The Roles of Fibrinolytic Factors in Bone Destruction Caused by Inflammation
Abstract
1. Introduction
2. Bone Remodeling and Inflammatory Bone Destruction
3. The Role of Fibrinolytic Factors in Bone Homeostasis and Inflammatory Bone Destruction
3.1. Plasminogen (Plg) and Plasmin
3.2. Urokinase-Type Plasminogen Activator (uPA) and Its Receptor (uPAR)
3.3. Tissue-Type Plasminogen Activator (tPA)
3.4. α2-Antiplasmin (α2AP)
3.5. Plasminogen Activator Inhibitor-1 (PAI-1)
4. Conclusions and Therapeutic Perspective
Funding
Conflicts of Interest
Abbreviations
α2AP | α2-antiplasmin |
Å6 | urokinase-type plasminogen activator-derived peptide |
AGEs | advanced glycation end products |
ALP | alkaline phosphatase |
AMPK | AMP-activated protein kinase |
APCE | antiplasmin-cleaving enzyme (APCE) |
As | androgen |
ATGL | adipose triglyceride lipase |
BDNF | brain-derived neurotrophic factor |
BMP | bone morphogenetic proteins |
bFGF | basic fibroblast growth factor |
CTGF | connective tissue growth factor |
CTHRC1 | collagen triple helix repeat containing 1 |
DC-STAMP | dendritic cell-specific transmembrane protein |
ECM | extracellular matrix |
EGF | epidermal growth factor |
ERK | extracellular signal-regulated kinase |
Es | estrogen |
FAK | focal adhesion kinase |
FAP | fibroblast activation protein |
FDP | fibrin degradation product |
FPRs | N-formyl peptide receptors |
GC | glucocorticoid |
GPI | glycosylphosphatidylinositol |
HMGB1 | high mobility group box 1 |
IFN | interferon |
IGF-1 | insulin-like growth factor 1 |
IGFBP-5 | insulin-like growth factor-binding protein 5 |
iPLA2 | calcium-independent phospholipase A2 |
IL | interleukin |
LBS | lysine-binding sites |
LDLR | low-density lipoprotein receptor |
LPS | lipopolysaccharide |
LRP-1 | low-density lipoprotein receptor-related protein |
JAK | Janus kinase |
JNK | c-Jun terminal kinase |
MAPK | mitogen-activated protein kinases |
M-CSF | macrophage colony-stimulating factor |
MMP | matrix metalloproteinase |
MSC | mesenchymal stem cell |
NMDAR | N-methyl-d-aspartate receptor |
OPG | osteoprotegerin |
OVX | ovariectomy |
PAI-1 | plasminogen activator inhibitor-1 |
PAP | plasmin-α2AP |
PAR | protease-activated receptor |
PDGF | platelet-derived growth factor |
PEDF | Pigment epithelium-derived factor |
PGE2 | prostaglandin E2 |
PI3K | phosphoinositide 3-kinase |
Plg | plasminogen |
PTH | parathyroid hormone |
RCL | reactive center loop |
RANKL | receptor activator of NF-κB ligand |
S1P | Sphingosine-1-phosphate |
SEMA4D | Semaphorin-4D |
serpin | serine protease inhibitor |
STAT | signal transducer and activator of transcription protein |
STZ | streptozotocin |
TGF-β | transforming growth factor-b |
TLR | Toll-like receptor |
TNF-α | tumor necrosis factor-α |
TNFR | TNF receptor |
tPA | tissue-type plasminogen activator |
uPA | urokinase-type plasminogen activator |
uPAR | urokinase-type plasminogen activator receptor |
VEGF | vascular endothelial growth factor |
Vn | vitronectin |
References
- Boyle, W.; Simonet, W.; Lacey, D. Osteoclast differentiation and activation. Nature 2003, 423, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Terkawi, M.; Matsumae, G.; Shimizu, T.; Takahashi, D.; Kadoya, K.; Iwasaki, N. Interplay between Inflammation and Pathological Bone Resorption: Insights into Recent Mechanisms and Pathways in Related Diseases for Future Perspectives. Int. J. Mol. Sci. 2022, 23, 1786. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Zheng, T.; Zhao, B. Cytokine-mediated immunomodulation of osteoclastogenesis. Bone 2022, 164, 116540. [Google Scholar] [CrossRef] [PubMed]
- Epsley, S.; Tadros, S.; Farid, A.; Kargilis, D.; Mehta, S.; Rajapakse, C. The Effect of Inflammation on Bone. Front. Physiol. 2021, 11, 511799. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Nakayamada, S.; Okada, Y. Osteoblasts and osteoclasts in bone remodeling and inflammation. Curr. Drug Targets Inflamm. Allergy 2005, 4, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Kanno, Y. The Role of Fibrinolytic Regulators in Vascular Dysfunction of Systemic Sclerosis. Int. J. Mol. Sci. 2019, 20, 619. [Google Scholar] [CrossRef]
- Perucci, L.; Vago, J.; Miles, L.; Sousa, L. Crosstalk between the plasminogen/plasmin system and inflammation resolution. J. Thromb. Haemost. 2023, 21, 2666–2678. [Google Scholar] [CrossRef]
- Kanno, Y. The uPA/uPAR System Orchestrates the Inflammatory Response, Vascular Homeostasis, and Immune System in Fibrosis Progression. Int. J. Mol. Sci. 2023, 24, 1796. [Google Scholar] [CrossRef]
- Whyte, C. All tangled up: Interactions of the fibrinolytic and innate immune systems. Front. Med. 2023, 10, 1212201. [Google Scholar] [CrossRef]
- Okada, K.; Nishioka, M.; Kaji, H. Roles of fibrinolytic factors in the alterations in bone marrow hematopoietic stem/progenitor cells during bone repair. Inflamm. Regen. 2020, 40, 22. [Google Scholar] [CrossRef]
- Ribet, A.; Ng, P.; Pavlos, N. Membrane Transport Proteins in Osteoclasts: The Ins and Outs. Front. Cell Dev. Biol. 2021, 26, 644986. [Google Scholar] [CrossRef]
- Tsukasaki, M.; Takayanagi, H. Osteoimmunology: Evolving concepts in bone-immune interactions in health and disease. Nat. Rev. Immunol. 2019, 19, 626–642. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.; Takegahara, N.; Kim, H.; Choi, Y. Updating osteoimmunology: Regulation of bone cells by innate and adaptive immunity. Nat. Rev. Rheumatol. 2018, 14, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Amarasekara, D.; Yun, H.; Kim, S.; Lee, N.; Kim, H.; Rho, J. Regulation of Osteoclast Differentiation by Cytokine Networks. Immune Netw. 2018, 18, e8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B. TNF and Bone Remodeling. Curr. Osteoporos. Rep. 2017, 15, 126–134. [Google Scholar] [CrossRef]
