The Promise of Artificial Intelligence in Reshaping Anticancer Drug Development
Author Contributions
Funding
Conflicts of Interest
References
- Gugerty, L. Newell and Simon’s Logic Theorist: Historical Background and Impact on Cognitive Modeling. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting; SAGE Publications: Los Angeles, CA, USA, 2006; Volume 50, pp. 880–884. [Google Scholar] [CrossRef]
- Jumper, J.; Hassabis, D. The Protein Structure Prediction Revolution and Its Implications for Medicine: 2023 Albert Lasker Basic Medical Research Award. JAMA 2023, 330, 1425. [Google Scholar] [CrossRef] [PubMed]
- Askin, S.; Burkhalter, D.; Calado, G.; El Dakrouni, S. Artificial Intelligence Applied to Clinical Trials: Opportunities and Challenges. Health Technol. 2023, 13, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Kolla, L.; Gruber, F.K.; Khalid, O.; Hill, C.; Parikh, R.B. The Case for AI-Driven Cancer Clinical Trials—The Efficacy Arm in Silico. Biochim. Biophys. Acta BBA Rev. Cancer 2021, 1876, 188572. [Google Scholar] [CrossRef] [PubMed]
- Chopra, H.; Annu; Shin, D. K.; Munjal, K.; Priyanka; Dhama, K.; Emran, T.B. Revolutionizing Clinical Trials: The Role of AI in Accelerating Medical Breakthroughs. Int. J. Surg. 2023, 109, 4211–4220. [Google Scholar] [CrossRef] [PubMed]
- Jinkō: A Complete Solution for Trial Simulation & Design Optimization. Available online: https://www.novadiscovery.com/Jinko/ (accessed on 12 October 2024).
- Planchard, D.; Jänne, P.A.; Cheng, Y.; Yang, J.C.-H.; Yanagitani, N.; Kim, S.-W.; Sugawara, S.; Yu, Y.; Fan, Y.; Geater, S.L.; et al. Osimertinib with or without Chemotherapy in EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2023, 389, 1935–1948. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Vayer, P.; Tanwar, S.; Poyet, J.-L.; Tsaioun, K.; Villoutreix, B.O. Drug Discovery and Development: Introduction to the General Public and Patient Groups. Front. Drug Discov. 2023, 3, 1201419. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Vegesna, R.; Mukherjee, S.; Kammula, A.V.; Dhruba, S.R.; Wu, W.; Kerr, D.L.; Nair, N.U.; Jones, M.G.; Yosef, N.; et al. PERCEPTION Predicts Patient Response and Resistance to Treatment Using Single-Cell Transcriptomics of Their Tumors. Nat. Cancer 2024, 5, 938–952. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.; Bowen, K.; Naqa, I.M.E.; Yoga, B.; Green, B.L. Bridging Health Disparities in the Data-Driven World of Artificial Intelligence: A Narrative Review. J. Racial Ethn. Health Disparities 2024, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, C.B.; Adams, L.; Blumenthal, D.; Brennan, P.F.; Brown, N.; Butte, A.J.; Cheatham, M.; deBronkart, D.; Dixon, J.; Drazen, J.; et al. To Do No Harm—And the Most Good—With AI in Health Care. NEJM AI 2024, 1, AIp2400036. [Google Scholar] [CrossRef]
- Carini, C.; Seyhan, A.A. Tribulations and Future Opportunities for Artificial Intelligence in Precision Medicine. J. Transl. Med. 2024, 22, 411. [Google Scholar] [CrossRef] [PubMed]
- Santagati, R.; Aspuru-Guzik, A.; Babbush, R.; Degroote, M.; González, L.; Kyoseva, E.; Moll, N.; Oppel, M.; Parrish, R.M.; Rubin, N.C.; et al. Drug Design on Quantum Computers. Nat. Phys. 2024, 20, 549–557. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papavassiliou, K.A.; Sofianidi, A.A.; Gogou, V.A.; Papavassiliou, A.G. The Promise of Artificial Intelligence in Reshaping Anticancer Drug Development. Cells 2024, 13, 1709. https://doi.org/10.3390/cells13201709
Papavassiliou KA, Sofianidi AA, Gogou VA, Papavassiliou AG. The Promise of Artificial Intelligence in Reshaping Anticancer Drug Development. Cells. 2024; 13(20):1709. https://doi.org/10.3390/cells13201709
Chicago/Turabian StylePapavassiliou, Kostas A., Amalia A. Sofianidi, Vassiliki A. Gogou, and Athanasios G. Papavassiliou. 2024. "The Promise of Artificial Intelligence in Reshaping Anticancer Drug Development" Cells 13, no. 20: 1709. https://doi.org/10.3390/cells13201709
APA StylePapavassiliou, K. A., Sofianidi, A. A., Gogou, V. A., & Papavassiliou, A. G. (2024). The Promise of Artificial Intelligence in Reshaping Anticancer Drug Development. Cells, 13(20), 1709. https://doi.org/10.3390/cells13201709