DNA Methylation and Histone Acetylation Contribute to the Maintenance of LTP in the Withdrawal Behavior Interneurons in Terrestrial Snails
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Electrophysiological Experiments
2.3. Drugs
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campbell, R.R.; Wood, M.A. How the epigenome integrates information and reshapes the synapse. Nat. Rev. Neurosci. 2019, 20, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.M.M. DNA methylation: A permissive mark in memory formation and maintenance. Learn. Mem. 2016, 23, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Levenson, J.M.; Roth, T.L.; Lubin, F.D.; Miller, C.A.; Huang, I.-C.; Desai, P.; Malone, L.M.; Sweatt, J.D. Evidence That DNA (Cytosine-5) Methyltransferase Regulates Synaptic Plasticity in the Hippocampus. J. Biol. Chem. 2006, 281, 15763–15773. [Google Scholar] [CrossRef]
- Sui, L.; Wang, Y.; Ju, L.-H.; Chen, M. Epigenetic regulation of reelin and brain-derived neurotrophic factor genes in long-term potentiation in rat medial prefrontal cortex. Neurobiol. Learn. Mem. 2012, 97, 425–440. [Google Scholar] [CrossRef]
- Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13, 484–492. [Google Scholar] [CrossRef]
- Law, J.A.; Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010, 11, 204–220. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Dao, F.-Y.; Zhang, D.; Yang, H.; Lin, H. Advances in mapping the epigenetic modifications of 5-methylcytosine (5mC), N6-methyladenine (6mA), and N4-methylcytosine (4mC). Biotechnol. Bioeng. 2021, 118, 4204–4216. [Google Scholar] [CrossRef]
- Yang, Q.; Antonov, I.; Castillejos, D.; Nagaraj, A.; Bostwick, C.; Kohn, A.; Moroz, L.L.; Hawkins, R.D. Intermediate-term memory in Aplysia involves neurotrophin signaling, transcription, and DNA methylation. Learn. Mem. 2018, 25, 620–628. [Google Scholar] [CrossRef]
- Rajasethupathy, P.; Antonov, I.; Sheridan, R.; Frey, S.; Sander, C.; Tuschl, T.; Kandel, E.R. A Role for Neuronal piRNAs in the Epigenetic Control of Memory-Related Synaptic Plasticity. Cell 2012, 149, 693–707. [Google Scholar] [CrossRef]
- Miller, C.A.; Sweatt, J.D. Covalent Modification of DNA Regulates Memory Formation. Neuron 2007, 53, 857–869. [Google Scholar] [CrossRef]
- Miller, C.A.; Gavin, C.F.; White, J.A.; Parrish, R.R.; Honasoge, A.; Yancey, C.R.; Rivera, I.M.; Rubio, M.D.; Rumbaugh, G.; Sweatt, J.D. Cortical DNA methylation maintains remote memory. Nat. Neurosci. 2010, 13, 664–666. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Zhou, Y.; Campbell, S.L.; Le, T.; Li, E.; Sweatt, J.D.; Silva, A.J.; Fan, G. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci. 2010, 13, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.M.M.; Hemstedt, T.J.; Bading, H. Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities. Nat. Neurosci. 2012, 15, 1111–1113. [Google Scholar] [CrossRef] [PubMed]
- Zuzina, A.B.; Vinarskaya, A.K.; Balaban, P.M. DNA Methylation Inhibition Reversibly Impairs the Long-Term Context Memory Maintenance in Helix. Int. J. Mol. Sci. 2023, 24, 14068. [Google Scholar] [CrossRef] [PubMed]
- Mitchnick, K.A.; Creighton, S.; O’Hara, M.; Kalisch, B.E.; Winters, B.D. Differential contributions of de novo and maintenance DNA methyltransferases to object memory processing in the rat hippocampus and perirhinal cortex—A double dissociation. Eur. J. Neurosci. 2015, 41, 773–786. [Google Scholar] [CrossRef]
