SARS-CoV-2 Spike Protein Amplifies the Immunogenicity of Healthy Renal Epithelium in the Presence of Renal Cell Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and MPS Preparation
2.2. SARS-CoV-2 S Protein Incubation and ACE Staining
2.3. Immune Secretions
2.4. RNA Extraction, Sequencing and Bioinformatics Analysis
2.5. Metabolic Activity
2.6. Cell Viability
2.7. Exploratory Statistics and Data Plotting
3. Results
3.1. ACE Expression and the SARS-CoV-2 S Protein Internalization
3.2. Gene Expression Changes Across Experimental Conditions
3.3. Immune Modulation in RPTEC and RCC Co-Culture in Response to SARS-CoV-2 S Protein
3.4. Metabolic Adaptations of RPTEC and RCC Co-Culture to SARS-CoV-2 S Protein
3.5. Effects of SARS-CoV-2 S Protein on Cell Viability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Material | Supplier | Reference |
---|---|---|
Human ACE-2 Antibody (mouse anti-human) | Bio-Techne GmbH (Minneapolis, MN, USA) | MAB9335 |
Secondary antibody Alexa555 (goat anti-mouse) | ThermoFisher | A-21422 |
Sars-Cov-2 B.1.617.2 S A488 (Fluorescent Spike protein) | R&D systems | AFG10878 |
Dyngo4a | Abcam | ab120689 |
PitStop | Merck | SML1169-5MG |
Appendix B
ELISA kit | Supplier | Reference |
---|---|---|
Human CXCL1/GRO alpha DuoSet | R&D Systems | DY275-05 |
Human CXCL5/ENA-78 DuoSet | DY254-05 | |
Human IL-6 alpha Complex DuoSet | DY8139-05 | |
HUman IL-8/CXCL8 DuoSet | DY208 | |
Human Lipocalin-2/NGAL DuoSet | DY1757-05 | |
HumanTNF-alpha DuoDet | DY210 |
Appendix C
Kit | Supplier | Reference |
---|---|---|
LDH-Glo Cytotoxicity Assay | Promega | J2380 |
CellTiter-Glo 3D Cell Viability Assay | G9681 | |
Caspase-Glo 3/7 Assay System | G8090 |
Appendix D
References
- Huinen, Z.R.; Huijbers, E.J.M.; van Beijnum, J.R.; Nowak-Sliwinska, P.; Griffioen, A.W. Anti-Angiogenic Agents—Overcoming Tumour Endothelial Cell Anergy and Improving Immunotherapy Outcomes. Nat. Rev. Clin. Oncol. 2021, 18, 527–540. [Google Scholar] [CrossRef] [PubMed]
- van Asten, S.D.; de Groot, R.; van Loenen, M.M.; Castenmiller, S.M.; de Jong, J.; Monkhorst, K.; Haanen, J.B.; Amsen, D.; Bex, A.; Spaapen, R.M.; et al. T cells expanded from renal cell carcinoma display tumor-specific CD137 expression but lack significant IFN-γ, TNF-α or IL-2 production. OncoImmunology 2021, 10, 1860482. [Google Scholar] [CrossRef] [PubMed]
- Zamora, A.E.; Crawford, J.C.; Thomas, P.G. Hitting the Target: How T Cells Detect and Eliminate Tumors. J. Immunol. 2018, 200, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Somova, M.; Simm, S.; Padmyastuti, A.; Ehrhardt, J.; Schoon, J.; Wolff, I.; Burchardt, M.; Roennau, C.; Pinto, P.C. Integrating Tumor and Healthy Epithelium in a Micro-Physiology Multi-Compartment Approach to Study Renal Cell Carcinoma Pathophysiology. Sci. Rep. 2024, 14, 9357. [Google Scholar] [CrossRef]
- Song, Y.S.; Park, Y.J. Mechanisms of TERT Reactivation and Its Interaction with BRAFV600E. Endocrinol. Metab. 2020, 35, 515–525. [Google Scholar] [CrossRef]
