Effect of Small-Molecule Natural Compounds on Pathologic Mast Cell/Basophil Activation in Allergic Diseases
Abstract
:1. Introduction
2. Mast Cell and Basophil Function in Allergy
3. Review of Botanical Drugs and Small-Molecule Natural Compounds on Mast Cells and Basophils
3.1. Berberine
3.2. Sauchinone
3.3. Arctigenin
3.4. Sophoraflavanone G
3.5. Kaempferol
3.6. Luteolin
3.7. Herbal Extract Formulations
3.7.1. Shuang-Huang-Lian
3.7.2. FAHF-2, BF-2, and EBF-2
3.7.3. Xin-Yi-Qing-Fei-Tang
3.7.4. Jiu-Wei-Yong-An
3.7.5. Viola yedoensis Makino Anti-Inching Compound
4. Challenges and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fuhrmann, V.; Huang, H.J.; Akarsu, A.; Shilovskiy, I.; Elisyutina, O.; Khaitov, M.; van Hage, M.; Linhart, B.; Focke-Tejkl, M.; Valenta, R.; et al. From Allergen Molecules to Molecular Immunotherapy of Nut Allergy: A Hard Nut to Crack. Front. Immunol. 2021, 12, 742732. [Google Scholar] [CrossRef] [PubMed]
- Khodoun, M.V.; Morris, S.C.; Shao, W.H.; Potter, C.; Angerman, E.; Kiselev, A.; Yarawsky, A.E.; Herr, A.B.; Klausz, K.; Otte, A.; et al. Suppression of IgE-mediated anaphylaxis and food allergy with monovalent anti-FcεRIα mAbs. J. Allergy Clin. Immunol. 2021, 147, 1838–1854.e4. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Allergy Asthma & Immunology. The Current State of Oral Immunotherapy (OIT) for the Treatment of Food Allergy. Available online: https://www.aaaai.org/tools-for-the-public/conditions-library/allergies/the-current-state-of-oral-immunotherapy (accessed on 5 September 2024).
- Luger, E.O.; Fokuhl, V.; Wegmann, M.; Abram, M.; Tillack, K.; Achatz, G.; Manz, R.A.; Worm, M.; Radbruch, A.; Renz, H. Induction of long-lived allergen-specific plasma cells by mucosal allergen challenge. J. Allergy Clin. Immunol. 2009, 124, 819–826.e4. [Google Scholar] [CrossRef] [PubMed]
- Barshow, S.M.; Kulis, M.D.; Burks, A.W.; Kim, E.H. Mechanisms of oral immunotherapy. Clin. Exp. Allergy 2021, 51, 527–535. [Google Scholar] [CrossRef]
- Paranjape, A.; Tsai, M.; Mukai, K.; Hoh, R.A.; Joshi, S.A.; Chinthrajah, R.S.; Nadeau, K.C.; Boyd, S.D.; Galli, S.J. Oral Immunotherapy and Basophil and Mast Cell Reactivity in Food Allergy. Front. Immunol. 2020, 11, 602660. [Google Scholar] [CrossRef]
- Hamey, F.K.; Lau, W.W.Y.; Kucinski, I.; Wang, X.; Diamanti, E.; Wilson, N.K.; Göttgens, B.; Dahlin, J.S. Single-cell molecular profiling provides a high-resolution map of basophil and mast cell development. Allergy 2021, 76, 1731–1742. [Google Scholar] [CrossRef]
- Hellman, L.; Akula, S.; Fu, Z.; Wernersson, S. Mast Cell and Basophil Granule Proteases–In Vivo Targets and Function. Front. Immunol. 2022, 13, 918305. [Google Scholar] [CrossRef]
- Wernersson, S.; Pejler, G. Mast cell secretory granules: Armed for battle. Nat. Rev. Immunol. 2014, 14, 478–494. [Google Scholar] [CrossRef]
- Huang, H.; Li, Y. Mechanisms controlling mast cell and basophil lineage decisions–PubMed. Curr. Allergy Asthma Rep. 2014, 14, 1–6. [Google Scholar] [CrossRef]