- Monsey, M.S.; Ota, K.T.; Akingbade, I.F.; Hong, E.S.; Schafe, G.E. Epigenetic Alterations Are Critical for Fear Memory Consolidation and Synaptic Plasticity in the Lateral Amygdala. PLoS ONE 2011, 6, e19958. [Google Scholar] [CrossRef]
- Morris, M.J.; Adachi, M.; Na, E.S.; Monteggia, L.M. Selective role for DNMT3a in learning and memory. Neurobiol. Learn. Mem. 2014, 115, 30–37. [Google Scholar] [CrossRef]
- Halder, R.; Hennion, M.; Vidal, R.O.; Shomroni, O.; Rahman, R.-U.; Rajput, A.; Centeno, T.P.; van Bebber, F.; Capece, V.; Garcia Vizcaino, J.C.; et al. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat. Neurosci. 2016, 19, 102–110. [Google Scholar] [CrossRef]
- Guo, J.U.; Ma, D.K.; Mo, H.; Ball, M.P.; Jang, M.-H.; Bonaguidi, M.A.; Balazer, J.A.; Eaves, H.L.; Xie, B.; Ford, E.; et al. Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat. Neurosci. 2011, 14, 1345–1351. [Google Scholar] [CrossRef]
- Maag, J.L.V.; Kaczorowski, D.C.; Panja, D.; Peters, T.J.; Bramham, C.R.; Wibrand, K.; Dinger, M.E. Widespread promoter methylation of synaptic plasticity genes in long-term potentiation in the adult brain in vivo. BMC Genom. 2017, 18, 250. [Google Scholar] [CrossRef]
- Park, J.; Lee, K.; Kim, K.; Yi, S.-J. The role of histone modifications: From neurodevelopment to neurodiseases. Signal Transduct. Target. Ther. 2022, 7, 217. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.M. Cellular Memory and the Histone Code. Cell 2002, 111, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Penney, J.; Tsai, L.-H. Histone deacetylases in memory and cognition. Sci. Signal. 2014, 7, re12. [Google Scholar] [CrossRef] [PubMed]
- Levenson, J.M.; O’Riordan, K.J.; Brown, K.D.; Trinh, M.A.; Molfese, D.L.; Sweatt, J.D. Regulation of Histone Acetylation during Memory Formation in the Hippocampus. J. Biol. Chem. 2004, 279, 40545–40559. [Google Scholar] [CrossRef]
- Guan, Z.; Giustetto, M.; Lomvardas, S.; Kim, J.-H.; Miniaci, M.C.; Schwartz, J.H.; Thanos, D.; Kandel, E.R. Integration of Long-Term-Memory-Related Synaptic Plasticity Involves Bidirectional Regulation of Gene Expression and Chromatin Structure. Cell 2002, 111, 483–493. [Google Scholar] [CrossRef]
- Danilova, A.B.; Grinkevich, L.N. Failure of Long-Term Memory Formation in Juvenile Snails Is Determined by Acetylation Status of Histone H3 and Can Be Improved by NaB Treatment. PLoS ONE 2012, 7, e41828. [Google Scholar] [CrossRef]
- Yoshida, M.; Kijima, M.; Akita, M.; Beppu, T. Potent and Specific Inhibition of Mammalian Histone Deacetylase both In Vivo and In Vitro by Trichostatin A. J. Biol. Chem. 1990, 265, 17174–17179. [Google Scholar] [CrossRef]
- Kilgore, M.; Miller, C.A.; Fass, D.M.; Hennig, K.M.; Haggarty, S.J.; Sweatt, J.D.; Rumbaugh, G. Inhibitors of Class 1 Histone Deacetylases Reverse Contextual Memory Deficits in a Mouse Model of Alzheimer’s Disease. Neuropsychopharmacology 2010, 35, 870–880. [Google Scholar] [CrossRef]
- Alarcón, J.M.; Malleret, G.; Touzani, K.; Vronskaya, S.; Ishii, S.; Kandel, E.R.; Barco, A. Chromatin Acetylation, Memory, and LTP Are Impaired in CBP+/− Mice: A Model for the Cognitive Deficit in Rubinstein-Taybi Syndrome and Its Amelioration. Neuron 2004, 42, 947–959. [Google Scholar] [CrossRef]
- Zuzina, A.B.; Balaban, P.M. Contribution of histone acetylation to the serotonin-mediated long-term synaptic plasticity in terrestrial snails. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2022, 208, 521–535. [Google Scholar] [CrossRef]