- Kim, J.; Jin, H.; Kim, K.; Song, I.; Youn, B.; Matsuo, K.; Kim, N. The mechanism of osteoclast differentiation induced by IL-1. J. Immunol. 2009, 183, 1862–1870. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Mizoguchi, T.; Take, I.; Kurihara, S.; Udagawa, N.; Takahashi, N. Prostaglandin E2 enhances osteoclastic differentiation of precursor cells through protein kinase A-dependent phosphorylation of TAK1. J. Biol. Chem. 2005, 280, 11395–11403. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Chen, W.; Tang, C.; McVicar, A.; Edwards, D.; Wang, J.; McConnell, M.; Yang, S.; Li, Y.; Chang, Z.; et al. Knockout and Double Knockout of Cathepsin K and Mmp9 reveals a novel function of Cathepsin K as a regulator of osteoclast gene expression and bone homeostasis. Int. J. Biol. Sci. 2022, 18, 5522–5538. [Google Scholar] [CrossRef] [PubMed]
- Pivetta, E.; Scapolan, M.; Pecolo, M.; Wassermann, B.; Abu-Rumeileh, I.; Balestreri, L.; Borsatti, E.; Tripodo, C.; Colombatti, A.; Spessotto, P. MMP-13 stimulates osteoclast differentiation and activation in tumour breast bone metastases. Breast Cancer Res. 2011, 13, R105. [Google Scholar] [CrossRef]
- Khoswanto, C. Role of matrix metalloproteinases in bone regeneration: Narrative review. J. Oral Biol. Craniofac. Res. 2023, 13, 539–543. [Google Scholar] [CrossRef]
- Mangashetti, L.; Khapli, S.; Wani, M. IL-4 inhibits bone-resorbing activity of mature osteoclasts by affecting NF-κB and Ca2+ signaling. J. Immunol. 2005, 175, 917–925. [Google Scholar] [CrossRef]
- Evans, K.; Fox, S. Interleukin-10 inhibits osteoclastogenesis by reducing NFATc1 expression and preventing its translocation to the nucleus. BMC Cell Biol. 2007, 8, 4. [Google Scholar] [CrossRef]
- Duque, G.; Huang, D.; Dion, N.; Macoritto, M.; Rivas, D.; Li, W.; Yang, X.; Li, J.; Lian, J.; Marino, F.; et al. Interferon-γ plays a role in bone formation in vivo and rescues osteoporosis in ovariectomized mice. J. Bone Miner. Res. 2011, 26, 1472–1483. [Google Scholar] [CrossRef]
- Macias, M.; Fitzpatrick, L.; Brenneise, I.; McGarry, M.; Lee, J.; Lee, N. Expression of IL-5 alters bone metabolism and induces ossification of the spleen in transgenic mice. J. Clin. Investig. 2001, 107, 949–959. [Google Scholar] [CrossRef]
- Berardi, S.; Corrado, A.; Maruotti, N.; Cici, D.; Cantatore, F. Osteoblast role in the pathogenesis of rheumatoid arthritis. Mol. Biol. Rep. 2021, 48, 2843–2852. [Google Scholar] [CrossRef]
- Kim, J.; Lin, C.; Stavre, Z.; Greenblatt, M.; Shim, J. Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells 2020, 9, 2073. [Google Scholar] [CrossRef]
- Ishii, M.; Egen, J.; Klauschen, F.; Meier-Schellersheim, M.; Saeki, Y.; Vacher, J.; Proia, R.; Germain, R. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 2009, 458, 524–528. [Google Scholar] [CrossRef]
- Takeshita, S.; Fumoto, T.; Matsuoka, K.; Park, K.; Aburatani, H.; Kato, S.; Ito, M.; Ikeda, K. Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation. J. Clin. Investig. 2013, 123, 3914–3924. [Google Scholar] [CrossRef]
- Matsuoka, K.; Park, K.; Ito, M.; Ikeda, K.; Takeshita, S. Osteoclast-derived complement component 3a stimulates osteoblast differentiation. J. Bone Miner. Res. 2014, 29, 1522–1530. [Google Scholar] [CrossRef] [PubMed]
- Cao, X. Targeting osteoclast-osteoblast communication. Nat. Med. 2011, 17, 1344–1346. [Google Scholar] [CrossRef]
- Ru, J.; Wang, Y. Osteocyte apoptosis: The roles and key molecular mechanisms in resorption-related bone diseases. Cell Death Dis. 2020, 11, 846. [Google Scholar] [CrossRef]
- Davalos, D.; Akassoglou, K. Fibrinogen as a key regulator of inflammation in disease. Semin. Immunopathol. 2012, 34, 43–62. [Google Scholar] [CrossRef]
- Heissig, B.; Salama, Y.; Takahashi, S.; Osada, T.; Hattori, K. The multifaceted role of plasminogen in inflammation. Cell Signal 2020, 75, 109761. [Google Scholar] [CrossRef]
- Sanchez-Pernaute, O.; Filkova, M.; Gabucio, A.; Klein, M.; Maciejewska-Rodrigues, H.; Ospelt, C.; Brentano, F.; Michel, B.; Gay, R.; Herrero-Beaumont, G.; et al. Citrullination enhances the pro-inflammatory response to fibrin in rheumatoid arthritis synovial fibroblasts. Ann. Rheum. Dis. 2013, 72, 1400–1406. [Google Scholar] [CrossRef]
- Luyendyk, J.; Schoenecker, J.; Flick, M. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood 2019, 133, 511–520. [Google Scholar] [CrossRef]
- Cole, H.; Ohba, T.; Nyman, J.; Hirotaka, H.; Cates, J.; Flick, M.; Degen, J.; Schoenecker, J. Fibrin accumulation secondary to loss of plasmin-mediated fibrinolysis drives inflammatory osteoporosis in mice. Arthritis Rheumatol. 2014, 66, 2222–2233. [Google Scholar] [CrossRef]
- Gollapudi, M.; Bajaj, P.; Oza, R. Injectable Platelet-Rich Fibrin—A Revolution in Periodontal Regeneration. Cureus 2022, 14, e28647. [Google Scholar] [CrossRef] [PubMed]
- Kummer, J.; Abbink, J.; de Boer, J.; Roem, D.; Nieuwenhuys, E.; Kamp, A.; Swaak, T.; Hack, C. Analysis of intraarticular fibrinolytic pathways in patients with inflammatory and noninflammatory joint diseases. Arthritis Rheum. 1992, 35, 884–893. [Google Scholar] [PubMed]
- Buckley, B.; Ali, U.; Kelso, M.; Ranson, M. The Urokinase Plasminogen Activation System in Rheumatoid Arthritis: Pathophysiological Roles and Prospective Therapeutic Targets. Curr. Drug Targets 2019, 20, 970–981. [Google Scholar] [CrossRef] [PubMed]