- St John, A.L.; Rathore, A.P.S.; Ginhoux, F. New perspectives on the origins and heterogeneity of mast cells. Nat. Rev. Immunol. 2023, 23, 55–68. [Google Scholar] [CrossRef]
- Cardamone, C.; Parente, R.; Feo, G.D.; Triggiani, M. Mast cells as effector cells of innate immunity and regulators of adaptive immunity. Immunol. Lett. 2016, 178, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Plum, T.; Binzberger, R.; Thiele, R.; Shang, F.; Postrach, D.; Fung, C.; Fortea, M.; Stakenborg, N.; Wang, Z.; Tappe-Theodor, A.; et al. Mast cells link immune sensing to antigen-avoidance behaviour. Nature 2023, 620, 634–642. [Google Scholar] [CrossRef] [PubMed]
- Theoharides, T.C.; Kempuraj, D.; Tagen, M.; Conti, P.; Kalogeromitros, D. Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol. Rev. 2007, 217, 65–78. [Google Scholar] [CrossRef] [PubMed]
- El Ansari, Y.S.; Kanagaratham, C.; Oettgen, H.C. Mast Cells as Regulators of Adaptive Immune Responses in Food Allergy. Yale J. Biol. Med. 2020, 93, 711–718. [Google Scholar] [PubMed]
- Tsai, M.; Grimbaldeston, M.; Galli, S.J. Mast cells and immunoregulation/immunomodulation. Adv. Exp. Med. Biol. 2011, 716, 186–211. [Google Scholar] [CrossRef]
- Giorgio Ciprandi, M.A.T. Nutraceuticals for allergic diseases: A brief overview. Glob. Pediatr. 2024, 7, 100103. [Google Scholar] [CrossRef]
- McCarty, M.F.; Lerner, A.; DiNicolantonio, J.J.; Benzvi, C. Nutraceutical Aid for Allergies–Strategies for Down-Regulating Mast Cell Degranulation. J. Asthma Allergy 2021, 14, 1257–1266. [Google Scholar] [CrossRef]
- Pratap, K.; Taki, A.C.; Johnston, E.B.; Lopata, A.L.; Kamath, S.D. A Comprehensive Review on Natural Bioactive Compounds and Probiotics as Potential Therapeutics in Food Allergy Treatment. Front. Immunol. 2020, 11, 996. [Google Scholar] [CrossRef]
- Wang, L.; Fang, Y.; Ma, Y.; Zhao, Z.; Ma, R.; Zhang, Y.; Qiao, Y.; Wang, X. A novel natural Syk inhibitor suppresses IgE-mediated mast cell activation and passive cutaneous anaphylaxis. Bioorg. Chem. 2024, 146, 107320. [Google Scholar] [CrossRef]
- McDonnell, J.M.; Dhaliwal, B.; Sutton, B.J.; Gould, H.J. IgE, IgE Receptors and Anti-IgE Biologics: Protein Structures and Mechanisms of Action. Annu. Rev. Immunol. 2023, 41, 255–275. [Google Scholar] [CrossRef]
- Holgate, S.T. New strategies with anti-IgE in allergic diseases. World Allergy Organ. J. 2014, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Ra, C.; Nunomura, S.; Okayama, Y. Fine-tuning of mast cell activation by FceRIbeta chain. Front. Immunol. 2012, 3, 112. [Google Scholar] [CrossRef]
- L’Estrange-Stranieri, E.; Gottschalk, T.A.; Wright, M.D.; Hibbs, M.L. The dualistic role of Lyn tyrosine kinase in immune cell signaling: Implications for systemic lupus erythematosus. Front. Immunol. 2024, 15, 1395427. [Google Scholar] [CrossRef] [PubMed]
- Waksman, G.; Kumaran, S.; Lubman, O. SH2 domains: Role, structure and implications for molecular medicine. Expert Rev. Mol. Med. 2004, 6, 1–18. [Google Scholar] [CrossRef]