- Miller, C.A.; Campbell, S.L.; Sweatt, J.D. DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiol. Learn. Mem. 2008, 89, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Balaban, P.M. Cellular mechanisms of behavioral plasticity in terrestrial snail. Neurosci. Biobehav. Rev. 2002, 26, 597–630. [Google Scholar] [CrossRef] [PubMed]
- Zyuzina, A.B.; Balaban, P.M. Extinction and Reconsolidation of Memory. Neurosci. Behav. Physiol. 2017, 47, 74–82. [Google Scholar] [CrossRef]
- Zuzina, A.B.; Balaban, P.M. Contribution of Epigenetic Mechanisms to the Formation, Maintenance, and Reconsolidation of a Long-Term Food-Related Aversive Memory in Terrestrial Snails. Neurosci. Behav. Physiol. 2024, 54, 138–148. [Google Scholar] [CrossRef]
- Zuzina, A.B.; Vinarskaya, A.K.; Balaban, P.M. Histone deacetylase inhibitors rescue the impaired memory in terrestrial snails. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2020, 206, 639–649. [Google Scholar] [CrossRef]
- Zuzina, A.B.; Vinarskaya, A.K. Increased histone acetylation levels or a serotonin precursor reinstate the context memory impaired by the serotonin receptor blocker methiothepin. Neurosci. Behav. Physiol. 2023, 53, 460–472. [Google Scholar] [CrossRef]
- Geyer, K.K.; Niazi, U.H.; Duval, D.; Cosseau, C.; Tomlinson, C.; Chalmers, I.W.; Swain, M.T.; Cutress, D.J.; Bickham-Wright, U.; Munshi, S.E.; et al. The Biomphalaria glabrata DNA methylation machinery displays spatial tissue expression, is differentially active in distinct snail populations and is modulated by interactions with Schistosoma mansoni. PLoS Negl. Trop. Dis. 2017, 11, e0005246. [Google Scholar] [CrossRef]
- Moroz, L.L.; Edwards, J.R.; Puthanveettil, S.V.; Kohn, A.B.; Ha, T.; Heyland, A.; Knudsen, B.; Sahni, A.; Yu, F.; Liu, L.; et al. Neuronal Transcriptome of Aplysia: Neuronal Compartments and Circuitry. Cell 2006, 127, 1453–1467. [Google Scholar] [CrossRef] [PubMed]
- Cocci, P.; Mosconi, G.; Palermo, F.A. Effects of tributyltin on retinoid X receptor gene expression and global DNA methylation during intracapsular development of the gastropod Tritia mutabilis (Linnaeus, 1758). Environ. Toxicol. Pharmacol. 2021, 88, 103753. [Google Scholar] [CrossRef]
- Georgescu, M.; Drăghici, G.A.; Oancea, E.-F.; Dehelean, C.A.; Şoica, C.; Vlăduţ, N.-V.; Nica, D.V. Effects of Cadmium Sulfate on the Brown Garden Snail Cornu aspersum: Implications for DNA Methylation. Toxics 2021, 9, 306. [Google Scholar] [CrossRef]
- Regev, A.; Lamb, M.; Jablonka, E. The Role of DNA Methylation in Invertebrates: Developmental Regulation or Genome Defense? Mol. Biol. Evol. 1998, 15, 880. [Google Scholar] [CrossRef]
- Bravarenko, N.I.; Korshunova, T.A.; Malyshev, A.Y.; Balaban, P.M. Synaptic contact between mechanosensory neuron and withdrawal interneuron in terrestrial snail is mediated by l-glutamate-like transmitter. Neurosci. Lett. 2003, 341, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Ter-Markaryan, A.G.; Palikhova, T.A.; Sokolov, E.N. Effect of atropine and d-tubocurarine on the monosynaptic connections between identified neurons in the central nervous system of the edible snail. Neurosci. Behav. Physiol. 1991, 21, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Schirrmacher, E.; Beck, C.; Brueckner, B.; Schmitges, F.; Siedlecki, P.; Bartenstein, P.; Lyko, F.; Schirrmacher, R. Synthesis and In Vitro Evaluation of Biotinylated RG108: A High Affinity Compound for Studying Binding Interactions with Human DNA Methyltransferases. Bioconjug. Chem. 2006, 17, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.D.; Le, T.; Fan, G. DNA Methylation and Its Basic Function. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2013, 38, 23–38. [Google Scholar] [CrossRef]
