In Vivo Reprogramming Using Yamanaka Factors in the CNS: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Study Selection and Eligibility Criteria
2.2.1. Stage 1: Title and Abstract Screening
2.2.2. Stage 2: Full-Text Evaluation
- Articles reporting the use of one or more of the reprogramming factors, Sox2, Oct4, c-Myc, and Klf4, for inducing in vivo reprogramming in the CNS (brain and spinal cord).
- Peer-reviewed articles written in English.
- Articles focused on in vitro exams.
- Articles involving the transplantation of cells induced through in vitro reprogramming.
- Articles related to reprogramming other than CNS lesions.
- Non-original articles (such as reviews), editorials, letters from editors, book chapters, unpublished or non-peer-reviewed studies, abstracts, and PhD theses.
- Articles for which the full text was not accessible.
2.3. Data Extraction
3. Results
3.1. Study Selection
3.2. In Vivo Reprogramming Study Using All Four Yamanaka Factors
3.2.1. Healthy Animal Models
3.2.2. Disease or Injured Animal Models
3.2.3. Safety Concerns Associated with the Use of All Four Yamanaka Factors
3.3. In Vivo Reprogramming Study Using Oct4
Reprogramming Factors | Expression Location | Animal Model /Lesion Model | Animal Age (Time of Reprogramming *) | Delivery Methods | Target Cell (Markers) | Functional Outcome | References | |
---|---|---|---|---|---|---|---|---|
Oct4 | Dentate gyrus | C57BL/6 male mice | 8 weeks old | Lentivirus | Stereotactic injection | - | Behavioral test (open field test, elevated plus maze, Y-maze test, contextual fear conditioning paradigm) | [18] |
Oct4 + VPA | Lateral ventricle | C57BL/6 mice | 8~9 weeks old | Lentivirus | Stereotactic injection | Neural stem cell (Pax6, Sox1) Pluripotency marker (Oct4, Nanog, c-Myc, Klf4 and Sox2) | - | [19] |
Oct4 + VPA | Lateral ventricle | C57BL/6 mice | 8~9 weeks old | Lentivirus | Stereotactic injection | Neural progenitor and pluripotency markers (Oct4, Nanog, Klf4, c-Myc, Pax6 and Sox1, SSEA1,Nanog) | [20] | |
Oct4 + VPA | Lateral ventricle | C57BL/6 mice | not mentioned (1 week before inducing demyelination) | Lentivirus | Stereotactic injection | Myelinating oligodendrocytes | Visual evoked potential | [21] |
Optic chiasm demyelination by 1% lysolecithin | ||||||||
Oct4 | Lateral ventricle | R6/2 mice | 4 weeks old | Adenovirus | Stereotactic injection | Neuron (NeuN (cortex) GAD67, Darpp32 (striatum)) | Behavioral test (Rotarod test, Grip strength test) | [22] |
Huntington’s disease model |
Reprogramming Factors | Expression Location | Animal Model /Lesion Model | Animal Age (Time of Reprogramming *) | Delivery Methods | Target Cell (Markers) | Functional Outcome | References | |
---|---|---|---|---|---|---|---|---|
Sox-induced in vivo brain reprogramming | ||||||||
Sox2 + BNDF/noggin or VPA | Striatum | C57BL/6J and ICR mice hGFAP–Cre, mGfap–Cre line 77.6, Nes–CreERTM, NG2–Cre, PrP–CreERT, Rosa–YFP, Rosa–tdTomato (Ai14) | Between 6 weeks and 24 months | Lentivirus | Stereotactic injection | Neuron (NeuN) | Functional electrophysiology | [23] |
Sox2 | Striatum | C57BL/6 and ICR mice Tlxflox/flox mice transgenic pGFAP-Cre mice | Not mentioned | Lentivirus | Stereotactic injection | Neuron (DCX) | [24] | |