- Slot, O.; Brünner, N.; Locht, H.; Oxholm, P.; Stephens, R. Soluble urokinase plasminogen activator receptor in plasma of patients with inflammatory rheumatic disorders: Increased concentrations in rheumatoid arthritis. Ann. Rheum. Dis. 1999, 58, 488–492. [Google Scholar] [CrossRef]
- Xue, L.; Tao, L.; Li, X.; Wang, Y.; Wang, B.; Zhang, Y.; Gao, N.; Dong, Y.; Xu, N.; Xiong, C.; et al. Plasma fibrinogen, D-dimer, and fibrin degradation product as biomarkers of rheumatoid arthritis. Sci. Rep. 2021, 11, 16903. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.; Alfaro, G.; Goycoolea, M.; Quiroga, T.; Ocqueteau, M.; Massardo, L.; Pérez, C.; Sáez, C.; Panes, O.; Matus, V.; et al. Circulating platelet-derived microparticles in systemic lupus erythematosus. Association with increased thrombin generation and procoagulant state. Thromb. Haemost. 2006, 95, 94–99. [Google Scholar] [PubMed]
- Kiraz, S.; Ertenli, I.; Benekli, M.; Haznedaroğlu, I.; Calgüneri, M.; Celik, I.; Apraş, S.; Kirazli, S. Clinical significance of hemostatic markers and thrombomodulin in systemic lupus erythematosus: Evidence for a prothrombotic state. Lupus 1999, 8, 737–741. [Google Scholar] [CrossRef]
- Dhillon, P.; Khalafallah, A.; Adams, M. Changes to fibrinolysis in patients with systemic lupus erythematosus are associated with endothelial cell damage and inflammation, but not antiphospholipid antibodies. Blood Coagul. Fibrinolysis 2016, 27, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Burcsár, S.; Toldi, G.; Kovács, L.; Szalay, B.; Vásárhelyi, B.; Balog, A. Urine soluble urokinase plasminogen activator receptor as a potential biomarker of lupus nephritis activity. Biomarkers 2021, 26, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Toldi, G.; Szalay, B.; Bekő, G.; Bocskai, M.; Deák, M.; Kovács, L.; Vásárhelyi, B.; Balog, A. Plasma soluble urokinase plasminogen activator receptor (suPAR) levels in systemic lupus erythematosus. Biomarkers 2012, 17, 758–763. [Google Scholar] [CrossRef]
- Kwieciński, J.; Kłak, M.; Trysberg, E.; Blennow, K.; Tarkowski, A.; Jin, T. Relationship between elevated cerebrospinal fluid levels of plasminogen activator inhibitor 1 and neuronal destruction in patients with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 2009, 60, 2094–2101. [Google Scholar] [CrossRef]
- Penglong, T.; Boontanvansom, A.; Viboonjuntra, P.; Siripaitoon, B. Reduced ADAMTS13 activity and high D-dimer levels are associated with thrombosis in patients with systemic lupus erythematosus. Blood Coagul. Fibrinolysis 2023, 34, 432–438. [Google Scholar] [CrossRef]
- Huang, J.; An, Q.; Zhang, C.; He, L.; Wang, L. Decreased low-density lipoprotein and the presence of pulmonary arterial hypertension among newly diagnosed drug-naïve patients with systemic lupus erythematosus: D-dimer as a mediator. Exp. Ther. Med. 2022, 24, 595. [Google Scholar] [CrossRef]
- Vrij, A.; Rijken, J.; van Wersch, J.; Stockbrügger, R. Coagulation and fibrinolysis in inflammatory bowel disease and in giant cell arteritis. Pathophysiol. Haemost. Thromb. 2003, 33, 75–83. [Google Scholar] [CrossRef]
- Kolho, K.; Valtonen, E.; Rintamäki, H.; Savilahti, E. Soluble urokinase plasminogen activator receptor suPAR as a marker for inflammation in pediatric inflammatory bowel disease. Scand. J. Gastroenterol. 2012, 47, 951–955. [Google Scholar] [CrossRef]
- Duncan, M.; Frazier, K.; Abramson, S.; Williams, S.; Klapper, H.; Huang, X.; Grotendorst, G. Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: Down-regulation by cAMP. FASEB J. 1999, 13, 1774–1786. [Google Scholar] [CrossRef]
- Minordi, L.; Larosa, L.; Papa, A.; Bordonaro, V.; Lopetuso, L.; Holleran, G.; Gasbarrini, A.; Manfredi, R. Assessment of Crohn’s Disease Activity: Magnetic Resonance Enterography in Comparison with Clinical and Endoscopic Evaluations. J. Gastrointestin Liver Dis. 2019, 28, 213–224. [Google Scholar] [CrossRef]
- Taşdemir, İ.; Erbak Yılmaz, H.; Narin, F.; Sağlam, M. Assessment of saliva and gingival crevicular fluid soluble urokinase plasminogen activator receptor (suPAR), galectin-1, and TNF-α levels in periodontal health and disease. J. Periodontal Res. 2020, 55, 622–630. [Google Scholar] [CrossRef]
- Deppe, H.; Hohlweg-Majert, B.; Hölzle, F.; Kesting, M.; Wagenpfeil, S.; Wolff, K.; Schmitt, M. Content of urokinase-type plasminogen activator (uPA) and its inhibitor PAI-1 in oral mucosa and inflamed periodontal tissue. Quintessence Int. 2010, 41, 165–171. [Google Scholar] [PubMed]
- Dikshit, S. Fibrinogen Degradation Products and Periodontitis: Deciphering the Connection. J. Clin. Diagn. Res. 2015, 9, ZC10–ZC12. [Google Scholar] [CrossRef] [PubMed]
- Syrovets, T.L.O.; Simmet, T. Plasmin as a proinflammatory cell activator. J. Leukoc. Biol. 2012, 92, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Godier, A.H.B. Plasminogen receptors and their role in the pathogenesis of inflammatory, autoimmune and malignant disease. J. Thromb. Haemost. 2013, 11, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Shaker, B.; Bajou, K. The Plasminogen-Activator Plasmin System in Physiological and Pathophysiological Angiogenesis. Int. J. Mol. Sci. 2021, 23, 337. [Google Scholar] [CrossRef]
- Draxler, D.F.S.M.; Medcalf, R.L. Plasmin: A Modulator of Immune Function. Semin. Thromb. Hemost. 2017, 43, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Law, R.; Abu-Ssaydeh, D.; Whisstock, J. New insights into the structure and function of the plasminogen/plasmin system. Curr. Opin. Struct. Biol. 2013, 23, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Zijlstra, A.; Aimes, R.; Zhu, D.; Regazzoni, K.; Kupriyanova, T.; Seandel, M.; Deryugina, E.; Quigley, J. Collagenolysis-dependent angiogenesis mediated by matrix metalloproteinase-13 (collagenase-3). J. Biol. Chem. 2004, 279, 27633–27645. [Google Scholar] [CrossRef] [PubMed]