- Pearce, K.; Cai, D.; Roberts, A.C.; Glanzman, D.L. Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia. eLife 2017, 6, e18299. [Google Scholar] [CrossRef]
- Sunada, H.; Riaz, H.; de Freitas, E.; Lukowiak, K.; Swinton, C.; Swinton, E.; Protheroe, A.; Shymansky, T.; Komatsuzaki, Y.; Lukowiak, K. Heat stress enhances LTM formation in Lymnaea: Role of HSPs and DNA methylation. J. Exp. Biol. 2016, 219, 1337–1345. [Google Scholar] [CrossRef]
- Rothwell, C.M.; Lukowiak, K.D. Impairing DNA methylation obstructs memory enhancement for at least 24 hours in Lymnaea. Commun. Integr. Biol. 2017, 10, e1306616. [Google Scholar] [CrossRef]
- Lukowiak, K.; Heckler, B.; Bennett, T.E.; Schriner, E.K.; Wyrick, K.; Jewett, C.; Todd, R.P.; Sorg, B.A. Enhanced memory persistence is blocked by a DNA methyltransferase inhibitor in the snail Lymnaea stagnalis. J. Exp. Biol. 2014, 217, 2920–2929. [Google Scholar] [CrossRef]
- Maity, S.; Jarome, T.J.; Blair, J.; Lubin, F.D.; Nguyen, P.V. Noradrenaline goes nuclear: Epigenetic modifications during long-lasting synaptic potentiation triggered by activation of β-adrenergic receptors. J. Physiol. 2016, 594, 863–881. [Google Scholar] [CrossRef]
- Lubin, F.D.; Roth, T.L.; Sweatt, J.D. Epigenetic Regulation of bdnf Gene Transcription in the Consolidation of Fear Memory. J. Neurosci. 2008, 28, 10576–10586. [Google Scholar] [CrossRef] [PubMed]
- Massart, R.; Barnea, R.; Dikshtein, Y.; Suderman, M.; Meir, O.; Hallett, M.; Kennedy, P.; Nestler, E.J.; Szyf, M.; Yadid, G. Role of DNA Methylation in the Nucleus Accumbens in Incubation of Cocaine Craving. J. Neurosci. 2015, 35, 8042–8058. [Google Scholar] [CrossRef]
- Scott, H.; Smith, A.E.; Barker, G.R.; Uney, J.B.; Warburton, E.C. Contrasting roles for DNA methyltransferases and histone deacetylases in single-item and associative recognition memory. Neuroepigenetics 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Gulmez Karaca, K.; Kupke, J.; Brito, D.V.C.; Zeuch, B.; Thome, C.; Weichenhan, D.; Lutsik, P.; Plass, C.; Oliveira, A.M.M. Neuronal ensemble-specific DNA methylation strengthens engram stability. Nat. Commun. 2020, 11, 639. [Google Scholar] [CrossRef]
- Kong, Q.; Yu, M.; Zhang, M.; Wei, C.; Gu, H.; Yu, S.; Sun, W.; Li, N.; Zhou, Y. Conditional Dnmt3b deletion in hippocampal dCA1 impairs recognition memory. Mol. Brain 2020, 13, 42. [Google Scholar] [CrossRef] [PubMed]
- Kupke, J.; Klimmt, J.; Mudlaff, F.; Schwab, M.; Lutsik, P.; Plass, C.; Sticht, C.; Oliveira, A.M.M. Dnmt3a1 regulates hippocampus-dependent memory via the downstream target Nrp1. Neuropsychopharmacology 2024, 49, 1528–1539. [Google Scholar] [CrossRef]
- Wu, C.-F.; Zhang, D.-F.; Zhang, S.; Sun, L.; Liu, Y.; Dai, J.-J. Optimizing treatment of DNA methyltransferase inhibitor RG108 on porcine fibroblasts for somatic cell nuclear transfer. Reprod. Domest. Anim. Zuchthyg. 2019, 54, 1604–1611. [Google Scholar] [CrossRef] [PubMed]
- Stresemann, C.; Brueckner, B.; Musch, T.; Stopper, H.; Lyko, F. Functional Diversity of DNA Methyltransferase Inhibitors in Human Cancer Cell Lines. Cancer Res. 2006, 66, 2794–2800. [Google Scholar] [CrossRef]
- Brueckner, B.; Garcia Boy, R.; Siedlecki, P.; Musch, T.; Kliem, H.C.; Zielenkiewicz, P.; Suhai, S.; Wiessler, M.; Lyko, F. Epigenetic Reactivation of Tumor Suppressor Genes by a Novel Small-Molecule Inhibitor of Human DNA Methyltransferases. Cancer Res. 2005, 65, 6305–6311. [Google Scholar] [CrossRef]