Sox2/VPA | Striatum | Cst3-CreERT2, Nes-CreERTM, Ascl1-CreERT2, Ascl1neoflox/neoflox, Rosa-YFP, and Rosa-tdTomato | 2–6 months of age | Lentivirus | Stereotactic injection | Neuron (NeuN, Calretrin) | [25] | |
Sox2 + Nurr1 + Lmx1a + Foxa2 + VPA | Striatum | C57BL/6J mice mGfap-Cre line 77.6, PrP-CreERT, Pdgfra-CreERT, Dat-Cre, and Rosa-tdTomato (Ai14) | 6 weeks to 24 months | Lentivirus | Stereotactic injection | Dopaminergic neuron | Electrophysiological Properties and firing patterns, network connectivity | [26] |
Sox2 ± ASCL1 | Cerebral cortex | C57BL/6J mice Sox10-iCreERT2/GFP or GLASTCreERT2/GFP mice | 8–10 weeks old (3 days after stab wound injury) | Retrovirus Lentivirus | Stereotactic injection | Neuron (DCX, NeuN) | [27] | |
Stab Wound Lesion | ||||||||
Sox2 | Corpus callosum(left) | C57BL/6J mice | 12 weeks old | Lentivirus | Stereotactic injection | Oligodendrocyte precursor cells (PDGFRα+) oligodendrocytes | [28] | |
Demyelination induced by 0.2% Cuprizone in diet chow | ||||||||
Sox-induced in vivo spinal cord reprogramming | ||||||||
Sox2/VPA | Spinal cord | C57BL/6J and the immunodeficient NSG mice | 2–3 months of age ((immediately after hemisection) | Lentivirus | Manual injection (into the spinal cord parenchyma at each of the two locations 3 mm apart at the T8) | Neuron (NeuN, MAP2), Synapse-forming GABAergic interneurons | [29] | |
hemisection at the T8 level | ||||||||
Sox2 | Spinal cord | C57BL/6J mice Ptenflox, p53flox, p21 KO, mGfap-Cre line 77.6, Thy1-STOP-YFP, Rosa-tdT | 8 weeks and older | Lentivirus | Manual injection (into the spinal parenchyma at each of the two locations 2 mm apart at the T8 level) | Neuron (NeuN, MAP2) | [30] | |
contusion injury at the T7–9 level | ||||||||
Sox2 | Spinal cord | ICR mice | 8 weeks old (1 week after SCI) | Adenovirus | Manual injection (1.0 mm caudal and rostral to the lesion site) | Neuron (Nissl and βIII-tubulin) | Behavioral test (BMS score, Running wheel test, Swimming test, Inclined plate test, Mechanical allodynia test) | [31] |
Completely compression for 5 s at T10 level | ||||||||
Sox2 | Spinal cord | C57BL/6J mice Rosa-YFP, Rosa-tdT, Sox2f/f, Pdgfra-CreER™, Ascl1-CreERT2, Nes-CreERT2, Foxj1-CreERT2, Rosa-TVAg mouse line | 2 months of age and older | Lentivirus | Manual injection (0.5 mm rostral and caudal to the incision, bilaterally) | Neuron (NeuN, VGLUT2, GAD6, VGAT) | Behavioral test (Grid-walking test) | [32] |
dorsal hemisection at the C5 level |
3.3.1. Healthy Animal Models
3.3.2. Disease or Injured Animal Models
3.3.3. Safety Concerns Associated with the Use of Oct4
3.4. In Vivo Reprogramming Study Using Sox2 in the Brain
3.4.1. Healthy Animal Models
3.4.2. Disease or Injured Animal Models
3.4.3. Safety Concerns Associated with the Use of Sox2 in the Brain
3.5. In Vivo Reprogramming Study Using Sox2 in Spinal Cord Injury Models
4. Discussion
Challenges and Future Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deuschl, G.; Beghi, E.; Fazekas, F.; Varga, T.; Christoforidi, K.A.; Sipido, E.; Bassetti, C.L.; Vos, T.; Feigin, V.L. The burden of neurological diseases in europe: An analysis for the global burden of disease study 2017. Lancet Public Health 2020, 5, e551–e567. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Shi, Y.; Inoue, H.; Wu, J.C.; Yamanaka, S. Induced pluripotent stem cell technology: A decade of progress. Nat. Rev. Drug Discov. 2017, 16, 115–130. [Google Scholar] [CrossRef]