- Kambayashi, T.; Koretzky, G.A. Proximal signaling events in Fc epsilon RI-mediated mast cell activation. J. Allergy Clin. Immunol. 2007, 119, 544–552; quiz 553–554. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Sun, J.; Zhang, W.; Guo, Z.; Ma, Q. Arachidonic acid metabolism in health and disease. MedComm 2023, 4, e363. [Google Scholar] [CrossRef]
- Li, Y.; Leung, P.S.C.; Gershwin, M.E.; Song, J. New Mechanistic Advances in FcεRI-Mast Cell-Mediated Allergic Signaling. Clin. Rev. Allergy Immunol. 2022, 63, 431–446. [Google Scholar] [CrossRef]
- Ando, T.; Kitaura, J. Tuning IgE: IgE-Associating Molecules and Their Effects on IgE-Dependent Mast Cell Reactions. Cells 2021, 10, 1697. [Google Scholar] [CrossRef]
- Lin, K.C.; Huang, D.Y.; Huang, D.W.; Tzeng, S.J.; Lin, W.W. Inhibition of AMPK through Lyn-Syk-Akt enhances FcεRI signal pathways for allergic response. J. Mol. Med. 2016, 94, 183–194. [Google Scholar] [CrossRef]
- Li, X.; Lee, Y.J.; Jin, F.; Park, Y.N.; Deng, Y.; Kang, Y.; Yang, J.H.; Chang, J.H.; Kim, D.Y.; Kim, J.A.; et al. Sirt1 negatively regulates FcepsilonRI-mediated mast cell activation through AMPK- and PTP1B-dependent processes. Sci. Rep. 2017, 7, 6444. [Google Scholar] [CrossRef]
- Kim, S.; Lim, S.W.; Choi, J. Drug discovery inspired by bioactive small molecules from nature. Anim. Cells Syst. 2022, 26, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Qu, C.; Srivastava, K.; Yang, N.; Busse, P.; Zhao, W.; Li, X.M. Food allergy herbal formula 2 protection against peanut anaphylactic reaction is via inhibition of mast cells and basophils. J. Allergy Clin. Immunol. 2010, 126, 1208–1217. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Ni, S.; Wang, D.; Fu, M.; Hong, T. Berberine suppresses mast cell-mediated allergic responses via regulating FcɛRI-mediated and MAPK signaling. Int. Immunopharmacol. 2019, 71, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yin, N.; Tao, W.; Wang, Q.; Fan, H.; Wang, Z. Berberine suppresses IL-33-induced inflammatory responses in mast cells by inactivating NF-kappaB and p38 signaling. Int. Immunopharmacol. 2019, 66, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Udoye, C.C.; Rau, C.N.; Freye, S.M.; Almeida, L.N.; Vera-Cruz, S.; Othmer, K.; Korkmaz, R.; Clauder, A.K.; Lindemann, T.; Niebuhr, M.; et al. B-cell receptor physical properties affect relative IgG1 and IgE responses in mouse egg allergy. Mucosal Immunol. 2022, 15, 1375–1388. [Google Scholar] [CrossRef]
- Andoh, T.; Yoshihisa, Y.; Rehman, M.U.; Tabuchi, Y.; Shimizu, T. Berberine induces anti-atopic dermatitis effects through the downregulation of cutaneous EIF3F and MALT1 in NC/Nga mice with atopy-like dermatitis. Biochem. Pharmacol. 2021, 185, 114439. [Google Scholar] [CrossRef]