- Carraway, H.E.; Malkaram, S.A.; Cen, Y.; Shatnawi, A.; Fan, J.; Ali, H.E.A.; Abd Elmageed, Z.Y.; Buttolph, T.; Denvir, J.; Primerano, D.A.; et al. Activation of SIRT6 by DNA hypomethylating agents and clinical consequences on combination therapy in leukemia. Sci. Rep. 2020, 10, 10325. [Google Scholar] [CrossRef]
- Cai, D.; Chen, S.; Glanzman, D.L. Postsynaptic Regulation of Long-Term Facilitation in Aplysia. Curr. Biol. 2008, 18, 920–925. [Google Scholar] [CrossRef]
- Sossin, W.S. Isoform specificity of protein kinase Cs in synaptic plasticity. Learn. Mem. 2007, 14, 236–246. [Google Scholar] [CrossRef]
- Zhou, L.; Baxter, D.A.; Byrne, J.H. Contribution of PKC to the maintenance of 5-HT-induced short-term facilitation at sensorimotor synapses of Aplysia. J. Neurophysiol. 2014, 112, 1936–1949. [Google Scholar] [CrossRef]
- Manseau, F.; Fan, X.; Hueftlein, T.; Sossin, W.S.; Castellucci, V.F. Ca2+-Independent Protein Kinase C Apl II Mediates the Serotonin-Induced Facilitation at Depressed Aplysia Sensorimotor Synapses. J. Neurosci. 2001, 21, 1247–1256. [Google Scholar] [CrossRef]
- Hu, J.-Y.; Chen, Y.; Schacher, S. Protein Kinase C Regulates Local Synthesis and Secretion of a Neuropeptide Required for Activity-Dependent Long-Term Synaptic Plasticity. J. Neurosci. 2007, 27, 8927–8939. [Google Scholar] [CrossRef]
- Villareal, G.; Li, Q.; Cai, D.; Fink, A.E.; Lim, T.; Bougie, J.K.; Sossin, W.S.; Glanzman, D.L. Role of Protein Kinase C in the Induction and Maintenance of Serotonin-Dependent Enhancement of the Glutamate Response in Isolated Siphon Motor Neurons of Aplysia californica. J. Neurosci. 2009, 29, 5100–5107. [Google Scholar] [CrossRef]
- Mellor, H.; Parker, P.J. The extended protein kinase C superfamily. Biochem. J. 1998, 332 Pt 2, 281–292. [Google Scholar] [CrossRef]
- Cai, D.; Pearce, K.; Chen, S.; Glanzman, D.L. Protein Kinase M Maintains Long-Term Sensitization and Long-Term Facilitation in Aplysia. J. Neurosci. 2011, 31, 6421–6431. [Google Scholar] [CrossRef]
- Hastings, M.; Farah, C.A.; Sossin, W.S. Roles of Protein Kinase C and Protein Kinase M in Aplysia Learning. In Handbook of Behavioral Neuroscience; Menzel, R., Benjamin, P.R., Eds.; Invertebrate Learning and Memory; Elsevier: Amsterdam, The Netherlands, 2013; Volume 22, pp. 221–235. [Google Scholar] [CrossRef]
- Newton, A.C. Protein Kinase C: Structural and Spatial Regulation by Phosphorylation, Cofactors, and Macromolecular Interactions. Chem. Rev. 2001, 101, 2353–2364. [Google Scholar] [CrossRef]
- Sossin, W.S.; Abrams, T.W. Evolutionary Conservation of the Signaling Proteins Upstream of Cyclic AMP-Dependent Kinase and Protein Kinase C in Gastropod Mollusks. Brain. Behav. Evol. 2009, 74, 191–205. [Google Scholar] [CrossRef]
- Li, Q.; Roberts, A.C.; Glanzman, D.L. Synaptic Facilitation and Behavioral Dishabituation in Aplysia: Dependence on Release of Ca2+ from Postsynaptic Intracellular Stores, Postsynaptic Exocytosis, and Modulation of Postsynaptic AMPA Receptor Efficacy. J. Neurosci. 2005, 25, 5623–5637. [Google Scholar] [CrossRef]
- Martinowich, K.; Hattori, D.; Wu, H.; Fouse, S.; He, F.; Hu, Y.; Fan, G.; Sun, Y.E. DNA Methylation-Related Chromatin Remodeling in Activity-Dependent Bdnf Gene Regulation. Science 2003, 302, 890–893. [Google Scholar] [CrossRef]