- Kanno, Y.; Ishisaki, A.; Kawashita, E.; Chosa, N.; Nakajima, K.; Nishihara, T.; Toyoshima, K.; Okada, K.; Ueshima, S.; Matsushita, K.; et al. Plasminogen/plasmin modulates bone metabolism by regulating the osteoblast and osteoclast function. J. Biol. Chem. 2011, 286, 8952–8960. [Google Scholar] [CrossRef] [PubMed]
- Kawao, N.; Tamura, Y.; Okumoto, K.; Yano, M.; Okada, K.; Matsuo, O.; Kaji, H. Plasminogen plays a crucial role in bone repair. J. Bone Miner. Res. 2013, 28, 1561–1574. [Google Scholar] [CrossRef] [PubMed]
- Kawao, N.; Tamura, Y.; Horiuchi, Y.; Okumoto, K.; Yano, M.; Okada, K.; Matsuo, O.; Kaji, H. The Tissue Fibrinolytic System Contributes to the Induction of Macrophage Function and CCL3 during Bone Repair in Mice. PLoS ONE 2015, 10, e0123982. [Google Scholar] [CrossRef] [PubMed]
- Kanno, Y.; Ishisaki, A.; Kawashita, E.; Kuretake, H.; Ikeda, K.; Matsuo, O. uPA Attenuated LPS-induced Inflammatory Osteoclastogenesis through the Plasmin/PAR-1/Ca2+/CaMKK/AMPK Axis. Int. J. Biol. Sci. 2016, 12, 63–71. [Google Scholar] [CrossRef]
- Sugimoto, M.; Ribeiro, A.; Costa, B.; Vago, J.; Lima, K.; Carneiro, F.; Ortiz, M.; Lima, G.; Carmo, A.; Rocha, R.; et al. Plasmin and plasminogen induce macrophage reprogramming and regulate key steps of inflammation resolution via annexin A1. Blood 2017, 129, 2896–2907. [Google Scholar] [CrossRef]
- Jann, J.; Gascon, S.; Roux, S.; Faucheux, N. Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Int. J. Mol. Sci. 2020, 21, 7597. [Google Scholar] [CrossRef]
- Chim, S.; Tickner, J.; Chow, S.; Kuek, V.; Guo, B.; Zhang, G.; Rosen, V.; Erber, W.; Xu, J. Angiogenic factors in bone local environment. Cytokine Growth Factor Rev. 2013, 24, 297–310. [Google Scholar] [CrossRef]
- Vago, J.; Sugimoto, M.; Lima, K.; Negreiros-Lima, G.; Baik, N.; Teixeira, M.; Perretti, M.; Parmer, R.; Miles, L.; Sousa, L. Plasminogen and the Plasminogen Receptor, Plg-RKT, Regulate Macrophage Phenotypic, and Functional Changes. Front. Immunol. 2019, 10, 1458. [Google Scholar] [CrossRef]
- Fallah, M.; Viklund, E.; Bäckman, A.; Brodén, J.; Lundskog, B.; Johansson, M.; Blomquist, M.; Wilczynska, M.; Ny, T. Plasminogen is a master regulator and a potential drug candidate for the healing of radiation wounds. Cell Death Dis. 2020, 11, 201. [Google Scholar] [CrossRef]
- Syrovets, T.; Jendrach, M.; Rohwedder, A.; Schüle, A.; Simmet, T. Plasmin-induced expression of cytokines and tissue factor in human monocytes involves AP-1 and IKKβ-mediated NF-κB activation. Blood 2001, 97, 3941–3950. [Google Scholar] [CrossRef]
- Li, X.; Syrovets, T.; Genze, F.; Pitterle, K.; Oberhuber, A.; Orend, K.; Simmet, T. Plasmin triggers chemotaxis of monocyte-derived dendritic cells through an Akt2-dependent pathway and promotes a T-helper type-1 response. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 582–590. [Google Scholar] [CrossRef]
- Lam, T.; Medcalf, R.; Cloud, G.; Myles, P.; Keragala, C. Tranexamic acid for haemostasis and beyond: Does dose matter? Thromb. J. 2023, 21, 94. [Google Scholar] [CrossRef] [PubMed]
- Baranowsky, A.; Appelt, J.; Tseneva, K.; Jiang, S.; Jahn, D.; Tsitsilonis, S.; Frosch, K.; Keller, J. Tranexamic Acid Promotes Murine Bone Marrow-Derived Osteoblast Proliferation and Inhibits Osteoclast Formation In Vitro. Int. J. Mol. Sci. 2021, 22, 449. [Google Scholar] [CrossRef] [PubMed]
- Carmo, A.; Costa, B.; Vago, J.; de Oliveira, L.; Tavares, L.; Nogueira, C.; Ribeiro, A.; Garcia, C.; Barbosa, A.; Brasil, B.; et al. Plasmin induces in vivo monocyte recruitment through protease-activated receptor-1-, MEK/ERK-, and CCR2-mediated signaling. J. Immunol. 2014, 193, 3654–3663. [Google Scholar] [CrossRef] [PubMed]
- Sato, N.; Ichikawa, J.; Wako, M.; Ohba, T.; Saito, M.; Sato, H.; Koyama, K.; Hagino, T.; Schoenecker, J.; Ando, T.; et al. Thrombin induced by the extrinsic pathway and PAR-1 regulated inflammation at the site of fracture repair. Bone 2016, 83, 23–34. [Google Scholar] [CrossRef]
- Houck, K.; Leung, D.; Rowland, A.; Winer, J.; Ferrara, N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J. Biol. Chem. 1992, 267, 26031–26037. [Google Scholar] [CrossRef]
- Clarkin, C.; Gerstenfeld, L. VEGF and bone cell signalling: An essential vessel for communication? Cell Biochem. Funct. 2013, 31, 1–11. [Google Scholar] [CrossRef]
- Li, L.; Yao, Y.; Gu, X.; Che, D.; Ma, C.; Dai, Z.; Li, C.; Zhou, T.; Cai, W.; Yang, Z.; et al. Plasminogen kringle 5 induces endothelial cell apoptosis by triggering a voltage-dependent anion channel 1 (VDAC1) positive feedback loop. J. Biol. Chem. 2014, 289, 32628–32638. [Google Scholar] [CrossRef]
- Donato, R.; Cannon, B.; Sorci, G.; Riuzzi, F.; Hsu, K.; Weber, D.; Geczy, C. Functions of S100 proteins. Curr. Mol. Med. 2013, 13, 24–57. [Google Scholar] [CrossRef] [PubMed]
- Swisher, J.; Burton, N.; Bacot, S.; Vogel, S.; Feldman, G. Annexin A2 tetramer activates human and murine macrophages through TLR4. Blood 2010, 115, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Han, M.; Liu, H.; Niu, Y.; Liang, Y.; Guo, J.; Zhang, W.; Wang, H. Essential roles of S100A10 in Toll-like receptor signaling and immunity to infection. Cell Mol. Immunol. 2020, 17, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yuan, T.; Chuang, C.; Huang, Y.; Chung, I.; Huang, W. A Novel Enolase-1 Antibody Targets Multiple Interacting Players in the Tumor Microenvironment of Advanced Prostate Cancer. Mol. Cancer Ther. 2022, 21, 1337–1347. [Google Scholar] [CrossRef]
