Elucidation of Ubiquitin-Related Functions via an Ubiquitin Overexpression Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains
2.2. Media
2.3. Plasmids
2.4. UV Mutagenesis
2.5. Genome Resequencing and Genome-Wide SNP Calling
2.6. Immunoblot Analysis
3. Results
3.1. Identification of the spc2 Mutation
3.2. Characterization of the spc2 Mutation
3.3. Genetic Interaction of spc2Δ with hrd1Δ
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hershko, A.; Ciechanover, A. The Ubiquitin System. Annu. Rev. Biochem. 1998, 67, 425–479. [Google Scholar] [CrossRef] [PubMed]
- Finley, D.; Ulrich, H.D.; Sommer, T.; Kaiser, P. The Ubiquitin-Proteasome System of Saccharomyces Cerevisiae. Genetics 2012, 192, 319–360. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Tanaka, K. Regulatory Mechanisms Involved in the Control of Ubiquitin Homeostasis. J. Biochem. 2010, 147, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Kadowaki, H.; Nishitoh, H. Endoplasmic Reticulum Quality Control by Garbage Disposal. FEBS J. 2019, 286, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Zanotti, A.; Coelho, J.P.L.; Kaylani, D.; Singh, G.; Tauber, M.; Hitzenberger, M.; Avci, D.; Zacharias, M.; Russell, R.B.; Lemberg, M.K.; et al. The Human Signal Peptidase Complex Acts as a Quality Control Enzyme for Membrane Proteins. Science 2022, 378, 996–1000. [Google Scholar] [CrossRef] [PubMed]
- Preston, G.M.; Brodsky, J.L. The Evolving Role of Ubiquitin Modification in Endoplasmic Reticulum-Associated Degradation. Biochem. J. 2017, 474, 445–469. [Google Scholar] [CrossRef]
- Bagola, K.; Mehnert, M.; Jarosch, E.; Sommer, T. Protein Dislocation from the ER. Biochim. Biophys. Acta Biomembr. 2011, 1808, 925–936. [Google Scholar] [CrossRef]
- Varshavsky, A. The Ubiquitin System, an Immense Realm. Annu. Rev. Biochem. 2012, 81, 167–176. [Google Scholar] [CrossRef]
- Hicke, L.; Riezman, H. Ubiquitination of a Yeast Plasma Membrane Receptor Signals Its Ligand-Stimulated Endocytosis. Cell 1996, 84, 277–287. [Google Scholar] [CrossRef]
- Akutsu, M.; Dikic, I.; Bremm, A. Ubiquitin Chain Diversity at a Glance. J. Cell Sci. 2016, 129, 875–880. [Google Scholar] [CrossRef]
- Swatek, K.N.; Komander, D. Ubiquitin Modifications. Cell Res. 2016, 26, 399–422. [Google Scholar] [CrossRef] [PubMed]
- Shields, S.B.; Piper, R.C. How Ubiquitin Functions with ESCRTs. Traffic 2011, 12, 1306–1317. [Google Scholar] [CrossRef] [PubMed]
- Finley, D.; Ozkaynak, E.; Varshavsky, A. The Yeast Polyubiquitin Gene Is Essential for Resistance to High Temperatures, Starvation, and Other Stresses. Cell 1987, 48, 1035–1046. [Google Scholar] [CrossRef]
- Amerik, A.Y.; Li, S.J.; Hochstrasser, M. Analysis of the Deubiquitinating Enzymes of the Yeast Saccharomyces Cerevisiae. Biol. Chem. 2000, 381, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Yashiroda, H.; Mizushima, T.; Okamoto, K.; Kameyama, T.; Hayashi, H.; Kishimoto, T.; Niwa, S.-I.; Kasahara, M.; Kurimoto, E.; Sakata, E.; et al. Crystal Structure of a Chaperone Complex That Contributes to the Assembly of Yeast 20S Proteasomes. Nat. Struct. Mol. Biol. 2008, 15, 228–236. [Google Scholar] [CrossRef]
- Amerik, A.Y.; Nowak, J.; Swaminathan, S.; Hochstrasser, M. The Doa4 Deubiquitinating Enzyme Is Functionally Linked to the Vacuolar Protein-Sorting and Endocytic Pathways. Mol. Biol. Cell 2000, 11, 3365–3380. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows—Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce Framework for Analyzing next-Generation DNA Sequencing Data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A Program for Annotating and Predicting the Effects of Single Nucleotide Polymorphisms, SnpEff: SNPs in the Genome of Drosophila Melanogaster Strain w1118; Iso-2; Iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative Genomics Viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Koitabashi, S.; Kakizuka, A.; Fujita, T. Initial Process of Polyglutamine Aggregate Formation in Vivo. Genes Cells 2001, 6, 887–897. [Google Scholar] [CrossRef] [PubMed]