- Huang, Y.; Doherty, J.J.; Dingledine, R. Altered Histone Acetylation at Glutamate Receptor 2 and Brain-Derived Neurotrophic Factor Genes Is an Early Event Triggered by Status Epilepticus. J. Neurosci. 2002, 22, 8422–8428. [Google Scholar] [CrossRef]
- Vecsey, C.G.; Hawk, J.D.; Lattal, K.M.; Stein, J.M.; Fabian, S.A.; Attner, M.A.; Cabrera, S.M.; McDonough, C.B.; Brindle, P.K.; Abel, T.; et al. Histone Deacetylase Inhibitors Enhance Memory and Synaptic Plasticity via CREB: CBP-Dependent Transcriptional Activation. J. Neurosci. 2007, 27, 6128–6140. [Google Scholar] [CrossRef]
- Chen, S.; Cai, D.; Pearce, K.; Sun, P.Y.-W.; Roberts, A.C.; Glanzman, D.L. Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia. eLife 2014, 3, e03896. [Google Scholar] [CrossRef]
- Maddox, S.A.; Schafe, G.E. Epigenetic alterations in the lateral amygdala are required for reconsolidation of a Pavlovian fear memory. Learn. Mem. 2011, 18, 579–593. [Google Scholar] [CrossRef]
- Roth, T.L.; Sweatt, J.D. Regulation of chromatin structure in memory formation. Curr. Opin. Neurobiol. 2009, 19, 336–342. [Google Scholar] [CrossRef]
Control | Control | Control | Control | Control | Control+RG | Control+RG | Control+RG | Control+RG | LTP | LTP | LTP | LTP+RG | LTP+RG | LTP+RG+NaB | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
vs. | vs. | vs. | vs. | vs. | vs. | vs. | vs. | vs. | vs. | vs. | vs. | vs. | vs. | vs. | |
Contr+RG | LTP | LTP+RG | LTP+RG+NaB | LTP+RG+TSA | LTP | LTP+RG | LTP+RG+NaB | LTP+RG+TSA | LTP+RG | LTP+RG+NaB | LTP+RG+TSA | LTP+RG+NaB | LTP+RG+TSA | LTP+RG+TSA | |
−40 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 |
−30 | 0.094 | 0.133 | 0.006 | 0.011 | 0.541 | 0.278 | 0.370 | 0.370 | 0.200 | 0.016 | 0.237 | 0.460 | 0.279 | 0.015 | 0.130 |
−20 | >0.999 | 0.252 | 0.481 | 0.963 | 0.681 | 0.299 | 0.606 | 0.606 | 0.837 | 0.189 | 0.281 | 0.710 | 0.721 | 0.397 | 0.779 |
−10 | 0.666 | 0.720 | 0.423 | 0.031 | 0.681 | 0.549 | >0.999 | >0.999 | >0.999 | 0.460 | 0.161 | 0.536 | 0.021 | 0.867 | 0.165 |
0 | 0.931 | 0.842 | >0.999 | 0.174 | 0.364 | 0.720 | 0.898 | 0.898 | 0.298 | 0.513 | 0.109 | 0.440 | 0.048 | 0.056 | 0.876 |
10 | >0.999 | 0.000 | 0.000 | 0.001 | 0.005 | 0.000 | 0.000 | 0.000 | 0.003 | 0.313 | 0.315 | 0.109 | 0.073 | 0.014 | >0.999 |
20 | 0.258 | 0.000 | 0.000 | 0.002 | 0.008 | 0.000 | 0.000 | 0.000 | 0.002 | 0.573 | 0.859 | 0.088 | 0.524 | 0.014 | 0.268 |
30 | 0.546 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.281 | 0.445 | 0.232 | 0.228 | 0.003 | >0.999 |
40 | 0.743 | 0.029 | 0.000 | 0.059 | 0.003 | 0.023 | 0.000 | 0.000 | 0.000 | 0.536 | 0.731 | 0.336 | 0.228 | 0.010 | 0.950 |
50 | 0.340 | 0.004 | 0.000 | 0.002 | 0.002 | 0.004 | 0.000 | 0.000 | 0.001 | 0.696 | 0.813 | 0.408 | 0.536 | 0.050 | 0.613 |
60 | 0.931 | 0.010 | 0.059 | 0.000 | 0.000 | 0.008 | 0.059 | 0.059 | 0.000 | 0.633 | 0.696 | 0.965 | 0.505 | 0.574 | 0.721 |
70 | 0.666 | 0.000 | 0.071 | 0.000 | 0.000 | 0.000 | 0.142 | 0.142 | 0.000 | 0.070 | 0.696 | 0.408 | 0.336 | 0.281 | 0.878 |
80 | >0.999 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.965 | 0.897 | 0.962 | 0.721 | >0.999 | 0.955 |
90 | 0.730 | 0.000 | 0.008 | 0.001 | 0.000 | 0.000 | 0.015 | 0.015 | 0.000 | 0.460 | 0.762 | 0.965 | 0.645 | 0.574 | 0.878 |
100 | 0.815 | 0.000 | 0.038 | 0.001 | 0.003 | 0.000 | 0.036 | 0.036 | 0.002 | 0.237 | 0.515 | >0.999 | 0.645 | 0.382 | 0.798 |
110 | 0.796 | 0.000 | 0.114 | 0.002 | 0.001 | 0.000 | 0.114 | 0.114 | 0.002 | 0.083 | 0.573 | 0.813 | 0.130 | 0.189 | 0.694 |