- Peyruchaud, O.; Serre, C.; NicAmhlaoibh, R.; Fournier, P.; Clezardin, P. Angiostatin inhibits bone metastasis formation in nude mice through a direct anti-osteoclastic activity. J. Biol. Chem. 2003, 278, 45826–45832. [Google Scholar] [CrossRef]
- Mondino, A.; Blasi, F. uPA and uPAR in fibrinolysis, immunity and pathology. Trends Immunol. 2004, 25, 450–455. [Google Scholar] [CrossRef]
- Binder, B.; Mihaly, J.; Prager, G. uPAR-uPA-PAI-1 interactions and signaling: A vascular biologist’s view. Thromb. Haemost. 2007, 97, 336–342. [Google Scholar]
- Napolitano, F.; Montuori, N. The Role of the Plasminogen Activation System in Angioedema: Novel Insights on the Pathogenesis. J. Clin. Med. 2021, 10, 518. [Google Scholar] [CrossRef]
- Del Rosso, M.; Margheri, F.; Serratì, S.; Chillà, A.; Laurenzana, A.; Fibbi, G. The urokinase receptor system, a key regulator at the intersection between inflammation, immunity, and coagulation. Curr. Pharm. Des. 2011, 17, 1924–1943. [Google Scholar] [CrossRef]
- Kanno, Y.; Kaneiwa, A.; Minamida, M.; Kanno, M.; Tomogane, K.; Takeuchi, K.; Okada, K.; Ueshima, S.; Matsuo, O.; Matsuno, H. The absence of uPAR is associated with the progression of dermal fibrosis. J. Investig. Dermatol. 2008, 128, 2792–2797. [Google Scholar] [CrossRef]
- Blasi, F.; Carmeliet, P. uPAR: A versatile signalling orchestrator. Nat. Rev. Mol. Cell Biol. 2002, 3, 932–943. [Google Scholar] [CrossRef]
- Kanno, Y.; Matsuno, H.; Kawashita, E.; Okada, K.; Suga, H.; Ueshima, S.; Matsuo, O. Urokinase-type plasminogen activator receptor is associated with the development of adipose tissue. Thromb. Haemost. 2010, 104, 1124–1132. [Google Scholar]
- Medcalf, R.; Keragala, C. Fibrinolysis: A Primordial System Linked to the Immune Response. Int. J. Mol. Sci. 2021, 22, 3406. [Google Scholar] [CrossRef]
- Hastings, S.; Myles, P.; Medcalf, R. Plasmin, Immunity, and Surgical Site Infection. J. Clin. Med. 2021, 10, 2070. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Y.; Yang, S.; Banerjee, S.; De Freitas, A.; Friggeri, A.; Davis, K.; Abraham, E. The receptor for urokinase regulates TLR2 mediated inflammatory responses in neutrophils. PLoS ONE 2011, 6, e25843. [Google Scholar] [CrossRef]
- Li, J.; Pan, Y.; Li, D.; Xia, X.; Jiang, Q.; Dou, H.; Hou, Y. Urokinase-type plasminogen activator receptor is required for impairing toll-like receptor 7 signaling on macrophage efferocytosis in lupus. Mol. Immunol. 2020, 127, 38–45. [Google Scholar] [CrossRef]
- Kiyan, Y.; Tkachuk, S.; Rong, S.; Gorrasi, A.; Ragno, P.; Dumler, I.; Haller, H.; Shushakova, N. TLR4 Response to LPS Is Reinforced by Urokinase Receptor. Front. Immunol. 2020, 11, 573550. [Google Scholar] [CrossRef]
- Rasmussen, L.; Petersen, J.; Eugen-Olsen, J. Soluble Urokinase Plasminogen Activator Receptor (suPAR) as a Biomarker of Systemic Chronic Inflammation. Front. Immunol. 2021, 12, 780641. [Google Scholar] [CrossRef]
- Alfano, D.; Franco, P.; Stoppelli, M. Modulation of Cellular Function by the Urokinase Receptor Signalling: A Mechanistic View. Front. Cell Dev. Biol. 2022, 10, 818616. [Google Scholar] [CrossRef]
- Daci, E.; Everts, V.; Torrekens, S.; Van Herck, E.; Tigchelaar-Gutterr, W.; Bouillon, R.; Carmeliet, G. Increased bone formation in mice lacking plasminogen activators. J. Bone Miner. Res. 2003, 18, 1167–1176. [Google Scholar] [CrossRef]
- Everts, V.; Daci, E.; Tigchelaar-Gutter, W.; Hoeben, K.; Torrekens, S.; Carmeliet, G.; Beertsen, W. Plasminogen activators are involved in the degradation of bone by osteoclasts. Bone 2008, 43, 915–920. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Z.; Cai, D.; Kuang, J.; Jin, S.; Zhu, C.; Shen, Y.; Feng, W.; Ying, S.; Wang, L. Urokinase Attenuates Pulmonary Thromboembolism in an Animal Model by Inhibition of Inflammatory Response. J. Immunol. Res. 2018, 2018, 6941368. [Google Scholar] [CrossRef]
- Furlan, F.; Galbiati, C.; Jorgensen, N.; Jensen, J.; Mrak, E.; Rubinacci, A.; Talotta, F.; Verde, P.; Blasi, F. Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function. J. Bone Miner. Res. 2007, 22, 1387–1396. [Google Scholar] [CrossRef]
- Kalbasi Anaraki, P.; Patecki, M.; Tkachuk, S.; Kiyan, Y.; Haller, H.; Dumler, I. Urokinase receptor mediates osteoclastogenesis via M-CSF release from osteoblasts and the c-Fms/PI3K/Akt/NF-κB pathway in osteoclasts. J. Bone Miner. Res. 2015, 30, 379–388. [Google Scholar] [CrossRef]
- Kanno, Y.; Ishisaki, A.; Miyashita, M.; Matsuo, O. The blocking of uPAR suppresses lipopolysaccharide-induced inflammatory osteoclastogenesis and the resultant bone loss through attenuation of integrin β3/Akt pathway. Immun. Inflamm. Dis. 2016, 4, 338–349. [Google Scholar] [CrossRef]
- Kanno, Y.; Maruyama, C.; Matsuda, A.; Ishisaki, A. uPA-derived peptide, Å6 is involved in the suppression of lipopolysaccaride-promoted inflammatory osteoclastogenesis and the resultant bone loss. Immun. Inflamm. Dis. 2017, 5, 289–299. [Google Scholar] [CrossRef]
- Guo, Y.; Higazi, A.; Arakelian, A.; Sachais, B.; Cines, D.; Goldfarb, R.; Jones, T.; Kwaan, H.; Mazar, A.; Rabbani, S. A peptide derived from the nonreceptor binding region of urokinase plasminogen activator (uPA) inhibits tumor progression and angiogenesis and induces tumor cell death in vivo. FASEB J. 2000, 14, 1400–1410. [Google Scholar] [CrossRef]
- Hoshi, K.; Kawaki, H.; Takahashi, I.; Takeshita, N.; Seiryu, M.; Murshid, S.; Masuda, T.; Anada, T.; Kato, R.; Kitaura, H.; et al. Compressive force-produced CCN2 induces osteocyte apoptosis through ERK1/2 pathway. J. Bone Miner. Res. 2014, 29, 1244–1257. [Google Scholar] [CrossRef]
- de Castro, L.; Maycas, M.; Bravo, B.; Esbrit, P.; Gortazar, A. VEGF Receptor 2 (VEGFR2) Activation Is Essential for Osteocyte Survival Induced by Mechanotransduction. J. Cell Physiol. 2015, 230, 278–285. [Google Scholar] [CrossRef]
