The Development and Characterization of a Next-Generation Oncolytic Virus Armed with an Anti-PD-1 sdAb for Osteosarcoma Treatment In Vitro
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines and Culture
2.2. Adenoviral Vectors
2.3. Oncolytic Virus Infections
2.4. LDH Cytotoxicity Assay
2.5. CAV2-AU-M2 Infections, Nickel Column Purifications, and Western Blotting
2.6. Flow Cytometry
2.6.1. PD-1 Binding Assay
2.6.2. PD-1/PD-L1 Inhibition Assay
2.7. Statistical Analysis
2.7.1. Spheroid Size and Luminance
2.7.2. Binding and Inhibition Percentages
3. Results
3.1. Infection, Conditional Replication, and Cytopathic Effects (CPE) of CAV2-AU-M2 in Osteosarcoma Cell Lines in 2D and 3D Cell Cultures
3.1.1. CAV2-AU-M2 Infections in 2D Cell Cultures
3.1.2. CAV2-AU-M2 3D Cell Cultures
3.2. Characterization of a His-Tagged Anti-PD-1 sdAb Produced in CAV2-AU-M2 Infected Cells
3.2.1. Western Blot Analysis
3.2.2. Assessment of Anti-PD-1 sdAb Binding to the PD-1 Receptors
3.2.3. Assessment of the Inhibition of PD-L1 Binding to PD-1
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience 2019, 13, 961. [Google Scholar] [CrossRef] [PubMed]
- Belayneh, R.; Fourman, M.S.; Bhogal, S.; Weiss, K.R. Update on osteosarcoma. Curr. Oncol. Rep. 2021, 23, 71. [Google Scholar] [CrossRef]
- Yoshida, A. Osteosarcoma: Old and new challenges. Surg. Pathol. Clin. 2021, 14, 567–583. [Google Scholar] [CrossRef]
- Czarnecka, A.M.; Synoradzki, K.; Firlej, W.; Bartnik, E.; Sobczuk, P.; Fiedorowicz, M.; Grieb, P.; Rutkowski, P. Molecular Biology of Osteosarcoma. Cancers 2020, 12, 2130. [Google Scholar] [CrossRef]
- Prazerekos, P. Immunotherapy as a Cancer Treatment Option in the Future. Health Sci. J. 2023, 17, 1–3. [Google Scholar]
- Le, L.; Rivera, A.; Glasgow, J.; Ternovoi, V.; Wu, H.; Wang, M.; Smith, B.; Siegal, G.; Curiel, D. Infectivity enhancement for adenoviral transduction of canine osteosarcoma cells. Gene Ther. 2006, 13, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res. 2020, 10, 727. [Google Scholar] [PubMed]
- Wu, M.; Huang, Q.; Xie, Y.; Wu, X.; Ma, H.; Zhang, Y.; Xia, Y. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J. Hematol. Oncol. 2022, 15, 24. [Google Scholar] [CrossRef]
- Chen, Y.; Pei, Y.; Luo, J.; Huang, Z.; Yu, J.; Meng, X. Looking for the optimal PD-1/PD-L1 inhibitor in cancer treatment: A comparison in basic structure, function, and clinical practice. Front. Immunol. 2020, 11, 1088. [Google Scholar] [CrossRef]
- Dermani, F.K.; Samadi, P.; Rahmani, G.; Kohlan, A.K.; Najafi, R. PD-1/PD-L1 immune checkpoint: Potential target for cancer therapy. J. Cell. Physiol. 2019, 234, 1313–1325. [Google Scholar] [CrossRef]
- Momtaz, P.; Postow, M.A. Immunologic checkpoints in cancer therapy: Focus on the programmed death-1 (PD-1) receptor pathway. Pharmacogenomics Pers. Med. 2014, 7, 357–365. [Google Scholar]