- Du, H.; Huo, Z.; Chen, Y.; Zhao, Z.; Meng, F.; Wang, X.; Liu, S.; Zhang, H.; Zhou, F.; Liu, J.; et al. Induced pluripotent stem cells and their applications in amyotrophic lateral sclerosis. Cells 2023, 12, 971. [Google Scholar] [CrossRef]
- Tousley, A.; Kegel-Gleason, K.B. Induced pluripotent stem cells in huntington’s disease research: Progress and opportunity. J. Huntingt. Dis. 2016, 5, 99–131. [Google Scholar] [CrossRef]
- Stoddard-Bennett, T.; Reijo Pera, R. Treatment of parkinson’s disease through personalized medicine and induced pluripotent stem cells. Cells 2019, 8, 26. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.L.; Weintraub, H.; Lassar, A.B. Expression of a single transfected cdna converts fibroblasts to myoblasts. Cell 1987, 51, 987–1000. [Google Scholar] [CrossRef] [PubMed]
- Aravantinou-Fatorou, K.; Thomaidou, D. In vitro direct reprogramming of mouse and human astrocytes to induced neurons. Methods Mol. Biol. 2020, 2155, 41–61. [Google Scholar] [CrossRef] [PubMed]
- Steinbeck, J.A.; Studer, L. Moving stem cells to the clinic: Potential and limitations for brain repair. Neuron 2015, 86, 187–206. [Google Scholar] [CrossRef] [PubMed]
- Torper, O.; Pfisterer, U.; Wolf, D.A.; Pereira, M.; Lau, S.; Jakobsson, J.; Björklund, A.; Grealish, S.; Parmar, M. Generation of induced neurons via direct conversion in vivo. Proc. Natl. Acad. Sci. USA 2013, 110, 7038–7043. [Google Scholar] [CrossRef] [PubMed]
- Faiz, M.; Sachewsky, N.; Gascón, S.; Bang, K.W.; Morshead, C.M.; Nagy, A. Adult neural stem cells from the subventricular zone give rise to reactive astrocytes in the cortex after stroke. Cell Stem Cell 2015, 17, 624–634. [Google Scholar] [CrossRef]
- Grande, A.; Sumiyoshi, K.; López-Juárez, A.; Howard, J.; Sakthivel, B.; Aronow, B.; Campbell, K.; Nakafuku, M. Environmental impact on direct neuronal reprogramming in vivo in the adult brain. Nat. Commun. 2013, 4, 2373. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. Prisma extension for scoping reviews (prisma-scr): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Rodríguez-Matellán, A.; Alcazar, N.; Hernández, F.; Serrano, M.; Ávila, J. In vivo reprogramming ameliorates aging features in dentate gyrus cells and improves memory in mice. Stem Cell Rep. 2020, 15, 1056–1066. [Google Scholar] [CrossRef]
- Gao, X.; Wang, X.; Xiong, W.; Chen, J. In vivo reprogramming reactive glia into ipscs to produce new neurons in the cortex following traumatic brain injury. Sci. Rep. 2016, 6, 22490. [Google Scholar] [CrossRef] [PubMed]
- Wi, S.; Yu, J.H.; Kim, M.; Cho, S.R. In vivo expression of reprogramming factors increases hippocampal neurogenesis and synaptic plasticity in chronic hypoxic-ischemic brain injury. Neural Plast. 2016, 2016, 2580837. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.H.; Lee, M.Y.; Yu, J.H.; Kim, M.S.; Song, M.; Seo, C.H.; Kim, H.H.; Cho, S.R. In situ pluripotency factor expression promotes functional recovery from cerebral ischemia. Mol. Ther. 2016, 24, 1538–1549. [Google Scholar] [CrossRef]