- Chevilley, A.; Lesept, F.; Lenoir, S.; Ali, C.; Parcq, J.; Vivien, D. Impacts of tissue-type plasminogen activator (tPA) on neuronal survival. Front. Cell Neurosci. 2015, 16, 415. [Google Scholar] [CrossRef]
- Fredriksson, L.; Li, H.; Fieber, C.; Li, X.; Eriksson, U. Tissue plasminogen activator is a potent activator of PDGF-CC. EMBO J. 2004, 23, 3793–3802. [Google Scholar] [CrossRef]
- Lopez-Atalaya, J.; Roussel, B.; Levrat, D.; Parcq, J.; Nicole, O.; Hommet, Y.; Benchenane, K.; Castel, H.; Leprince, J.; To Van, D.; et al. Toward safer thrombolytic agents in stroke: Molecular requirements for NMDA receptor-mediated neurotoxicity. J. Cereb. Blood Flow. Metab. 2008, 28, 1212–1221. [Google Scholar] [CrossRef]
- Kawao, N.; Tamura, Y.; Okumoto, K.; Yano, M.; Okada, K.; Matsuo, O.; Kaji, H. Tissue-type plasminogen activator deficiency delays bone repair: Roles of osteoblastic proliferation and vascular endothelial growth factor. Am. J. Physiol. Endocrinol. Metab. 2014, 307, E278–E288. [Google Scholar] [CrossRef]
- Zhang, Q.; Steinle, J. IGFBP-3 inhibits TNF-α production and TNFR-2 signaling to protect against retinal endothelial cell apoptosis. Microvasc. Res. 2014, 95, 76–81. [Google Scholar] [CrossRef]
- Mantuano, E.; Azmoon, P.; Brifault, C.; Banki, M.; Gilder, A.; Campana, W.; Gonias, S. Tissue-type plasminogen activator regulates macrophage activation and innate immunity. Blood 2017, 130, 1364–1374. [Google Scholar] [CrossRef]
- Zalfa, C.; Azmoon, P.; Mantuano, E.; Gonias, S. Tissue-type plasminogen activator neutralizes LPS but not protease-activated receptor-mediated inflammatory responses to plasmin. J. Leukoc. Biol. 2019, 105, 729–740. [Google Scholar] [CrossRef]
- Kiyohara, S.; Sakai, N.; Handa, K.; Yamakawa, T.; Ishikawa, K.; Chatani, M.; Karakawa, A.; Azetsu, Y.; Munakata, M.; Ozeki, M.; et al. Effects of N-methyl-d-aspartate receptor antagonist MK-801 (dizocilpine) on bone homeostasis in mice. J. Oral. Biosci. 2020, 62, 131–138. [Google Scholar] [CrossRef]
- Saleem, S.; Wang, D.; Zhao, T.; Sullivan, R.; Reed, G. Matrix Metalloproteinase-9 Expression is Enhanced by Ischemia and Tissue Plasminogen Activator and Induces Hemorrhage, Disability and Mortality in Experimental Stroke. Neuroscience 2021, 460, 120–129. [Google Scholar] [CrossRef]
- Lijnen, H.; De Cock, F.; Van Hoef, B.; Schlott, B.; Collen, D. Characterization of the interaction between plasminogen and staphylokinase. Eur. J. Biochem. 1994, 224, 143–149. [Google Scholar] [CrossRef]
- Kawakami, M.; Kawagoe, M.; Harigai, M.; Hara, M.; Hirose, T.; Hirose, W.; Norioka, K.; Suzuki, K.; Kitani, A.; Nakamura, H. Elevated plasma levels of α2-plasmin inhibitor-plasmin complex in patients with rheumatic diseases. Possible role of fibrinolytic mechanism in vasculitis. Arthritis Rheum. 1989, 32, 1427–1433. [Google Scholar] [CrossRef]
- Yagame, M.; Eguchi, K.; Suzuki, D.; Machimura, H.; Takeda, H.; Inoue, W.; Tanaka, K.; Kaneshige, H.; Nomoto, Y.; Sakai, H. Fibrinolysis in patients with diabetic nephropathy determined by plasmin-α2 plasmin inhibitor complexes in plasma. J. Diabet. Complicat. 1990, 4, 175–178. [Google Scholar] [CrossRef]
- Zhabin, S.; Gorin, V. The effects of alpha 2-antiplasmin complex and α2-antiplasmin on the secretion of IgG and IgM by cultured human mononuclear cells. J. Clin. Lab. Immunol. 1997, 49, 77–82. [Google Scholar]
- Abdul, S.; Leebeek, F.; Rijken, D.; Uitte de Willige, S. Natural heterogeneity of α2-antiplasmin: Functional and clinical consequences. Blood 2016, 127, 538–545. [Google Scholar] [CrossRef]
- Lee, K.; Jackson, K.; Christiansen, V.; Lee, C.; Chun, J.; McKee, P. Antiplasmin-cleaving enzyme is a soluble form of fibroblast activation protein. Blood 2006, 107, 1397–1404. [Google Scholar] [CrossRef]
- Christiansen, V.; Jackson, K.; Lee, K.; McKee, P. Effect of fibroblast activation protein and α2-antiplasmin cleaving enzyme on collagen types I, III, and IV. Arch. Biochem. Biophys. 2007, 457, 177–186. [Google Scholar] [CrossRef]
- Law, R.; Sofian, T.; Kan, W.; Horvath, A.; Hitchen, C.; Langendorf, C.; Buckle, A.; Whisstock, J.; Coughlin, P. X-ray crystal structure of the fibrinolysis inhibitor α2-antiplasmin. Blood 2008, 111, 2049–2052. [Google Scholar] [CrossRef]
- Tombran-Tink, J.; Aparicio, S.; Xu, X.; Tink, A.; Lara, N.; Sawant, S.; Barnstable, C.; Zhang, S. PEDF and the serpins: Phylogeny, sequence conservation, and functional domains. J. Struct. Biol. 2005, 151, 130–150. [Google Scholar] [CrossRef]
- Kanno, Y.; Kawashita, E.; Kokado, A.; Okada, K.; Ueshima, S.; Matsuo, O.; Matsuno, H. Alpha2-antiplasmin regulates the development of dermal fibrosis in mice by prostaglandin F(2α) synthesis through adipose triglyceride lipase/calcium-independent phospholipase A2. Arthritis Rheum. 2013, 65, 492–502. [Google Scholar] [CrossRef]
- Kanno, Y.; Hirota, M.; Matsuo, O.; Ozaki, K. α2-antiplasmin positively regulates endothelial-to-mesenchymal transition and fibrosis progression in diabetic nephropathy. Mol. Biol. Rep. 2022, 49, 205–215. [Google Scholar] [CrossRef]
- Kanno, Y.; Kawashita, E.; Minamida, M.; Kaneiwa, A.; Okada, K.; Ueshima, S.; Matsuo, O.; Matsuno, H. α2-antiplasmin is associated with the progression of fibrosis. Am. J. Pathol. 2010, 176, 238–245. [Google Scholar] [CrossRef]
- Kanno, Y.; Shu, E.; Niwa, H.; Kanoh, H.; Seishima, M. Alternatively activated macrophages are associated with the α2AP production that occurs with the development of dermal fibrosis: The role of alternatively activated macrophages on the development of fibrosis. Arthritis Res. Ther. 2020, 22, 76. [Google Scholar] [CrossRef]