120 | 0.436 | 0.000 | 0.174 | 0.001 | 0.001 | 0.000 | 0.408 | 0.408 | 0.005 | 0.043 | 0.122 | 0.601 | 0.336 | 0.165 | 0.613 |
130 | 0.489 | 0.000 | 0.008 | 0.008 | 0.002 | 0.000 | 0.021 | 0.021 | 0.003 | 0.043 | 0.055 | 0.270 | >0.999 | 0.232 | 0.397 |
140 | 0.546 | 0.000 | 0.036 | 0.015 | 0.008 | 0.000 | 0.021 | 0.021 | 0.005 | 0.034 | 0.068 | 0.193 | 0.645 | 0.281 | 0.463 |
150 | 0.931 | 0.000 | 0.277 | 0.006 | 0.005 | 0.000 | 0.673 | 0.673 | 0.008 | 0.016 | 0.101 | 0.230 | 0.161 | 0.281 | 0.463 |
160 | 0.489 | 0.000 | 0.321 | 0.015 | 0.002 | 0.000 | 0.743 | 0.743 | 0.006 | 0.016 | 0.101 | 0.315 | 0.161 | 0.105 | 0.382 |
170 | 0.931 | 0.000 | 0.370 | 0.008 | 0.008 | 0.000 | 0.743 | 0.743 | 0.008 | 0.009 | 0.034 | 0.193 | 0.161 | 0.232 | 0.536 |
180 | 0.730 | 0.000 | 0.536 | 0.015 | 0.008 | 0.000 | >0.999 | >0.999 | 0.011 | 0.025 | 0.055 | 0.173 | 0.232 | 0.232 | 0.505 |
190 | 0.258 | 0.000 | 0.470 | 0.027 | 0.002 | 0.000 | 0.408 | 0.408 | 0.015 | 0.003 | 0.173 | 0.173 | 0.072 | 0.054 | 0.959 |
200 | 0.796 | 0.000 | 0.864 | 0.093 | 0.002 | 0.000 | 0.689 | 0.689 | 0.002 | 0.001 | 0.122 | 0.237 | 0.081 | 0.008 | 0.442 |
210 | 0.387 | 0.000 | 0.681 | 0.042 | 0.002 | 0.000 | 0.299 | 0.299 | 0.015 | 0.000 | 0.025 | 0.101 | 0.026 | 0.004 | 0.463 |
220 | 0.077 | 0.000 | 0.536 | 0.050 | 0.000 | 0.003 | 0.091 | 0.091 | 0.015 | 0.001 | 0.118 | 0.408 | 0.051 | 0.002 | 0.345 |
230 | 0.054 | 0.000 | 0.606 | 0.003 | 0.000 | 0.000 | 0.031 | 0.031 | 0.008 | 0.000 | 0.118 | 0.237 | 0.005 | 0.000 | 0.755 |
240 | 0.077 | 0.000 | 0.776 | 0.005 | 0.000 | 0.000 | 0.145 | 0.145 | 0.011 | 0.000 | 0.093 | 0.083 | 0.015 | 0.001 | 0.662 |
250 | 0.189 | 0.000 | 0.534 | 0.010 | 0.001 | 0.000 | 0.029 | 0.029 | 0.005 | 0.000 | 0.099 | 0.203 | 0.004 | 0.001 | 0.354 |
Control | Control | Control | Control | Control | Control+RG | Control+RG | Control+RG | Control+RG | LTP | LTP | LTP | LTP+RG | LTP+RG | LTP+RG+NaB | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
vs. | vs. | vs. | vs. | vs. | vs. | vs. | vs. | vs. | vs. | vs. | vs. | vs. | vs. | vs. | |
Contr+RG | LTP | LTP+RG | LTP+RG+NaB | LTP+RG+TSA | LTP | LTP+RG | LTP+RG+NaB | LTP+RG+TSA | LTP+RG | LTP+RG+NaB | LTP+RG+TSA | LTP+RG+NaB | LTP+RG+TSA | LTP+RG+TSA | |
−40 | >0.999 | 0.444 | >0.999 | >0.999 | >0.999 | 0.444 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 |
−30 | 0.143 | >0.999 | 0.077 | 0.965 | 0.122 | 0.083 | 0.738 | 0.122 | 0.203 | 0.121 | 0.959 | 0.279 | 0.064 | 0.414 | 0.050 |
−20 | 0.549 | 0.541 | 0.702 | 0.888 | >0.999 | 0.460 | 0.722 | 0.274 | 0.897 | 0.678 | 0.959 | 0.328 | 0.473 | 0.734 | 0.721 |
−10 | 0.739 | 0.093 | 0.483 | 0.016 | 0.042 | 0.147 | 0.232 | 0.021 | 0.118 | 0.022 | 0.852 | 0.937 | 0.001 | 0.007 | 0.755 |
0 | 0.497 | 0.199 | 0.460 | 0.027 | 0.529 | 0.733 | 0.512 | 0.055 | 0.263 | 0.605 | 0.008 | 0.257 | 0.085 | 0.272 | 0.491 |
10 | 0.105 | 0.003 | 0.000 | 0.000 | 0.014 | 0.000 | 0.000 | 0.000 | 0.002 | 0.547 | 0.463 | 0.955 | 0.643 | 0.536 | 0.710 |
20 | 0.661 | 0.001 | 0.004 | 0.000 | 0.008 | 0.000 | 0.001 | 0.000 | 0.001 | 0.121 | 0.779 | 0.505 | 0.037 | 0.804 | 0.397 |
30 | 0.143 | 0.000 | 0.000 | 0.001 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.270 | 0.867 | 0.798 | 0.592 | 0.792 | 0.955 |
40 | 0.190 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.140 | 0.694 | 0.878 | 0.157 | 0.547 | 0.867 |
50 | 0.971 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.500 | 0.281 | 0.878 | 0.938 | 0.185 | 0.232 |
60 | 0.165 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.161 | 0.382 | 0.721 | 0.595 | 0.268 | 0.721 |
