 | p = 0.157 |
Liver, g (n = 10) | 0.9 ± 0.1 | 1.0 ± 0.1 | p = 0.973 | 1.1 ± 0.1 | 1.6 ± 0.3 | p < 0.001 | p = 0.505 | p < 0.001 |
Liver, %BW (n = 10) | 3.7 ± 0.3 | 3.5 ± 0.4 | p = 0.543 | 3.3 ± 0.1 | 3.9 ± 0.5 | p = 0.002 | p = 0.059 | p = 0.044 |
Gallbladder, g (n = 9–10) | 0.019 ± 0.006 | 0.010 ± 0.003 | p = 0.001 | 0.019 ± 0.005 | 0.013 ± 0.004 | p = 0.009 | p = 0.989 | p = 0.611 |
Food efficiency, g gained/kcal consumed (n = 10) | 0.005 ± 0.002 | 0.006 ± 0.002 | p = 0.919 | 0.012 ± 0.003 | 0.017 ± 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
iWAT cholesterol, mg/g (n = 8–9) | N/A | N/A | N/A | 1.61 ± 0.348 | 2.41 ± 0.555 | p = 0.003 | N/A | N/A |
Pathway Name | NES | FDRq Value | Top Genes |
---|---|---|---|
UPREGULATED | |||
HALLMARK | |||
HALLMARK_Cholesterol Homeostasis | 2.28 | 0.000 | Nfil3, Tnfrsf12a, Sc5d, Mvd, Hmgcs1, Cyp51a1, Ldlr, Idi1, Dhcr7, Hsd17b7, Scd |
HALLMARK_TNFa Signaling via NF-κB | 1.93 | 0.000 | Nfil3, Sdc4, Trib1, Serpine1, Dnajb4, Spsb1, Maff, Pmepa1, Ldlr, Ccn1, Cdkn1a, Cxcl2, Dusp1, Nr4a1 |
HALLMARK_mTORC1 Signaling | 1.86 | 0.001 | Nfil3, Sc5d, Insig1, Hmgcs1, Cyp51a1, Ldlr, Ddit3, Cdkn1a, Acsl3, Idi1, Tes, Bcat1, Dhcr7, Ifrd1, Scd |
HALLMARK_Myc Targets V1 | 1.75 | 0.003 | Ifrd1, Mrps18b, Apex1, Srsf3, Pgk1, Nhp2, Snrpd2, Erh, Nop16, Tra2b |
HALLMARK_Hypoxia | 1.69 | 0.005 | Nfil3, Sdc4, Serpine1, Ppp1r3c, Maff, Ccn1, Ddit3, Cdkn1a, Vhl, Tes, Pgf, Fosl2, Dusp1 |
REACTOME | |||
REACTOME_Cholesterol Biosynthesis | 2.52 | 0.000 | Sc5d, Mvd, Hmgcs1, Cyp51a1, Msmo1, Idi1, Dhcr7, Hsd17b7, Fdft1, Sqle |
REACTOME_Activation of Gene Expression by SREBF/SREBP | 2.26 | 0.000 | Sc5d, Mvd, Hmgcs1, Cyp51a1, Smarcd3, Idi1, Dhcr7, Fdft1, Sqle, Fdps |
REACTOME_Regulation of Cholesterol Biosynthesis by SREBP/SREBF | 2.18 | 0.000 | Sc5d, Insig1, Mvd, Hmgcs1, Cyp51a1, Smarcd3, Idi1, Dhcr7, Fdft1, Sqle |
REACTOME_Mitochondrial Translation | 2.16 | 0.000 | Mrps18b, mt-Rnr1, mt-Rnr2, Mrps6, Mrpl15, Mrpl57, Mrpl33, Mrpl20, Mrpl55, Mrpl46 |
REACTOME_Mitochondrial Biogenesis | 2.01 | 0.010 | Esrra, Smarcd3, Prkag3, Alas1, Prkag2, Tmem11, Sod2, Prkag1, Prkab2, Cycs |
KEGG | |||
KEGG_Steroid Biosynthesis | 2.06 | 0.001 | Sc5d, Cyp51a1, Msmo1, Dhcr7, Hsd17b7, Fdft1, Sqle, Lss, Nsdhl, Dhcr24 |
KEGG_Spliceosome | 2.04 | 0.001 | Hspa2, Hspa1l, Srsf9, Srsf3, Ppil1, Rbm8a, Hnrnpk, Thoc3, Snrpd2, Srsf10 |
KEGG_Terpenoid Backbone Biosynthesis | 2.03 | 0.001 | Mvd, Hmgcs1, Idi1, Fdps, Pmvk, Mvk, Pdss1 |
KEGG_Ribosome | 1.79 | 0.018 | Rpl3l, Rsl24d1, Mrpl13, Rpl22l1, Rpl38, Fau, Rps28, Rps27l, Rpl13a, Rpl35 |
KEGG_Proteasome | 1.74 | 0.026 | Psme3, Psmb3, Psmd8, Psmc4, Psmc2, Psmb10, Psma2, Psmb4, Psmb5, Psmd13 |
DOWNREGULATED | |||
HALLMARK | |||
HALLMARK_Interferon-alpha Response | −1.83 | 0.005 | Ifi44, Tmem140, Trim14, Rtp4, Lgals3bp, Procr, Batf2, Irf7, C1s, Txnip |
HALLMARK_Epithelial Mesenchymal Transition | −1.57 | 0.063 | Foxc2, Postn, Col1a2, Lama2, Ecm1, Col6a3, Anpep, Mmp2, Mmp3, Col11a1, Col1a1, Looxl2, Slit2, Dab2, Col3a1, Spp1 |