- Kanno, Y.; Hirade, K.; Ishisaki, A.; Nakajima, K.; Suga, H.; Into, T.; Matsushita, K.; Okada, K.; Matsuo, O.; Matsuno, H. Lack of alpha2-antiplasmin improves cutaneous wound healing via over-released vascular endothelial growth factor-induced angiogenesis in wound lesions. J. Thromb. Haemost. 2006, 4, 1602–1610. [Google Scholar] [CrossRef]
- Kanno, Y.; Shu, E.; Kanoh, H.; Seishima, M. The Antifibrotic Effect of α2AP Neutralization in Systemic Sclerosis Dermal Fibroblasts and Mouse Models of Systemic Sclerosis. J. Investig. Dermatol. 2016, 136, 762–769. [Google Scholar] [CrossRef]
- Kanno, Y.; Miyashita, M.; Seishima, M.; Matsuo, O. α2AP is associated with the development of lupus nephritis through the regulation of plasmin inhibition and inflammatory responses. Immun. Inflamm. Dis. 2020, 8, 267–278. [Google Scholar] [CrossRef]
- Kanno, Y.; Shu, E.; Kanoh, H.; Matsuda, A.; Seishima, M. α2AP regulates vascular alteration by inhibiting VEGF signaling in systemic sclerosis: The roles of α2AP in vascular dysfunction in systemic sclerosis. Arthritis Res. Ther. 2017, 19, 22. [Google Scholar] [CrossRef]
- Menoud, P.; Sappino, N.; Boudal-Khoshbeen, M.; Vassalli, J.; Sappino, A. The kidney is a major site of α2-antiplasmin production. J. Clin. Investig. 1996, 97, 2478–2484. [Google Scholar] [CrossRef]
- Kanno, Y.; Ishisaki, A.; Kuretake, H.; Maruyama, C.; Matsuda, A.; Matsuo, O. α2-antiplasmin modulates bone formation by negatively regulating osteoblast differentiation and function. Int. J. Mol. Med. 2017, 40, 854–858. [Google Scholar] [CrossRef]
- Shiomi, A.; Kawao, N.; Yano, M.; Okada, K.; Tamura, Y.; Okumoto, K.; Matsuo, O.; Akagi, M.; Kaji, H. α2-Antiplasmin is involved in bone loss induced by ovariectomy in mice. Bone 2015, 79, 233–241. [Google Scholar] [CrossRef]
- Zhou, Y.; Mohan, A.; Moore, D.; Lin, L.; Zhou, F.; Cao, J.; Wu, Q.; Qin, Y.; Reginato, A.; Ehrlich, M.; et al. SHP2 regulates osteoclastogenesis by promoting preosteoclast fusion. FASEB J. 2015, 29, 1635–1645. [Google Scholar] [CrossRef]
- Kanno, Y.; Shu, E.; Niwa, H.; Seishima, M.; Ozaki, K. MicroRNA-30c attenuates fibrosis progression and vascular dysfunction in systemic sclerosis model mice. Mol. Biol. Rep. 2021, 48, 3431–3437. [Google Scholar] [CrossRef]
- Nishida, T.; Emura, K.; Kubota, S.; Lyons, K.; Takigawa, M. CCN family 2/connective tissue growth factor (CCN2/CTGF) promotes osteoclastogenesis via induction of and interaction with dendritic cell-specific transmembrane protein (DC-STAMP). J. Bone Miner. Res. 2011, 26, 351–363. [Google Scholar] [CrossRef]
- Aoyama, E.; Kubota, S.; Khattab, H.; Nishida, T.; Takigawa, M. CCN2 enhances RANKL-induced osteoclast differentiation via direct binding to RANK and OPG. Bone 2015, 73, 242–248. [Google Scholar] [CrossRef]
- Davis, H.; Valdez, S.; Gomez, L.; Malicky, P.; White, F.; Subler, M.; Windle, J.; Bidwell, J.; Bruzzaniti, A.; Plotkin, L. High mobility group box 1 protein regulates osteoclastogenesis through direct actions on osteocytes and osteoclasts in vitro. J. Cell Biochem. 2019, 120, 16741–16749. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, Y.; Okui, T.; Yoneda, T.; Ryumon, S.; Nakamura, T.; Kawai, H.; Kunisada, Y.; Ibaragi, S.; Masui, M.; Ono, K.; et al. High-mobility group box 1 induces bone destruction associated with advanced oral squamous cancer via RAGE and TLR4. Biochem. Biophys. Res. Commun. 2020, 531, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Tian, L.; Luo, G.; Yu, X. Interferon-γ-Mediated Osteoimmunology. Front. Immunol. 2018, 9, 1508. [Google Scholar] [CrossRef] [PubMed]
- Niwa, H.; Kanno, Y.; Shu, E.; Seishima, M. Decrease in matrix metalloproteinase-3 activity in systemic sclerosis fibroblasts causes α2-antiplasmin and extracellular matrix deposition, and contributes to fibrosis development. Mol. Med. Rep. 2020, 22, 3001–3007. [Google Scholar] [CrossRef]
- Garcia, A.; Tom, C.; Guemes, M.; Polanco, G.; Mayorga, M.; Wend, K.; Miranda-Carboni, G.; Krum, S. ERα signaling regulates MMP3 expression to induce FasL cleavage and osteoclast apoptosis. J. Bone Miner. Res. 2013, 28, 283–290. [Google Scholar] [CrossRef]
- Venturi, G.; Gandini, A.; Monti, E.; Dalle Carbonare, L.; Corradi, M.; Vincenzi, M.; Valenti, M.; Valli, M.; Pelilli, E.; Boner, A.; et al. Lack of expression of SERPINF1, the gene coding for pigment epithelium-derived factor, causes progressively deforming osteogenesis imperfecta with normal type I collagen. J. Bone Miner. Res. 2012, 27, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Song, N.; Tombran-Tink, J.; Niyibizi, C. Pigment epithelium-derived factor enhances differentiation and mineral deposition of human mesenchymal stem cells. Stem Cells 2013, 31, 2714–2723. [Google Scholar] [CrossRef]
- Li, F.; Cain, J.; Tombran-Tink, J.; Niyibizi, C. Pigment epithelium derived factor regulates human Sost/Sclerostin and other osteocyte gene expression via the receptor and induction of Erk/GSK-3β/beta-catenin signaling. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 3449–3458. [Google Scholar] [CrossRef]
- Akiyama, T.; Dass, C.; Shinoda, Y.; Kawano, H.; Tanaka, S.; Choong, P. PEDF regulates osteoclasts via osteoprotegerin and RANKL. Biochem. Biophys. Res. Commun. 2010, 391, 789–794. [Google Scholar] [CrossRef]
- Kanno, Y.; Tsuchida, K.; Maruyama, C.; Hori, K.; Teramura, H.; Asahi, S.; Matsuo, O.; Ozaki, K. Alpha2-antiplasmin deficiency affects depression and anxiety-like behavior and apoptosis induced by stress in mice. J. Basic. Clin. Physiol. Pharmacol. 2021, 33, 633–638. [Google Scholar] [CrossRef]