- Sim, S.E.; Park, S.W.; Choi, S.L.; Yu, N.K.; Ko, H.G.; Jang, D.J.; Lee, K.; Kaang, B.K. Assessment of the effects of virus-mediated limited oct4 overexpression on the structure of the hippocampus and behavior in mice. BMB Rep. 2011, 44, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Asadi, S.; Dehghan, S.; Hajikaram, M.; Mowla, S.J.; Ahmadiani, A.A.; Javan, M. Comparing the effects of small molecules bix-01294, bay k8644, rg-108 and valproic acid, and their different combinations on induction of pluripotency marker-genes by oct4 in the mouse brain. Cell J. 2015, 16, 416–425. [Google Scholar] [CrossRef]
- Dehghan, S.; Asadi, S.; Hajikaram, M.; Soleimani, M.; Mowla, S.J.; Fathollahi, Y.; Ahmadiani, A.; Javan, M. Exogenous oct4 in combination with valproic acid increased neural progenitor markers: An approach for enhancing the repair potential of the brain. Life Sci. 2015, 122, 108–115. [Google Scholar] [CrossRef]
- Dehghan, S.; Hesaraki, M.; Soleimani, M.; Mirnajafi-Zadeh, J.; Fathollahi, Y.; Javan, M. Oct4 transcription factor in conjunction with valproic acid accelerates myelin repair in demyelinated optic chiasm in mice. Neuroscience 2016, 318, 178–189. [Google Scholar] [CrossRef]
- Yu, J.H.; Nam, B.G.; Kim, M.G.; Pyo, S.; Seo, J.H.; Cho, S.R. In vivo expression of reprogramming factor oct4 ameliorates myelination deficits and induces striatal neuroprotection in huntington’s disease. Genes 2021, 12, 712. [Google Scholar] [CrossRef] [PubMed]
- Niu, W.; Zang, T.; Zou, Y.; Fang, S.; Smith, D.K.; Bachoo, R.; Zhang, C.L. In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat. Cell Biol. 2013, 15, 1164–1175. [Google Scholar] [CrossRef]
- Islam, M.M.; Smith, D.K.; Niu, W.; Fang, S.; Iqbal, N.; Sun, G.; Shi, Y.; Zhang, C.L. Enhancer analysis unveils genetic interactions between tlx and sox2 in neural stem cells and in vivo reprogramming. Stem Cell Rep. 2015, 5, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Niu, W.; Zang, T.; Smith, D.K.; Vue, T.Y.; Zou, Y.; Bachoo, R.; Johnson, J.E.; Zhang, C.L. Sox2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Rep. 2015, 4, 780–794. [Google Scholar] [CrossRef] [PubMed]
- Niu, W.; Zang, T.; Wang, L.L.; Zou, Y.; Zhang, C.L. Phenotypic reprogramming of striatal neurons into dopaminergic neuron-like cells in the adult mouse brain. Stem Cell Rep. 2018, 11, 1156–1170. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, C.; Bergami, M.; Gascón, S.; Lepier, A.; Viganò, F.; Dimou, L.; Sutor, B.; Berninger, B.; Götz, M. Sox2-mediated conversion of ng2 glia into induced neurons in the injured adult cerebral cortex. Stem Cell Rep. 2014, 3, 1000–1014. [Google Scholar] [CrossRef] [PubMed]
- Farhangi, S.; Dehghan, S.; Totonchi, M.; Javan, M. In vivo conversion of astrocytes to oligodendrocyte lineage cells in adult mice demyelinated brains by sox2. Mult. Scler. Relat. Disord. 2019, 28, 263–272. [Google Scholar] [CrossRef]
- Su, Z.; Niu, W.; Liu, M.L.; Zou, Y.; Zhang, C.L. In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat. Commun. 2014, 5, 3338. [Google Scholar] [CrossRef]
- Wang, L.L.; Su, Z.; Tai, W.; Zou, Y.; Xu, X.M.; Zhang, C.L. The p53 pathway controls sox2-mediated reprogramming in the adult mouse spinal cord. Cell Rep. 2016, 17, 891–903. [Google Scholar] [CrossRef]