- Gold, S.A.; Margulis, V. Uncovering a Link between COVID-19 and Renal Cell Carcinoma. Nat. Rev. Urol. 2023, 20, 330–331. [Google Scholar] [CrossRef]
- Aklilu, A.M.; Kumar, S.; Nugent, J.; Yamamoto, Y.; Coronel-Moreno, C.; Kadhim, B.; Faulkner, S.C.; O’Connor, K.D.; Yasmin, F.; Greenberg, J.H.; et al. COVID-19–Associated Acute Kidney Injury and Longitudinal Kidney Outcomes. JAMA Intern. Med. 2024, 184, 414. [Google Scholar] [CrossRef]
- Derosa, L.; Melenotte, C.; Griscelli, F.; Gachot, B.; Marabelle, A.; Kroemer, G.; Zitvogel, L. The Immuno-Oncological Challenge of COVID-19. Nat. Cancer 2020, 1, 946–964. [Google Scholar] [CrossRef]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 Entry into Cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef]
- Beyerstedt, S.; Casaro, E.B.; Rangel, É.B. COVID-19: Angiotensin-Converting Enzyme 2 (ACE2) Expression and Tissue Susceptibility to SARS-CoV-2 Infection. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 905–919. [Google Scholar] [CrossRef]
- Barthe, M.; Hertereau, L.; Lamghari, N.; Osman-Ponchet, H.; Braud, V.M. Receptors and Cofactors That Contribute to SARS-CoV-2 Entry: Can Skin Be an Alternative Route of Entry? Int. J. Mol. Sci. 2023, 24, 6253. [Google Scholar] [CrossRef] [PubMed]
- Mizuguchi, K.; Aoki, H.; Aoyama, M.; Kawaguchi, Y.; Waguri-Nagaya, Y.; Ohte, N.; Asai, K. Three-Dimensional Spheroid Culture Induces Apical-Basal Polarity and the Original Characteristics of Immortalized Human Renal Proximal Tubule Epithelial Cells. Exp. Cell Res. 2021, 404, 112630. [Google Scholar] [CrossRef] [PubMed]
- Alchahin, A.M.; Tsea, I.; Baryawno, N. Recent Advances in Single-Cell RNA-Sequencing of Primary and Metastatic Clear Cell Renal Cell Carcinoma. Cancers 2023, 15, 4734. [Google Scholar] [CrossRef] [PubMed]
- Poplawski, P.; Alseekh, S.; Jankowska, U.; Skupien-Rabian, B.; Iwanicka-Nowicka, R.; Kossowska, H.; Fogtman, A.; Rybicka, B.; Bogusławska, J.; Adamiok-Ostrowska, A.; et al. Coordinated Reprogramming of Renal Cancer Transcriptome, Metabolome and Secretome Associates with Immune Tumor Infiltration. Cancer Cell Int. 2023, 23, 2. [Google Scholar] [CrossRef]
- Caetano-Pinto, P.; Janssen, M.J.; Gijzen, L.; Verscheijden, L.; Wilmer, M.J.G.; Masereeuw, R. Fluorescence-Based Transport Assays Revisited in a Human Renal Proximal Tubule Cell Line. Mol. Pharm. 2016, 13, 933–944. [Google Scholar] [CrossRef]
- Sieber, S.; Wirth, L.; Cavak, N.; Koenigsmark, M.; Marx, U.; Lauster, R.; Rosowski, M. Bone Marrow-on-a-Chip: Long-Term Culture of Human Haematopoietic Stem Cells in a Three-Dimensional Microfluidic Environment. J. Tissue Eng. Regen. Med. 2018, 12, 479–489. [Google Scholar] [CrossRef]