- Hwang, S.L.; Li, X.; Lu, Y.; Jin, Y.; Jeong, Y.T.; Kim, Y.D.; Lee, I.K.; Taketomi, Y.; Sato, H.; Cho, Y.S.; et al. AMP-activated protein kinase negatively regulates FcεRI-mediated mast cell signaling and anaphylaxis in mice. J. Allergy Clin. Immunol. 2013, 132, 729–736.e12. [Google Scholar] [CrossRef]
- Deng, Y.; Jin, F.; Li, X.; Park, S.J.; Chang, J.H.; Kim, D.Y.; Kim, J.A.; Nam, J.W.; Choi, H.; Lee, Y.J.; et al. Sauchinone suppresses FcεRI-mediated mast cell signaling and anaphylaxis through regulation of LKB1/AMPK axis and SHP-1-Syk signaling module. Int. Immunopharmacol. 2019, 74, 105702. [Google Scholar] [CrossRef]
- Cao, M.; Liu, C.; Srivastava, K.D.; Lin, A.; Lazarski, C.; Wang, L.; Maskey, A.; Song, Y.; Chen, X.; Yang, N.; et al. Anti-IgE effect of small-molecule-compound arctigenin on food allergy in association with a distinct transcriptome profile. Clin. Exp. Allergy 2022, 52, 250–264. [Google Scholar] [CrossRef]
- Kee, J.Y.; Hong, S.H. Inhibition of Mast Cell-Mediated Allergic Responses by Arctii Fructus Extracts and Its Main Compound Arctigenin. J. Agric. Food Chem. 2017, 65, 9443–9452. [Google Scholar] [CrossRef]
- Yoo, J.M.; Yang, J.H.; Yang, H.J.; Cho, W.K.; Ma, J.Y. Inhibitory effect of fermented Arctium lappa fruit extract on the IgE-mediated allergic response in RBL-2H3 cells. Int. J. Mol. Med. 2016, 37, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Li, C.; Ma, P.; Ding, Y.; Gao, J.; Jia, Q.; Zhu, J.; Zhang, T. Effect of kaempferol on IgE-mediated anaphylaxis in C57BL/6 mice and LAD2 cells. Phytomedicine 2020, 79, 153346. [Google Scholar] [CrossRef] [PubMed]
- Nagata, K.; Araumi, S.; Ando, D.; Ito, N.; Ando, M.; Ikeda, Y.; Takahashi, M.; Noguchi, S.; Yasuda, Y.; Nakano, N.; et al. Kaempferol Suppresses the Activation of Mast Cells by Modulating the Expression of FcεRI and SHIP1. Int. J. Mol. Sci. 2023, 24, 5997. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Che, D.; Yu, Y.; Liu, L.; Mi, S.; Zhang, Y.; Hao, J.; Li, W.; Ji, M.; Geng, S.; et al. Luteolin inhibits FcεRΙ- and MRGPRX2-mediated mast cell activation by regulating calcium signaling pathways. Phytother. Res. 2022, 36, 2197–2206. [Google Scholar] [CrossRef] [PubMed]
- Kimata, M.; Shichijo, M.; Miura, T.; Serizawa, I.; Inagaki, N.; Nagai, H. Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clin. Exp. Allergy 2000, 30, 501–508. [Google Scholar] [CrossRef]
- Gao, Y.; Hou, R.; Fei, Q.; Fang, L.; Han, Y.; Cai, R.; Peng, C.; Qi, Y. The Three-Herb Formula Shuang-Huang-Lian stabilizes mast cells through activation of mitochondrial calcium uniporter. Sci. Rep. 2017, 7, 38736. [Google Scholar] [CrossRef]
- Wang, J.; Jones, S.M.; Pongracic, J.A.; Song, Y.; Yang, N.; Sicherer, S.H.; Makhija, M.M.; Robison, R.G.; Moshier, E.; Godbold, J.; et al. Safety, clinical, and immunologic efficacy of a Chinese herbal medicine (Food Allergy Herbal Formula-2) for food allergy. J. Allergy Clin. Immunol. 2015, 136, 962–970. [Google Scholar] [CrossRef]