- Yang, T.; Xing, L.; Yu, W.; Cai, Y.; Cui, S.; Chen, G. Astrocytic reprogramming combined with rehabilitation strategy improves recovery from spinal cord injury. Faseb J. 2020, 34, 15504–15515. [Google Scholar] [CrossRef] [PubMed]
- Tai, W.; Wu, W.; Wang, L.L.; Ni, H.; Chen, C.; Yang, J.; Zang, T.; Zou, Y.; Xu, X.M.; Zhang, C.L. In vivo reprogramming of ng2 glia enables adult neurogenesis and functional recovery following spinal cord injury. Cell Stem Cell 2021, 28, 923–937.e924. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Desponts, C.; Do, J.T.; Hahm, H.S.; Schöler, H.R.; Ding, S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by oct4 and klf4 with small-molecule compounds. Cell Stem Cell 2008, 3, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Do, J.T.; Desponts, C.; Hahm, H.S.; Schöler, H.R.; Ding, S. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2008, 2, 525–528. [Google Scholar] [CrossRef]
- Moradi, S.; Mahdizadeh, H.; Šarić, T.; Kim, J.; Harati, J.; Shahsavarani, H.; Greber, B.; Moore, J.B.t. Research and therapy with induced pluripotent stem cells (ipscs): Social, legal, and ethical considerations. Stem Cell Res. Ther. 2019, 10, 341. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, Z.-N.; Rong, Z.; Xu, Y. Immunogenicity of induced pluripotent stem cells. Nature 2011, 474, 212–215. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, Y.; Xie, Y.; Zhang, L.; Tang, P. Cell transplantation for spinal cord injury: Tumorigenicity of induced pluripotent stem cell-derived neural stem/progenitor cells. Stem Cells Int. 2018, 2018, 5653787. [Google Scholar] [CrossRef]
- Ohnishi, K.; Semi, K.; Yamamoto, T.; Shimizu, M.; Tanaka, A.; Mitsunaga, K.; Okita, K.; Osafune, K.; Arioka, Y.; Maeda, T.; et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 2014, 156, 663–677. [Google Scholar] [CrossRef]
- Abad, M.; Mosteiro, L.; Pantoja, C.; Cañamero, M.; Rayon, T.; Ors, I.; Graña, O.; Megías, D.; Domínguez, O.; Martínez, D.; et al. Reprogramming in vivo produces teratomas and ips cells with totipotency features. Nature 2013, 502, 340–345. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, L.; Wu, Z.; Chen, Y.; Wang, F.; Chen, G. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an alzheimer’s disease model. Cell Stem Cell 2014, 14, 188–202. [Google Scholar] [CrossRef]
- Ge, L.J.; Yang, F.H.; Li, W.; Wang, T.; Lin, Y.; Feng, J.; Chen, N.H.; Jiang, M.; Wang, J.H.; Hu, X.T.; et al. In vivo neuroregeneration to treat ischemic stroke through neurod1 aav-based gene therapy in adult non-human primates. Front. Cell Dev. Biol. 2020, 8, 590008. [Google Scholar] [CrossRef]
- Chen, Y.C.; Ma, N.X.; Pei, Z.F.; Wu, Z.; Do-Monte, F.H.; Keefe, S.; Yellin, E.; Chen, M.S.; Yin, J.C.; Lee, G.; et al. A neurod1 aav-based gene therapy for functional brain repair after ischemic injury through in vivo astrocyte-to-neuron conversion. Mol. Ther. 2020, 28, 217–234. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Parry, M.; Hou, X.Y.; Liu, M.H.; Wang, H.; Cain, R.; Pei, Z.F.; Chen, Y.C.; Guo, Z.Y.; Abhijeet, S.; et al. Gene therapy conversion of striatal astrocytes into gabaergic neurons in mouse models of huntington’s disease. Nat. Commun. 2020, 11, 1105. [Google Scholar] [CrossRef] [PubMed]