70 | 0.481 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.045 | 0.130 | 0.442 | 0.750 | 0.238 | 0.574 |
80 | 0.912 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.008 | 0.161 | 0.195 | 0.140 | 0.336 | 0.959 |
90 | 0.105 | 0.000 | 0.003 | 0.000 | 0.001 | 0.001 | 0.003 | 0.001 | 0.002 | 0.076 | 0.645 | 0.328 | 0.140 | 0.547 | 0.645 |
100 | 0.243 | 0.001 | 0.006 | 0.000 | 0.001 | 0.002 | 0.008 | 0.001 | 0.001 | 0.140 | 0.959 | 0.574 | 0.013 | 0.456 | 0.328 |
110 | 0.842 | 0.000 | 0.011 | 0.000 | 0.000 | 0.000 | 0.006 | 0.000 | 0.000 | 0.020 | >0.999 | 0.328 | 0.019 | 0.089 | 0.397 |
120 | 0.218 | 0.000 | 0.088 | 0.000 | 0.001 | 0.000 | 0.008 | 0.000 | 0.000 | 0.003 | 0.645 | 0.234 | 0.013 | 0.053 | 0.505 |
130 | 0.035 | 0.000 | 0.648 | 0.000 | 0.003 | 0.000 | 0.026 | 0.000 | 0.000 | 0.000 | 0.336 | 0.065 | 0.002 | 0.020 | 0.281 |
140 | 0.971 | 0.000 | 0.313 | 0.000 | 0.006 | 0.000 | 0.376 | 0.000 | 0.001 | 0.000 | 0.065 | 0.065 | 0.005 | 0.053 | 0.328 |
150 | 0.043 | 0.000 | 0.872 | 0.001 | 0.002 | 0.000 | 0.254 | 0.000 | 0.000 | 0.000 | 0.038 | 0.161 | 0.000 | 0.003 | 0.959 |
160 | 0.631 | 0.000 | 0.771 | 0.000 | 0.012 | 0.000 | 0.872 | 0.000 | 0.003 | 0.000 | 0.195 | 0.065 | 0.001 | 0.010 | 0.195 |
170 | 0.684 | 0.000 | 0.418 | 0.001 | 0.016 | 0.000 | 0.628 | 0.000 | 0.003 | 0.000 | 0.038 | 0.234 | 0.002 | 0.007 | 0.959 |
180 | 0.247 | 0.000 | 0.674 | 0.001 | 0.009 | 0.000 | 0.628 | 0.000 | 0.001 | 0.000 | 0.007 | 0.161 | 0.003 | 0.004 | 0.721 |
190 | 0.280 | 0.000 | 0.918 | 0.000 | 0.055 | 0.000 | 0.387 | 0.000 | 0.016 | 0.000 | 0.038 | 0.065 | 0.001 | 0.075 | 0.645 |
200 | 0.529 | 0.000 | 0.973 | 0.000 | 0.068 | 0.000 | 0.512 | 0.000 | 0.055 | 0.000 | 0.065 | 0.279 | 0.002 | 0.051 | 0.959 |
210 | 0.631 | 0.000 | 0.796 | 0.001 | 0.016 | 0.000 | 0.529 | 0.000 | 0.003 | 0.000 | 0.006 | 0.072 | 0.004 | 0.027 | 0.959 |
220 | 0.853 | 0.000 | 0.739 | 0.001 | 0.021 | 0.000 | 0.529 | 0.000 | 0.009 | 0.001 | 0.028 | 0.130 | 0.003 | 0.027 | 0.959 |
230 | 0.579 | 0.000 | 0.796 | 0.001 | 0.016 | 0.000 | 0.481 | 0.001 | 0.016 | 0.001 | 0.048 | 0.234 | 0.006 | 0.027 | >0.999 |
240 | >0.999 | 0.000 | 0.720 | 0.001 | 0.016 | 0.000 | 0.780 | 0.000 | 0.006 | 0.001 | 0.009 | 0.232 | 0.011 | 0.036 | 0.959 |
250 | 0.278 | 0.000 | 0.607 | 0.003 | 0.008 | 0.000 | 0.875 | 0.002 | 0.004 | 0.008 | 0.042 | 0.152 | 0.014 | 0.008 | 0.933 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuzina, A.; Kolotova, D.; Balaban, P. DNA Methylation and Histone Acetylation Contribute to the Maintenance of LTP in the Withdrawal Behavior Interneurons in Terrestrial Snails. Cells 2024, 13, 1850. https://doi.org/10.3390/cells13221850
Zuzina A, Kolotova D, Balaban P. DNA Methylation and Histone Acetylation Contribute to the Maintenance of LTP in the Withdrawal Behavior Interneurons in Terrestrial Snails. Cells. 2024; 13(22):1850. https://doi.org/10.3390/cells13221850
Chicago/Turabian StyleZuzina, Alena, Daria Kolotova, and Pavel Balaban. 2024. "DNA Methylation and Histone Acetylation Contribute to the Maintenance of LTP in the Withdrawal Behavior Interneurons in Terrestrial Snails" Cells 13, no. 22: 1850. https://doi.org/10.3390/cells13221850
APA StyleZuzina, A., Kolotova, D., & Balaban, P. (2024). DNA Methylation and Histone Acetylation Contribute to the Maintenance of LTP in the Withdrawal Behavior Interneurons in Terrestrial Snails. Cells, 13(22), 1850. https://doi.org/10.3390/cells13221850