- Wang, J.; Wood, R.A.; Raymond, S.; Suárez-Fariñas, M.; Yang, N.; Sicherer, S.H.; Sampson, H.A.; Li, X.M. Double-Blind, Placebo-Controlled Study of E-B-FAHF-2 in Combination With Omalizumab-Facilitated Multiallergen Oral Immunotherapy. J. Allergy Clin. Immunol. Pract. 2023, 11, 2208–2216.e1. [Google Scholar] [CrossRef]
- Srivastava, K.D.; Song, Y.; Yang, N.; Liu, C.; Goldberg, I.E.; Nowak-Wegrzyn, A.; Sampson, H.A.; Li, X.M. B-FAHF-2 plus oral immunotherapy (OIT) is safer and more effective than OIT alone in a murine model of concurrent peanut/tree nut allergy. Clin. Exp. Allergy 2017, 47, 1038–1049. [Google Scholar] [CrossRef]
- Yang, N.; Maskey, A.R.; Srivastava, K.; Kim, M.; Wang, Z.; Musa, I.; Shi, Y.; Gong, Y.; Fidan, O.; Wang, J.; et al. Inhibition of pathologic immunoglobulin E in food allergy by EBF-2 and active compound berberine associated with immunometabolism regulation. Front. Immunol. 2023, 14, 1081121. [Google Scholar] [CrossRef]
- Wang, S.D.; Chen, P.T.; Hsieh, M.H.; Wang, J.Y.; Chiang, C.J.; Lin, L.J. Xin-Yi-Qing-Fei-Tang and its critical components reduce asthma symptoms by suppressing GM-CSF and COX-2 expression in RBL-2H3 cells. J. Ethnopharmacol. 2024, 330, 118105. [Google Scholar] [CrossRef] [PubMed]
- Qinwufeng, G.; Jiacheng, L.; Xiaoling, L.; Tingru, C.; Yunyang, W.; Yanlong, Y. Jiu-Wei-Yong-An Formula suppresses JAK1/STAT3 and MAPK signaling alleviates atopic dermatitis-like skin lesions. J. Ethnopharmacol. 2022, 295, 115428. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.R.; Zhao, B.; Rui, X.; Jia, G.H.; Wu, Y.; Zhang, D.; Yu, H.N.; Zhang, B.R.; Yuan, Y. A TCM formula VYAC ameliorates DNCB-induced atopic dermatitis via blocking mast cell degranulation and suppressing NF-κB pathway. J. Ethnopharmacol. 2021, 280, 114454. [Google Scholar] [CrossRef] [PubMed]
- Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia 2017, 60, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Askari, V.R.; Khosravi, K.; Baradaran Rahimi, V.; Garzoli, S. A Mechanistic Review on How Berberine Use Combats Diabetes and Related Complications: Molecular, Cellular, and Metabolic Effects. Pharmaceuticals 2023, 17, 7. [Google Scholar] [CrossRef]
- Dou, Y.; Huang, R.; Li, Q.; Liu, Y.; Li, Y.; Chen, H.; Ai, G.; Xie, J.; Zeng, H.; Chen, J.; et al. Oxyberberine, an absorbed metabolite of berberine, possess superior hypoglycemic effect via regulating the PI3K/Akt and Nrf2 signaling pathways. Biomed. Pharmacother. 2021, 137, 111312. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, W.; Wang, D.; Ma, X. Chinese Medicine in the Battle Against Obesity and Metabolic Diseases. Front. Physiol. 2018, 9, 850. [Google Scholar] [CrossRef]
- Liu, C.S.; Zheng, Y.R.; Zhang, Y.F.; Long, X.Y. Research progress on berberine with a special focus on its oral bioavailability. Fitoterapia 2016, 109, 274–282. [Google Scholar] [CrossRef]
- Mirhadi, E.; Rezaee, M.; Malaekeh-Nikouei, B. Nano strategies for berberine delivery, a natural alkaloid of Berberis. Biomed. Pharmacother. 2018, 104, 465–473. [Google Scholar] [CrossRef]