- Mattugini, N.; Bocchi, R.; Scheuss, V.; Russo, G.L.; Torper, O.; Lao, C.L.; Götz, M. Inducing different neuronal subtypes from astrocytes in the injured mouse cerebral cortex. Neuron 2019, 103, 1086–1095.e1085. [Google Scholar] [CrossRef] [PubMed]
- Gascón, S.; Murenu, E.; Masserdotti, G.; Ortega, F.; Russo, G.L.; Petrik, D.; Deshpande, A.; Heinrich, C.; Karow, M.; Robertson, S.P.; et al. Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming. Cell Stem Cell 2016, 18, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Ohori, Y.; Yamamoto, S.; Nagao, M.; Sugimori, M.; Yamamoto, N.; Nakamura, K.; Nakafuku, M. Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord. J. Neurosci. 2006, 26, 11948–11960. [Google Scholar] [CrossRef] [PubMed]
- Nait-Oumesmar, B.; Picard-Riera, N.; Kerninon, C.; Decker, L.; Seilhean, D.; Höglinger, G.U.; Hirsch, E.C.; Reynolds, R.; Baron-Van Evercooren, A. Activation of the subventricular zone in multiple sclerosis: Evidence for early glial progenitors. Proc. Natl. Acad. Sci. USA 2007, 104, 4694–4699. [Google Scholar] [CrossRef]
- Hsieh, J.; Nakashima, K.; Kuwabara, T.; Mejia, E.; Gage, F.H. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc. Natl. Acad. Sci. USA 2004, 101, 16659–16664. [Google Scholar] [CrossRef]
Reprogramming Factors | Expression Location | Animal Model/Lesion Model | Animal Age (Time of Reprogramming *) | Delivery Methods | Target Cell (Markers) | Functional Outcome | References | |
---|---|---|---|---|---|---|---|---|
OKSM | Dentate gyrus | Reprogrammable i4F-B mice (with a C57BL/6 genetic background) | 6 months old (6 to 10 months of age) | Doxycycline-inducible | 3 days on doxycycline, then 4 days off for 15 weeks | Levels of migrating cells | Object Recognition Test | [14] |
OKSM | Cerebral cortex | C57BL/6 mice | 12 weeks old (3 days after TBI) | Retrovirus | Stereotactic injection | Neuron (NeuN, Map2) | Functional electrophysiology | [15] |
Controlled cortical impact TBI) | ||||||||
OKSM | Lateral ventricle | ICR mice | 6 weeks old | Adenovirus | Stereotactic injection | Neuron (NeuN) | Behavioral test (Passive Avoidance Task, open field test) | [16] |
Chronic Hypoxic–Ischemic Brain Injury model (unilaterally carotid artery ligation at 1 week of age) | ||||||||
OKSM | Lateral ventricle | Reprogrammable i4F-B mice (with a C57BL/6 genetic background) | 8–16 weeks (immediately after cerebral ischemia) | Doxycycline-inducible | Infused doxycycline into the lateral ventricle for 7 days using an osmotic pump | Neuron (NeuN) | Behavioral test (Rotarod test, ladder walking test) | [17] |
Cerebral ischemia model (bilateral common carotid artery occlusion for 20 min) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, H.E.; Lee, S.; Seo, J.H.; Kang, S.-W.; Choi, W.A.; Cho, S.-R. In Vivo Reprogramming Using Yamanaka Factors in the CNS: A Scoping Review. Cells 2024, 13, 343. https://doi.org/10.3390/cells13040343
Cho HE, Lee S, Seo JH, Kang S-W, Choi WA, Cho S-R. In Vivo Reprogramming Using Yamanaka Factors in the CNS: A Scoping Review. Cells. 2024; 13(4):343. https://doi.org/10.3390/cells13040343
Chicago/Turabian StyleCho, Han Eol, Siwoo Lee, Jung Hwa Seo, Seong-Woong Kang, Won Ah Choi, and Sung-Rae Cho. 2024. "In Vivo Reprogramming Using Yamanaka Factors in the CNS: A Scoping Review" Cells 13, no. 4: 343. https://doi.org/10.3390/cells13040343