- Medina, P.J.; Adams, V.R. PD-1 pathway inhibitors: Immuno-oncology agents for restoring antitumor immune responses. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2016, 36, 317–334. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Ren, T.; Huang, Y.; Sun, K.; Wang, S.; Bao, X.; Liu, K.; Guo, W. PD-1 axis expression in musculoskeletal tumors and antitumor effect of nivolumab in osteosarcoma model of humanized mouse. J. Hematol. Oncol. 2018, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Jounaidi, Y.; Doloff, J.C.; Waxman, D.J. Conditionally replicating adenoviruses for cancer treatment. Curr. Cancer Drug Targets 2007, 7, 285–301. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Fang, H. Clinical trials with oncolytic adenovirus in China. Curr. Cancer Drug Targets 2007, 7, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Graat, H.; Witlox, M.; Schagen, F.; Kaspers, G.; Helder, M.; Bras, J.; Schaap, G.; Gerritsen, W.; Wuisman, P.; Van Beusechem, V. Different susceptibility of osteosarcoma cell lines and primary cells to treatment with oncolytic adenovirus and doxorubicin or cisplatin. Br. J. Cancer 2006, 94, 1837–1844. [Google Scholar] [CrossRef] [PubMed]
- Prestwich, R.J.; Harrington, K.J.; Pandha, H.S.; Vile, R.G.; Melcher, A.A.; Errington, F. Oncolytic viruses: A novel form of immunotherapy. Expert Rev. Anticancer Ther. 2008, 8, 1581–1588. [Google Scholar] [CrossRef] [PubMed]
- Vorburger, S.A.; Hunt, K.K. Adenoviral gene therapy. Oncologist 2002, 7, 46–59. [Google Scholar] [CrossRef]
- Kaufman, H.L.; Kohlhapp, F.J.; Zloza, A. Oncolytic viruses: A new class of immunotherapy drugs. Nat. Rev. Drug Discov. 2015, 14, 642–662. [Google Scholar] [CrossRef]
- Gujar, S.A.; Pan, D.; Marcato, P.; Garant, K.A.; Lee, P.W. Oncolytic virus-initiated protective immunity against prostate cancer. Mol. Ther. 2011, 19, 797–804. [Google Scholar] [CrossRef]
- Cheema, T.A.; Wakimoto, H.; Fecci, P.E.; Ning, J.; Kuroda, T.; Jeyaretna, D.S.; Martuza, R.L.; Rabkin, S.D. Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proc. Natl. Acad. Sci. USA 2013, 110, 12006–12011. [Google Scholar] [CrossRef]
- Bauerschmitz, G.J.; Lam, J.T.; Kanerva, A.; Suzuki, K.; Nettelbeck, D.M.; Dmitriev, I.; Krasnykh, V.; Mikheeva, G.V.; Barnes, M.N.; Alvarez, R.D. Treatment of ovarian cancer with a tropism modified oncolytic adenovirus. Cancer Res. 2002, 62, 1266–1270. [Google Scholar] [PubMed]
- Li, G.; Kawashima, H.; Ogose, A.; Ariizumi, T.; Xu, Y.; Hotta, T.; Urata, Y.; Fujiwara, T.; Endo, N. Efficient virotherapy for osteosarcoma by telomerase-specific oncolytic adenovirus. J. Cancer Res. Clin. Oncol. 2011, 137, 1037–1051. [Google Scholar] [CrossRef]
- Sajib, A.M.; Agarwal, P.; Patton, D.J.; Nance, R.L.; Stahr, N.A.; Kretzschmar, W.P.; Sandey, M.; Smith, B.F. In vitro functional genetic modification of canine adenovirus type 2 genome by CRISPR/Cas9. Lab. Investig. 2021, 101, 1627–1636. [Google Scholar] [CrossRef]
- Martins, F.; Sofiya, L.; Sykiotis, G.P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex-Crosier, Y.; et al. Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 2019, 16, 563–580. [Google Scholar] [CrossRef] [PubMed]
- Meyers, P.A.; Healey, J.H.; Chou, A.J.; Wexler, L.H.; Merola, P.R.; Morris, C.D.; Laquaglia, M.P.; Kellick, M.G.; Abramson, S.J.; Gorlick, R. Addition of pamidronate to chemotherapy for the treatment of osteosarcoma. Cancer 2011, 117, 1736–1744. [Google Scholar] [CrossRef]