- Yang, N.; Srivastava, K.; Song, Y.; Liu, C.; Cho, S.; Chen, Y.; Li, X.M. Berberine as a chemical and pharmacokinetic marker of the butanol-extracted Food Allergy Herbal Formula-2. Int. Immunopharmacol. 2017, 45, 120–127. [Google Scholar] [CrossRef]
- Wang, K.; Feng, X.; Chai, L.; Cao, S.; Qiu, F. The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab. Rev. 2017, 49, 139–157. [Google Scholar] [CrossRef] [PubMed]
- Mehra, M.; Sheorain, J.; Bakshi, J.; Thakur, R.; Grewal, S.; Dhingra, D.; Kumari, S. Synthesis and evaluation of berberine loaded chitosan nanocarrier for enhanced in-vitro antioxidant and anti-inflammatory potential. Carbohydr. Polym. Technol. Appl. 2024, 7, 100474. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, X.; Tao, Y.; Zhu, Y.; Zhang, J.; Yu, X.; Guo, P.; Liu, S.; Wei, Z.; Dai, Y.; et al. Arctigenin promotes mucosal healing in ulcerative colitis through facilitating focal adhesion assembly and colonic epithelial cell migration via targeting focal adhesion kinase. Int. Immunopharmacol. 2024, 128, 111552. [Google Scholar] [CrossRef] [PubMed]
- Hyam, S.R.; Lee, I.-A.; Gu, W.; Kim, K.-A.; Jeong, J.-J.; Jang, S.-E.; Han, M.J.; Kim, D.-H. Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages. Eur. J. Pharmacol. 2013, 708, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Beaven, M.A.; Metcalfe, D.D.; Olivera, A. Interaction of DJ-1 with Lyn is essential for IgE-mediated stimulation of human mast cells. J. Allergy Clin. Immunol. 2018, 142, 195–206.e198. [Google Scholar] [CrossRef]
- Sanchez-Garcia, S.; Rodriguez Del Rio, P.; Escudero, C.; Martinez-Gomez, M.J.; Ibanez, M.D. Possible eosinophilic esophagitis induced by milk oral immunotherapy. J. Allergy Clin. Immunol. 2012, 129, 1155–1157. [Google Scholar] [CrossRef]
- Ridolo, E.; De Angelis, G.L.; Dall’aglio, P. Eosinophilic esophagitis after specific oral tolerance induction for egg protein. Ann. Allergy Asthma Immunol. 2011, 106, 73–74. [Google Scholar] [CrossRef]
- Sampson, H.A. Peanut oral immunotherapy: Is it ready for clinical practice? J. Allergy Clin. Immunol. Pract. 2013, 1, 15–21. [Google Scholar] [CrossRef]
- Srivastava, K.; Cao, M.; Fidan, O.; Shi, Y.; Yang, N.; Nowak-Wegrzyn, A.; Miao, M.; Zhan, J.; Sampson, H.A.; Li, X.M. Berberine-containing natural-medicine with boiled peanut-OIT induces sustained peanut-tolerance associated with distinct microbiota signature. Front. Immunol. 2023, 14, 1174907. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Jia, Y.; Srivastava, K.D.; Huang, W.; Tiwari, R.; Nowak-Wegrzyn, A.; Geliebter, J.; Miao, M.; Li, X.M. Systems Pharmacology and In Silico Docking Analysis Uncover Association of CA2, PPARG, RXRA, and VDR with the Mechanisms Underlying the Shi Zhen Tea Formula Effect on Eczema. Evid.-Based Complement. Altern. Med. 2021, 2021, 8406127. [Google Scholar] [CrossRef]
- Mezentsev, Y.; Ershov, P.; Yablokov, E.; Kaluzhskiy, L.; Kupriyanov, K.; Gnedenko, O.; Ivanov, A. Protein Interactome Profiling of Stable Molecular Complexes in Biomaterial Lysate. Int. J. Mol. Sci. 2022, 23, 15697. [Google Scholar] [CrossRef] [PubMed]