- Padmyastuti, A.; Sarmiento, M.G.; Dib, M.; Ehrhardt, J.; Schoon, J.; Somova, M.; Burchardt, M.; Roennau, C.; Pinto, P.C. Microfluidic-Based Prostate Cancer Model for Investigating the Secretion of Prostate-Specific Antigen and MicroRNAs In Vitro. Sci. Rep. 2023, 13, 11623. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Du, L.; He, Y.; Zhou, Y.; Liu, S.; Zheng, B.-J.; Jiang, S. The Spike Protein of SARS-CoV—A Target for Vaccine and Therapeutic Development. Nat. Rev. Microbiol. 2009, 7, 226–236. [Google Scholar] [CrossRef]
- Kroll, M.-K.; Schloer, S.; Candan, P.; Korthals, N.; Wenzel, C.; Ihle, H.; Gilhaus, K.; Liedtke, K.R.; Schöfbänker, M.; Surmann, B.; et al. Importance of ACE2 for SARS-CoV-2 Infection of Kidney Cells. Biomolecules 2023, 13, 472. [Google Scholar] [CrossRef]
- Mizuiri, S.; Ohashi, Y. ACE and ACE2 in Kidney Disease. World J. Nephrol. 2015, 4, 74–82. [Google Scholar] [CrossRef]
- Errarte, P.; Beitia, M.; Perez, I.; Manterola, L.; Lawrie, C.H.; Solano-Iturri, J.D.; Calvete-Candenas, J.; Unda, M.; López, J.I.; Larrinaga, G. Expression and Activity of Angiotensin-Regulating Enzymes Is Associated with Prognostic Outcome in Clear Cell Renal Cell Carcinoma Patients. PLoS ONE 2017, 12, e0181711. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lopez, R.; Luchtel, R.A.; Hafizi, S.; Gartrell, B.; Shenoy, N. Immune Evasion in Renal Cell Carcinoma: Biology, Clinical Translation, Future Directions. Kidney Int. 2021, 99, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Dhatchinamoorthy, K.; Colbert, J.D.; Rock, K.L. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front Immunol. 2021, 12, 636568. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, N.; Kurata, M.; Yamamoto, T.; Morikawa, S.; Masumoto, J. The Role of Interleukin-1 in General Pathology. Inflamm. Regen. 2019, 39, 12. [Google Scholar] [CrossRef]
- Kouro, T.; Takatsu, K. IL-5- and Eosinophil-Mediated Inflammation: From Discovery to Therapy. Int. Immunol. 2009, 21, 1303–1309. [Google Scholar] [CrossRef]
- Cesta, M.C.; Zippoli, M.; Marsiglia, C.; Gavioli, E.M.; Mantelli, F.; Allegretti, M.; Balk, R.A. The Role of Interleukin-8 in Lung Inflammation and Injury: Implications for the Management of COVID-19 and Hyperinflammatory Acute Respiratory Distress Syndrome. Front. Pharmacol. 2022, 12, 808797. [Google Scholar] [CrossRef] [PubMed]
- Yaneske, E.; Zampieri, G.; Bertoldi, L.; Benvenuto, G.; Angione, C. Genome-Scale Metabolic Modelling of SARS-CoV-2 in Cancer Cells Reveals an Increased Shift to Glycolytic Energy Production. FEBS Lett. 2021, 595, 2350–2365. [Google Scholar] [CrossRef]
- Andrade Silva, M.; da Silva, A.R.P.A.; do Amaral, M.A.; Fragas, M.G.; Câmara, N.O.S. Metabolic Alterations in SARS-CoV-2 Infection and Its Implication in Kidney Dysfunction. Front. Physiol. 2021, 12, 624698. [Google Scholar] [CrossRef]
- Thomas, T.; Stefanoni, D.; Reisz, J.A.; Nemkov, T.; Bertolone, L.; Francis, R.O.; Hudson, K.E.; Zimring, J.C.; Hansen, K.C.; Hod, E.A.; et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight. 2020, 5, e140327. [Google Scholar] [CrossRef] [PubMed]