- Wang, L.; Dunmall, L.S.C.; Cheng, Z.; Wang, Y. Remodeling the tumor microenvironment by oncolytic viruses: Beyond oncolysis of tumor cells for cancer treatment. J. Immunother. Cancer 2022, 10, e004167. [Google Scholar] [CrossRef]
- Brown, M.C.; Holl, E.K.; Boczkowski, D.; Dobrikova, E.; Mosaheb, M.; Chandramohan, V.; Bigner, D.D.; Gromeier, M.; Nair, S.K. Cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen–specific CTLs. Sci. Transl. Med. 2017, 9, eaan4220. [Google Scholar] [CrossRef]
- Muscolini, M.; Tassone, E.; Hiscott, J. Oncolytic immunotherapy: Can’t start a fire without a spark. Cytokine Growth Factor Rev. 2020, 56, 94–101. [Google Scholar] [CrossRef]
- Gasteiger, G.; Kastenmuller, W.; Ljapoci, R.; Sutter, G.; Drexler, I. Cross-priming of cytotoxic T cells dictates antigen requisites for modified vaccinia virus Ankara vector vaccines. J. Virol. 2007, 81, 11925–11936. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, X.; Cheng, P. Remodeling of Tumor Immune Microenvironment by Oncolytic Viruses. Front. Oncol. 2020, 10, 561372. [Google Scholar] [CrossRef]
- Jiang, H.; Shin, D.H.; Nguyen, T.T.; Fueyo, J.; Fan, X.; Henry, V.; Carrillo, C.C.; Yi, Y.; Alonso, M.M.; Collier, T.L.; et al. Localized Treatment with Oncolytic Adenovirus Delta-24-RGDOX Induces Systemic Immunity against Disseminated Subcutaneous and Intracranial Melanomas. Clin. Cancer Res. 2019, 25, 6801–6814. [Google Scholar] [CrossRef]
- Pesonen, S.; Kangasniemi, L.; Hemminki, A. Oncolytic adenoviruses for the treatment of human cancer: Focus on translational and clinical data. Mol. Pharm. 2011, 8, 12–28. [Google Scholar] [CrossRef]
- Prestwich, R.J.; Errington, F.; Diaz, R.M.; Pandha, H.S.; Harrington, K.J.; Melcher, A.A.; Vile, R.G. The case of oncolytic viruses versus the immune system: Waiting on the judgment of Solomon. Hum. Gene Ther. 2009, 20, 1119–1132. [Google Scholar] [CrossRef]
- McConnell, M.J.; Imperiale, M.J. Biology of adenovirus and its use as a vector for gene therapy. Hum. Gene Ther. 2004, 15, 1022–1033. [Google Scholar] [CrossRef]
- O’Neill, A.M.; Smith, A.N.; Spangler, E.A.; Whitley, E.M.; Schleis, S.E.; Bird, R.C.; Curiel, D.T.; Thacker, E.E.; Smith, B.F. Resistance of canine lymphoma cells to adenoviral infection due to reduced cell surface RGD binding integrins. Cancer Biol. Ther. 2011, 11, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Goradel, N.H.; Mohajel, N.; Malekshahi, Z.V.; Jahangiri, S.; Najafi, M.; Farhood, B.; Mortezaee, K.; Negahdari, B.; Arashkia, A. Oncolytic adenovirus: A tool for cancer therapy in combination with other therapeutic approaches. J. Cell. Physiol. 2019, 234, 8636–8646. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Rivera-Molina, Y.; Gomez-Manzano, C.; Clise-Dwyer, K.; Bover, L.; Vence, L.M.; Yuan, Y.; Lang, F.F.; Toniatti, C.; Hossain, M.B.; et al. Oncolytic Adenovirus and Tumor-Targeting Immune Modulatory Therapy Improve Autologous Cancer Vaccination. Cancer Res. 2017, 77, 3894–3907. [Google Scholar] [CrossRef] [PubMed]