- Ebo, D.G.; Beyens, M.; Heremans, K.; van der Poorten, M.M.; Van Gasse, A.L.; Mertens, C.; Houdt, M.V.; Sabato, V.; Elst, J. Recent Knowledge and Insights on the Mechanisms of Immediate Hypersensitivity and Anaphylaxis: IgE/FcεRI- and Non-IgE/FcεRI-Dependent Anaphylaxis. Curr. Pharm. Des. 2023, 29, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, J.; Melén, E.; Haahtela, T.; Koppelman, G.H.; Togias, A.; Valenta, R.; Akdis, C.A.; Czarlewski, W.; Rothenberg, M.; Valiulis, A.; et al. Rhinitis associated with asthma is distinct from rhinitis alone: The ARIA-MeDALL hypothesis. Allergy 2023, 78, 1169–1203. [Google Scholar] [CrossRef] [PubMed]
- Golkowski, M.; Lius, A.; Sapre, T.; Lau, H.T.; Moreno, T.; Maly, D.J.; Ong, S.E. Multiplexed kinase interactome profiling quantifies cellular network activity and plasticity. Mol. Cell 2023, 83, 803–818.e8. [Google Scholar] [CrossRef] [PubMed]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, H.; Chen, L.; Jafari, M.; Tang, J. Network-based modeling of herb combinations in traditional Chinese medicine. Brief. Bioinform. 2021, 22, bbab106. [Google Scholar] [CrossRef]
Compound | Botanical Source | Mechanism of Action | Evaluated Model | Refs. |
---|---|---|---|---|
Berberine |
| ↓ Lyn, Syk, Gab2 phosphorylation ↓ β-hexosaminidase and histamine release ↓ Phosphorylated JNK, ERK, p38 ↓ IL-4 and TNF-α production ↓ Serum IgE ↓ Clinical dermatitis score severity and spontaneous scratching behavior in mice ↓ Degranulated mast cells ↓ mRNA levels of CCL11, MIF, IL-4, IL-5 ↓ Protein expression of ELF3F, MALT1 | RBL-2H3 cells, Sprague Dawley rats, rat peritoneal mast cells, BALB/c mice, C3H/HeJ mice, MC/9 cells, human skin-derived mast cells, mouse peripheral blood leukocytes | [18,33,34,35,36,37] |
Sauchinone |
| ↓ LTC4 and PGD2 levels ↓ PCA reaction through Evans blue dye extravasation ↑ Phosphorylated LKB1, AMPK, and ACC ↓ PLCγ1, ERK1/2, JNK, and IKK activation ↑ SHP-1 phosphorylation | AMPKα2−/− mice, BALB/cJ mice, C57BL/6 mice, mouse BMMCs, | [38,39] |
Arctigenin |
| ↓ Allergen-specific IgE production and Th2 cytokines (IL-5, IL-13) ↓ Plasma histamine levels ↓ Proinflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) ↓ Proinflammatory chemokines (CCL2, CCL3, CCL4, CCL5) ↓ Phosphorylated Lyn, Fyn, and Syk ↓ Phosphorylated Akt PLCγ1/2 and PKCδ ↓ Phosphorylated, ERK, JNK, and p38 ↓ Nuclear translocation of NF-κB ↓ RIP2/caspase-1 activation | IgE-producing human myeloma U266 cells, C3H/HeJ mice, PBMCs from food-allergic patients, HMC-1 cells, RBL-2H3 cells, ICR mice | [40,41,42] |
Sophoraflavanone G |
| ↓ Syk phosphorylation ↓ β-hexosaminidase release ↓ Proinflammatory cytokines IL-4 and TNF-α ↓ Phosphorylation of PLCγ1, AKT, p38, ERK1/2, JNK ↓ PCA response ↓ Protein levels of COX-2 and IL-4 | 3D pharmacophore model and molecular docking screen, RBL-2H3 | [20] |
Kaempferol |