- Vaughan, D.; Rai, R.; Khan, S.; Eren, M.; Ghosh, A. Plasminogen Activator Inhibitor-1 Is a Marker and a Mediator of Senescence. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1446–1452. [Google Scholar] [CrossRef] [PubMed]
- Badran, M.; Gozal, D. PAI-1: A Major Player in the Vascular Dysfunction in Obstructive Sleep Apnea? Int. J. Mol. Sci. 2022, 23, 5516. [Google Scholar] [CrossRef]
- Sillen, M.; Declerck, P. A Narrative Review on Plasminogen Activator Inhibitor-1 and Its (Patho)Physiological Role: To Target or Not to Target? Int. J. Mol. Sci. 2021, 22, 2721. [Google Scholar] [CrossRef]
- Rabieian, R.; Boshtam, M.; Zareei, M.; Kouhpayeh, S.; Masoudifar, A.; Mirzaei, H. Plasminogen Activator Inhibitor Type-1 as a Regulator of Fibrosis. J. Cell Biochem. 2018, 119, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Crandall, D.; Groeling, T.; Busler, D.; Antrilli, T. Release of PAI-1 by human preadipocytes and adipocytes independent of insulin and IGF-1. Biochem. Biophys. Res. Commun. 2000, 279, 984–988. [Google Scholar] [CrossRef] [PubMed]
- Okada, H.; Woodcock-Mitchell, J.; Mitchell, J.; Sakamoto, T.; Marutsuka, K.; Sobel, B.; Fujii, S. Induction of plasminogen activator inhibitor type 1 and type 1 collagen expression in rat cardiac microvascular endothelial cells by interleukin-1 and its dependence on oxygen-centered free radicals. Circulation 1998, 97, 2175–2182. [Google Scholar] [CrossRef]
- Paugh, B.; Paugh, S.; Bryan, L.; Kapitonov, D.; Wilczynska, K.; Gopalan, S.; Rokita, H.; Milstien, S.; Spiegel, S.; Kordula, T. EGF regulates plasminogen activator inhibitor-1 (PAI-1) by a pathway involving c-Src, PKCdelta, and sphingosine kinase 1 in glioblastoma cells. FASEB J. 2008, 22, 455–465. [Google Scholar] [CrossRef]
- Sillen, M.; Declerck, P. Targeting PAI-1 in Cardiovascular Disease: Structural Insights Into PAI-1 Functionality and Inhibition. Front. Cardiovasc. Med. 2020, 7, 622473. [Google Scholar] [CrossRef]
- Rundle, C.; Wang, X.; Wergedal, J.; Mohan, S.; Lau, K. Fracture healing in mice deficient in plasminogen activator inhibitor-1. Calcif. Tissue Int. 2008, 83, 276–284. [Google Scholar] [CrossRef]
- Tamura, Y.; Kawao, N.; Okada, K.; Yano, M.; Okumoto, K.; Matsuo, O.; Kaji, H. Plasminogen activator inhibitor-1 is involved in streptozotocin-induced bone loss in female mice. Diabetes 2013, 62, 3170–3179. [Google Scholar] [CrossRef] [PubMed]
- Daci, E.; Verstuyf, A.; Moermans, K.; Bouillon, R.; Carmeliet, G. Mice lacking the plasminogen activator inhibitor 1 are protected from trabecular bone loss induced by estrogen deficiency. J. Bone Miner. Res. 2000, 15, 1510–1516. [Google Scholar] [CrossRef] [PubMed]
- Tamura, Y.; Kawao, N.; Yano, M.; Okada, K.; Okumoto, K.; Chiba, Y.; Matsuo, O.; Kaji, H. Role of plasminogen activator inhibitor-1 in glucocorticoid-induced diabetes and osteopenia in mice. Diabetes 2015, 64, 2194–2206. [Google Scholar] [CrossRef] [PubMed]
- Zmijewski, J.; Bae, H.; Deshane, J.; Peterson, C.; Chaplin, D.; Abraham, E. Inhibition of neutrophil apoptosis by PAI-1. Am. J. Physiol. Lung Cell Mol. Physiol. 2011, 301, L247–L254. [Google Scholar] [CrossRef]
- Tashiro, Y.; Nishida, C.; Sato-Kusubata, K.; Ohki-Koizumi, M.; Ishihara, M.; Sato, A.; Gritli, I.; Komiyama, H.; Sato, Y.; Dan, T.; et al. Inhibition of PAI-1 induces neutrophil-driven neoangiogenesis and promotes tissue regeneration via production of angiocrine factors in mice. Blood 2012, 119, 6382–6393. [Google Scholar] [CrossRef]
- Thapa, B.; Kim, Y.; Kwon, H.; Kim, D. The LRP1-independent mechanism of PAI-1-induced migration in CpG-ODN activated macrophages. Int. J. Biochem. Cell Biol. 2014, 49, 17–25. [Google Scholar] [CrossRef]
- Jung, S.; Min, B. A vitronectin-derived dimeric peptide suppresses osteoclastogenesis by binding to c-Fms and inhibiting M-CSF signaling. Exp. Cell Res. 2022, 418, 113252. [Google Scholar] [CrossRef]
- Kang, H.; Park, C.; Jung, S.; Jo, S.; Min, B. A Vitronectin-Derived Peptide Restores Ovariectomy-Induced Bone Loss by Dual Regulation of Bone Remodeling. Tissue Eng. Regen. Med. 2022, 19, 1359–1376. [Google Scholar] [CrossRef] [PubMed]
- Okayasu, M.; Nakayachi, M.; Hayashida, C.; Ito, J.; Kaneda, T.; Masuhara, M.; Suda, N.; Sato, T.; Hakeda, Y. Low-density lipoprotein receptor deficiency causes impaired osteoclastogenesis and increased bone mass in mice because of defect in osteoclastic cell-cell fusion. J. Biol. Chem. 2012, 287, 19229–19241. [Google Scholar] [CrossRef]
- Qi, Q.; Chen, L.; Sun, H.; Zhang, N.; Zhou, J.; Zhang, Y.; Zhang, X.; Li, L.; Li, D.; Wang, L. Low-density lipoprotein receptor deficiency reduced bone mass in mice via the c-fos/NFATc1 pathway. Life Sci. 2022, 10, 121073. [Google Scholar] [CrossRef] [PubMed]
- Calvier, L.; Herz, J.; Hansmann, G. Interplay of Low-Density Lipoprotein Receptors, LRPs, and Lipoproteins in Pulmonary Hypertension. JACC Basic Transl. Sci. 2022, 7, 164–180. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanno, Y. The Roles of Fibrinolytic Factors in Bone Destruction Caused by Inflammation. Cells 2024, 13, 516. https://doi.org/10.3390/cells13060516
Kanno Y. The Roles of Fibrinolytic Factors in Bone Destruction Caused by Inflammation. Cells. 2024; 13(6):516. https://doi.org/10.3390/cells13060516
Chicago/Turabian StyleKanno, Yosuke. 2024. "The Roles of Fibrinolytic Factors in Bone Destruction Caused by Inflammation" Cells 13, no. 6: 516. https://doi.org/10.3390/cells13060516
APA StyleKanno, Y. (2024). The Roles of Fibrinolytic Factors in Bone Destruction Caused by Inflammation. Cells, 13(6), 516. https://doi.org/10.3390/cells13060516