- Farrera-Sal, M.; Fillat, C.; Alemany, R. Effect of Transgene Location, Transcriptional Control Elements and Transgene Features in Armed Oncolytic Adenoviruses. Cancers 2020, 12, 1034. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Crepps, M.P.; Stahr, N.A.; Kretzschmar, W.P.; Harris, H.C.; Prasad, N.; Levy, S.E.; Smith, B.F. Identification of canine circulating miRNAs as tumor biospecific markers using Next-Generation Sequencing and Q-RT-PCR. Biochem. Biophys. Rep. 2021, 28, 101106. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, J.; Chen, Y.; Kang, Y.; Liao, Z.; He, Y.; Zhang, C. Novel immunotherapies for osteosarcoma. Front. Oncol. 2022, 12, 830546. [Google Scholar] [CrossRef]
- Peter, M.; Kühnel, F. Oncolytic adenovirus in cancer immunotherapy. Cancers 2020, 12, 3354. [Google Scholar] [CrossRef]
- Bett, A.J.; Prevec, L.; Graham, F.L. Packaging capacity and stability of human adenovirus type 5 vectors. J. Virol. 1993, 67, 5911–5921. [Google Scholar] [CrossRef]
- Lichtenstein, D.L.; Toth, K.; Doronin, K.; Tollefson, A.E.; Wold, W.S. Functions and mechanisms of action of the adenovirus E3 proteins. Int. Rev. Immunol. 2004, 23, 75–111. [Google Scholar] [CrossRef]
- Tollefson, A.E.; Scaria, A.; Hermiston, T.W.; Ryerse, J.S.; Wold, L.J.; Wold, W.S. The adenovirus death protein (E3-11.6K) is required at very late stages of infection for efficient cell lysis and release of adenovirus from infected cells. J. Virol. 1996, 70, 2296–2306. [Google Scholar] [CrossRef]
- Havunen, R.; Kalliokoski, R.; Siurala, M.; Sorsa, S.; Santos, J.M.; Cervera-Carrascon, V.; Anttila, M.; Hemminki, A. Cytokine-Coding Oncolytic Adenovirus TILT-123 Is Safe, Selective, and Effective as a Single Agent and in Combination with Immune Checkpoint Inhibitor Anti-PD-1. Cells 2021, 10, 246. [Google Scholar] [CrossRef] [PubMed]
- Cervera-Carrascon, V.; Quixabeira, D.C.A.; Santos, J.M.; Havunen, R.; Zafar, S.; Hemminki, O.; Heinio, C.; Munaro, E.; Siurala, M.; Sorsa, S.; et al. Tumor microenvironment remodeling by an engineered oncolytic adenovirus results in improved outcome from PD-L1 inhibition. Oncoimmunology 2020, 9, 1761229. [Google Scholar] [CrossRef] [PubMed]
- Bartee, M.Y.; Dunlap, K.M.; Bartee, E. Tumor-Localized Secretion of Soluble PD1 Enhances Oncolytic Virotherapy. Cancer Res. 2017, 77, 2952–2963. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Yan, Y.Y.; Li, J.J.; Adhikari, R.; Fu, L.W. PD-1/PD-L1 Based Combinational Cancer Therapy: Icing on the Cake. Front. Pharmacol. 2020, 11, 722. [Google Scholar] [CrossRef] [PubMed]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Fife, B.T.; Bluestone, J.A. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol. Rev. 2008, 224, 166–182. [Google Scholar] [CrossRef] [PubMed]
- Baksh, K.; Weber, J. Immune checkpoint protein inhibition for cancer: Preclinical justification for CTLA-4 and PD-1 blockade and new combinations. Semin. Oncol. 2015, 42, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Ribas, A.; Dummer, R.; Puzanov, I.; VanderWalde, A.; Andtbacka, R.H.I.; Michielin, O.; Olszanski, A.J.; Malvehy, J.; Cebon, J.; Fernandez, E.; et al. Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy. Cell 2017, 170, 1109–1119. [Google Scholar] [CrossRef]
Cell Line | MOI | Day 0 (µm) | Day 7 (µm) |