| ↓ PCA response ↓ Degranulated mast cells through histological analysis ↓ Serum histamine levels ↑ Body temperature during allergen challenge ↓ β-hexosaminidase release ↓ TNF-α, IL-8, and CCL2 protein levels ↓ Intracellular Ca2+ influx ↓ Phosphorylated PLC, IP3R, PKC, AKT, NF-κB, Lyn, Syk, and DJ-1 ↓ Surface expression of FcεRI ↑ mRNA and protein levels of SHIP-1 | LAD2 cells, C57BL/6 mice, BMMCs | [43,44] |
Luteolin |
| ↓ Serum levels of β-hexosaminidase release, 5-HT, histamine, tryptase, MCP-1, PGD2, TNF-α, IL-8, and IL-13 ↓ Intracellular Ca2+ influx ↓ Lyn, Btk, PLC-γ activation ↓ Release of LT and GM-CSF ↓ Phosphorylation of PKC, ERK, JNK | LAD2 cells, C57BL/6 mice, human cultured mast cells | [45,46] |
Shuang Huang Lian tea |
| ↓ β-hexosaminidase release ↓ Cytosolic Ca2+ ↑ MCU activation | LAD2 cells, P815 cell, mouse | [47] |
FAHF-2/EBF-2 |
| ↓ Syk phosphorylation ↓ Mast cell and basophil population numbers ↓ Expression of FcεRI on mast cells ↓ Allergen-specific IgE | C3H/HeJ mice, MC/9 cells, RBL-2H cells, human skin mast cells, mouse peripheral blood leukocytes, human PBMCs, U266 cells | [33,48,49,50,51] |
Xin-Yi-Qing-Fei-Tang |
| ↓ Airway hypersensitivity ↑ Respiratory system resistance (Rrs) and elastance (Ers) ↓ Serum IgE levels ↓ BALF inflammatory cell infiltration ↓ mRNA IL-3, IL-4, IL-13, TNF-α, GM-CSF, COX-2, ALOX-5, CCL2 | BALB/c, RBL-2H3 cells | [52] |
Jiu-Wei-Yong-An |
| ↓ Dermatitis severity, epidermal thickness, and mast cell aggregation ↓ Pruritus ↑ Skin moisture content ↓ JAK1/STAT3 signaling ↓ p38, ERK, and JNK, phosphorylation ↓ Production of TNF-α, IL-1β, IL-4, IL-13, IL-31, IL-33, and IFN-γ | network pharmacology, molecular docking, BALB/c mice | [53] |
Viola yedoensis Makino anti-itching compound |
| ↓ Skin lesions ↓ Epidermal and dermal thickness ↓ Mast cell infiltration ↓ Serum levels of IgE and histamine ↓ mRNA levels of Syk, IL-4, TNF-α ↓ Syk phosphorylation and NF-κB phosphorylation ↓ β-hexosaminidase release | BALB/c mice, RBL-2H3 cells | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Werner, R.; Carnazza, M.; Li, X.-M.; Yang, N. Effect of Small-Molecule Natural Compounds on Pathologic Mast Cell/Basophil Activation in Allergic Diseases. Cells 2024, 13, 1994. https://doi.org/10.3390/cells13231994
Werner R, Carnazza M, Li X-M, Yang N. Effect of Small-Molecule Natural Compounds on Pathologic Mast Cell/Basophil Activation in Allergic Diseases. Cells. 2024; 13(23):1994. https://doi.org/10.3390/cells13231994
Chicago/Turabian StyleWerner, Robert, Michelle Carnazza, Xiu-Min Li, and Nan Yang. 2024. "Effect of Small-Molecule Natural Compounds on Pathologic Mast Cell/Basophil Activation in Allergic Diseases" Cells 13, no. 23: 1994. https://doi.org/10.3390/cells13231994
APA StyleWerner, R., Carnazza, M., Li, X.-M., & Yang, N. (2024). Effect of Small-Molecule Natural Compounds on Pathologic Mast Cell/Basophil Activation in Allergic Diseases. Cells, 13(23), 1994. https://doi.org/10.3390/cells13231994