- YaDeau, J.T.; Klein, C.; Blobel, G. Yeast Signal Peptidase Contains a Glycoprotein and the Sec11 Gene Product. Proc. Natl. Acad. Sci. USA 1991, 88, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Mullins, C.; Meyer, H.A.; Hartmann, E.; Green, N.; Fang, H. Structurally Related Spc1p and Spc2p of Yeast Signal Peptidase Complex Are Functionally Distinct. J. Biol. Chem. 1996, 271, 29094–29099. [Google Scholar] [CrossRef]
- Tokunaga, M.; Kawamura, A.; Kohno, K. Purification and Characterization of BiP/Kar2 Protein from Saccharomyces Cerevisiae. J. Biol. Chem. 1992, 267, 17553–17559. [Google Scholar] [CrossRef]
- Kimata, Y.; Kimata, Y.I.; Shimizu, Y.; Abe, H.; Farcasanu, I.C.; Takeuchi, M.; Rose, M.D.; Kohno, K. Genetic Evidence for a Role of BiP/Kar2 That Regulates Ire1 in Response to Accumulation of Unfolded Proteins. Mol. Biol. Cell 2003, 14, 2559–2569. [Google Scholar] [CrossRef]
- Wu, X.; Siggel, M.; Ovchinnikov, S.; Mi, W.; Svetlov, V.; Nudler, E.; Liao, M.; Hummer, G.; Rapoport, T.A. Structural Basis of ER-Associated Protein Degradation Mediated by the Hrd1 Ubiquitin Ligase Complex. Science 2020, 368, eaaz2449. [Google Scholar] [CrossRef]
- Bodnar, N.O.; Rapoport, T.A. Molecular Mechanism of Substrate Processing by the Cdc48 ATPase Complex. Cell 2017, 169, 722–735.e9. [Google Scholar] [CrossRef]
- Blythe, E.E.; Olson, K.C.; Chau, V.; Deshaies, R.J. Ubiquitin- and ATP-Dependent Unfoldase Activity of P97/VCP•NPLOC4•UFD1L Is Enhanced by a Mutation That Causes Multisystem Proteinopathy. Proc. Natl. Acad. Sci. USA 2017, 114, E4380–E4388. [Google Scholar] [CrossRef]
- Bays, N.W.; Wilhovsky, S.K.; Goradia, A.; Hodgkiss-Harlow, K.; Hampton, R.Y. HRD4/NPL4 Is Required for the Proteasomal Processing of Ubiquitinated ER Proteins. Mol. Biol. Cell 2001, 12, 4114–4128. [Google Scholar] [CrossRef]
- Jarosch, E.; Taxis, C.; Volkwein, C.; Bordallo, J.; Finley, D.; Wolf, D.H.; Sommer, T. Protein Dislocation from the ER Requires Polyubiquitination and the AAA-ATPase Cdc48. Nat. Cell Biol. 2002, 4, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Ishii, A.; Kawai, M.; Noda, H.; Kato, H.; Takeda, K.; Asakawa, K.; Ichikawa, Y.; Sasanami, T.; Tanaka, K.; Kimura, Y. Accelerated Invagination of Vacuoles as a Stress Response in Chronically Heat-Stressed Yeasts. Sci. Rep. 2018, 8, 2644. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Yashiroda, H.; Kudo, T.; Koitabashi, S.; Murata, S.; Kakizuka, A.; Tanaka, K. An Inhibitor of a Deubiquitinating Enzyme Regulates Ubiquitin Homeostasis. Cell 2009, 137, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Sikorski, R.S.; Hieter, P. A System of Shuttle Vectors and Yeast Host Strains Designed for Efficient Manipulation of DNA in Saccharomyces Cerevisiae. Genetics 1989, 122, 19–27. [Google Scholar] [CrossRef]
- Kimura, Y.; Tanigawa, M.; Kawawaki, J.; Takagi, K.; Mizushima, T.; Maeda, T.; Tanaka, K. Conserved Mode of Interaction between Yeast Bro1 Family V Domains and YP(X)nL Motif-Containing Target Proteins. Eukaryot. Cell 2015, 14, 976–982. [Google Scholar] [CrossRef]
Position | Reference | Variation | Quality | Coverage a | Impact | Functional Class | Gene | DNA Changes | Protein Changes | |
---|---|---|---|---|---|---|---|---|---|---|
XIII | 159,529 | C | T | 889.48 | 42 | HIGH | stop_gained | SPC2 | c.199C>T | p.Gln67 * |
XVI | 566,232 | C | T | 846.48 | 47 | HIGH | stop_gained | BRO1 | c.1342C>T | p.Gln448 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masuda, R.; Yoshikawa, M.; Moriuchi, R.; Oba, Y.; Dohra, H.; Kimura, Y. Elucidation of Ubiquitin-Related Functions via an Ubiquitin Overexpression Approach. Cells 2024, 13, 2011. https://doi.org/10.3390/cells13232011
Masuda R, Yoshikawa M, Moriuchi R, Oba Y, Dohra H, Kimura Y. Elucidation of Ubiquitin-Related Functions via an Ubiquitin Overexpression Approach. Cells. 2024; 13(23):2011. https://doi.org/10.3390/cells13232011
Chicago/Turabian StyleMasuda, Ryo, Munetaka Yoshikawa, Ryota Moriuchi, Yumiko Oba, Hideo Dohra, and Yoko Kimura. 2024. "Elucidation of Ubiquitin-Related Functions via an Ubiquitin Overexpression Approach" Cells 13, no. 23: 2011. https://doi.org/10.3390/cells13232011
APA StyleMasuda, R., Yoshikawa, M., Moriuchi, R., Oba, Y., Dohra, H., & Kimura, Y. (2024). Elucidation of Ubiquitin-Related Functions via an Ubiquitin Overexpression Approach. Cells, 13(23), 2011. https://doi.org/10.3390/cells13232011