---|---|---|---|
D17 | 0 | 517 | 814 |
100 | 551 | 750 | |
CF11 | 0 | 401 | 563 |
100 | 400 | 507 | |
D22 | 0 | 339 | 264 |
100 | 425 | 317 | |
MC-KOS | 0 | 539 | 601 |
100 | 459 | 657 | |
NCF | 0 | 455 | 386 |
100 | 447 | 399 |
Cell Line | Cell Treatment | % of Cells Labeled by Anti-PD-1 sdAb | Standard Deviation |
---|---|---|---|
Purified anti-PD-1 D5 sdAb (positive control) | 94.26 | 0.90 | |
D17 | Non-infected | 0.12 | 0.02 |
CAV-AU-M1 | 0.09 | 0.03 | |
CAV-AU-M2 | 92.53 | 3.66 | |
CF11 | Non-infected | 0.17 | 0.03 |
CAV-AU-M1 | 0.09 | 0.04 | |
CAV-AU-M2 | 0.51 | 0.09 | |
MC-KOS | Non-infected | 0.66 | 0.11 |
CAV-AU-M1 | 0.56 | 0.12 | |
CAV-AU-M2 | 0.55 | 0.07 | |
D22 | Non-infected | 0.60 | 0.08 |
D22 CAV-AU-M1 | 0.64 | 0.08 | |
D22 CAV-AU-M2 | 0.36 | 0.11 |
Cell Line | Cell Treatment | % of Cells Labeled by Anti-PD-1 sdAb | Standard Deviation |
---|---|---|---|
Purified anti-PD-1 D5 sdAb (positive control) | 94.26 | 0.90 | |
D17 | Non-infected | 0.10 | 0.03 |
CAV-AU-M1 | 0.06 | 0.02 | |
CAV-AU-M2 | 64.48 | 1.72 | |
CF11 | Non-infected | 0.09 | 0.06 |
CAV-AU-M1 | 0.11 | 0.06 | |
CAV-AU-M2 | 11.95 | 2.34 | |
MC-KOS | Non-infected | 0.68 | 0.03 |
CAV-AU-M1 | 0.51 | 0.06 | |
CAV-AU-M2 | 12.90 | 4.99 | |
D22 | Non-infected | 0.14 | 0.05 |
D22 CAV-AU-M1 | 0.63 | 0.07 | |
D22 CAV-AU-M2 | 52.95 | 4.11 |
Cell Line | Source of Anti-PD-1 sdAb | % of Cells Labeled by Anti-AF647-Labeled PD-L1 Protein |
---|---|---|
No Anti-PD-1 sdAb | 76.10 | |
Purified Anti-PD-1 D5 sdAb | 2.52 | |
D17 | Cell Media | 71.04 |
Cell Lysate | 72.66 | |
CF11 | Cell Media | 76.35 |
Cell Lysate | 73.97 | |
MC-KOS | Cell Media | 80.72 |
Cell Lysate | 77.35 | |
D22 | Cell Media | 72.25 |
Cell Lysate | 74.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Higgins, T.A.; Patton, D.J.; Shimko-Lofano, I.M.; Eller, T.L.; Molinari, R.; Sandey, M.; Ismail, A.; Smith, B.F.; Agarwal, P. The Development and Characterization of a Next-Generation Oncolytic Virus Armed with an Anti-PD-1 sdAb for Osteosarcoma Treatment In Vitro. Cells 2024, 13, 351. https://doi.org/10.3390/cells13040351
Higgins TA, Patton DJ, Shimko-Lofano IM, Eller TL, Molinari R, Sandey M, Ismail A, Smith BF, Agarwal P. The Development and Characterization of a Next-Generation Oncolytic Virus Armed with an Anti-PD-1 sdAb for Osteosarcoma Treatment In Vitro. Cells. 2024; 13(4):351. https://doi.org/10.3390/cells13040351
Chicago/Turabian StyleHiggins, Theresa A., Daniel J. Patton, Isabella M. Shimko-Lofano, Timothy L. Eller, Roberto Molinari, Maninder Sandey, Aliaa Ismail, Bruce F. Smith, and Payal Agarwal. 2024. "The Development and Characterization of a Next-Generation Oncolytic Virus Armed with an Anti-PD-1 sdAb for Osteosarcoma Treatment In Vitro" Cells 13, no. 4: 351. https://doi.org/10.3390/cells13040351
APA StyleHiggins, T. A., Patton, D. J., Shimko-Lofano, I. M., Eller, T. L., Molinari, R., Sandey, M., Ismail, A., Smith, B. F., & Agarwal, P. (2024). The Development and Characterization of a Next-Generation Oncolytic Virus Armed with an Anti-PD-1 sdAb for Osteosarcoma Treatment In Vitro. Cells, 13(4), 351. https://doi.org/10.3390/cells13040351