- Murali, R.; Wanjari, U.R.; Mukherjee, A.G.; Gopalakrishnan, A.V.; Kannampuzha, S.; Namachivayam, A.; Madhyastha, H.; Renu, K.; Ganesan, R. Crosstalk between COVID-19 Infection and Kidney Diseases: A Review on the Metabolomic Approaches. Vaccines 2023, 11, 489. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, Y.; Zhang, B.; Lin, X.; Fu, X.; An, Y.; Zou, Y.; Wang, J.-X.; Wang, Z.; Yu, T. Lactate Metabolism in Human Health and Disease. Signal Transduct. Target. Ther. 2022, 7, 305. [Google Scholar] [CrossRef] [PubMed]
- Maulana, T.I.; Kromidas, E.; Wallstabe, L.; Cipriano, M.; Alb, M.; Zaupa, C.; Hudecek, M.; Fogal, B.; Loskill, P. Immunocompetent Cancer-on-Chip Models to Assess Immuno-Oncology Therapy. Adv. Drug Deliv. Rev. 2021, 173, 281–305. [Google Scholar] [CrossRef] [PubMed]
- Brodaczewska, K.K.; Szczylik, C.; Fiedorowicz, M.; Porta, C.; Czarnecka, A.M. Choosing the Right Cell Line for Renal Cell Cancer Research. Mol. Cancer 2016, 15, 83. [Google Scholar] [CrossRef]
- Silva-Aguiar, R.P.; Teixeira, D.E.; Peres, R.A.S.; Peruchetti, D.B.; Gomes, C.P.; Schmaier, A.H.; Rocco, P.R.M.; Pinheiro, A.A.S.; Caruso-Neves, C. Subclinical Acute Kidney Injury in COVID-19: Possible Mechanisms and Future Perspectives. Int. J. Mol. Sci. 2022, 23, 14193. [Google Scholar] [CrossRef]
- Switzer, B.; Haanen, J.; Lorigan, P.C.; Puzanov, I.; Turajlic, S. Clinical and Immunologic Implications of COVID-19 in Patients with Melanoma and Renal Cell Carcinoma Receiving Immune Checkpoint Inhibitors. J. Immunother. Cancer 2021, 9, e002835. [Google Scholar] [CrossRef]
- Rago, V.; Bossio, S.; Lofaro, D.; Perri, A.; Di Agostino, S. New Insights into the Link between SARS-CoV-2 Infection and Renal Cancer. Life 2023, 14, 52. [Google Scholar] [CrossRef]
- Ragab, D.; Salah Eldin, H.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What We Know So Far. Front Immunol. 2020, 11, 1446. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Somova, M.; Simm, S.; Ehrhardt, J.; Schoon, J.; Burchardt, M.; Pinto, P.C. SARS-CoV-2 Spike Protein Amplifies the Immunogenicity of Healthy Renal Epithelium in the Presence of Renal Cell Carcinoma. Cells 2024, 13, 2038. https://doi.org/10.3390/cells13242038
Somova M, Simm S, Ehrhardt J, Schoon J, Burchardt M, Pinto PC. SARS-CoV-2 Spike Protein Amplifies the Immunogenicity of Healthy Renal Epithelium in the Presence of Renal Cell Carcinoma. Cells. 2024; 13(24):2038. https://doi.org/10.3390/cells13242038
Chicago/Turabian StyleSomova, Maryna, Stefan Simm, Jens Ehrhardt, Janosch Schoon, Martin Burchardt, and Pedro Caetano Pinto. 2024. "SARS-CoV-2 Spike Protein Amplifies the Immunogenicity of Healthy Renal Epithelium in the Presence of Renal Cell Carcinoma" Cells 13, no. 24: 2038. https://doi.org/10.3390/cells13242038
APA StyleSomova, M., Simm, S., Ehrhardt, J., Schoon, J., Burchardt, M., & Pinto, P. C. (2024). SARS-CoV-2 Spike Protein Amplifies the Immunogenicity of Healthy Renal Epithelium in the Presence of Renal Cell Carcinoma. Cells, 13(24), 2038. https://doi.org/10.3390/cells13242038