HALLMARK_Complement | −1.48 | 0.105 | Cfh, C2, Cp, Timp2, Mt3, Pla2g7, C1r, Lipa, Itgam, Cd46, Ang |
HALLMARK_Coagulation | −1.47 | 0.080 | Cfh, C2, Mmp9, Mmp2, Mmp3, C1r, P2ry1, Cfd, Ang, Gp9 |
HALLMARK_Bile Acid Metabolism | −1.40 | 0.124 | Abca6, Abcg4, Abca9, Hsd3b7, Cat, Abca8, Abca1, Ephx2, Pex6, Retsat |
REACTOME | |||
REACTOME_Collagen Degradation | −2.30 | 0.000 | Elane, Col1a2, Col6a3, Col4a5, Mmp9, Mmp2, Col6a1, Mmp3, Col11a1, Col1a1 |
REACTOME_Assembly of Collagen Fibrils and Other Multimeric Structures | −2.25 | 0.000 | Col1a2, Col6a3, Col4a5, Mmp9, Col6a1, Mmp3, Col11a1, Col1a1, Loxl2, Col3a1 |
REACTOME_Initial Triggering of Complement | −2.21 | 0.000 | C2, C1qb, C1r, Cfd, Cfp, C1s, C1qc, C4b, C1qa, C3 |
REACTOME_Collagen Formation | −2.19 | 0.000 | Col1a2, Col6a3, Col4a5, Mmp9, Col6a1, Mmp3, Col11a1, Col1a1, Loxl2, Col3a1 |
REACTOME_Collagen Biosynthesis and Modifying Enzymes | −2.16 | 0.001 | Col1a2, Col6a3, Col4a5, Col6a1, Col11a1, Col1a1, Col3a1, P3h3, Col26a1, Adamts14 |
KEGG | |||
KEGG_Renin Angiotensin System | −2.14 | 0.000 | Agt, Agtr1, Anpep, Ace, Enpep, Ace2, Cpa3, Cma1 |
KEGG_ECM Receptor Interaction | −2.07 | 0.000 | Col1a2, Lama2, Col6a3, Lamb1, Col6a1, Col11a1, Col1a1, Col3a1, Lamc3, Spp1 |
KEGG_Lysosome | −1.98 | 0.001 | Slc11a1, Cd68, Lipa, Atp6v0d2, Hexa, Lgmn, Asah1, Sort1, Ctsk, Ctsc |
KEGG_Glycosaminoglycan Degradation | −1.97 | 0.001 | Hexa, Hs3st3b1, Hyal2, Hgsnat, Hyal1, Glb1, Gusb, Hyal3, Gns, Idua |
KEGG_Hematopoietic Cell Lineage | −1.95 | 0.001 | Il1r2, Gypa, Anpep, Cd14, Il5, Fcgr1a, Epor, Itgam, Gp9, Gp5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diolintzi, A.; Zhou, Y.; Fomina, A.; Sun, Y.; Husain, S.; Sidossis, L.S.; Fried, S.K.; Storch, J. Novel Hyperplastic Expansion of White Adipose Tissue Underlies the Metabolically Healthy Obese Phenotype of Male LFABP Null Mice. Cells 2025, 14, 760. https://doi.org/10.3390/cells14110760
Diolintzi A, Zhou Y, Fomina A, Sun Y, Husain S, Sidossis LS, Fried SK, Storch J. Novel Hyperplastic Expansion of White Adipose Tissue Underlies the Metabolically Healthy Obese Phenotype of Male LFABP Null Mice. Cells. 2025; 14(11):760. https://doi.org/10.3390/cells14110760
Chicago/Turabian StyleDiolintzi, Anastasia, Yinxiu Zhou, Angelina Fomina, Yifei Sun, Seema Husain, Labros S. Sidossis, Susan K. Fried, and Judith Storch. 2025. "Novel Hyperplastic Expansion of White Adipose Tissue Underlies the Metabolically Healthy Obese Phenotype of Male LFABP Null Mice" Cells 14, no. 11: 760. https://doi.org/10.3390/cells14110760
APA StyleDiolintzi, A., Zhou, Y., Fomina, A., Sun, Y., Husain, S., Sidossis, L. S., Fried, S. K., & Storch, J. (2025). Novel Hyperplastic Expansion of White Adipose Tissue Underlies the Metabolically Healthy Obese Phenotype of Male LFABP Null Mice. Cells, 14(11), 760. https://doi.org/10.3390/cells14110760