Inositol Restores Appropriate Steroidogenesis in PCOS Ovaries Both In Vitro and In Vivo Experimental Mouse Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mouse Model of PCOS
2.2. Primary Cultures of Granulosa and Theca Cells and Inositol and D-Chiro-Inositol Treatments
2.3. Vivo Myo-Inositol and D-Chiro-Inositol Treatments
2.4. RNA Isolation, RT- and Real-Time-PCR Analyses
2.5. Testosterone, Estrogen, DHEA, and Progesterone Assay
2.6. Statistical Analysis
3. Results
3.1. In the Experimental Mouse Model of PCOS, the Continuous Light Exposure Induces Overweight
3.2. The Continuous Light Exposure Increases the Expression of Genes in the Steroidogenic Pathway
3.3. In Vitro Treatment of Theca and Granulosa Cells with Pharmacological Concentrations of Myo-Ins and D-Chiro-Ins
3.4. Treatment of Theca and Granulosa Cells of PCOS Mice with Physiological Concentrations of Inositols
3.5. Effects on Ovarian Steroidogenic Enzyme Expression after In Vivo Treatment with Inositols
3.6. In Vivo Treatment with Inositols Inhibits Hsd17b Gene Expression in Adipose Tissue
3.7. In Vivo Treatment with Inositols Reduces the Levels of Circulating Androgenic Hormones
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, S.; Pal, N.; Shubham, S.; Sarma, D.K.; Verma, V.; Marotta, F.; Kumar, M. Polycystic Ovary Syndrome: Etiology, Current Management, and Future Therapeutics. J. Clin. Med. 2023, 12, 1454. [Google Scholar] [CrossRef] [PubMed]
- The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004, 81, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, J.; Cheng, X.; Nie, X.; He, B. Insulin resistance in polycystic ovary syndrome across various tissues: An updated review of pathogenesis, evaluation, and treatment. J. Ovarian Res. 2023, 16, 9. [Google Scholar] [CrossRef]
- Chen, W.; Pang, Y. Metabolic Syndrome and PCOS: Pathogenesis and the Role of Metabolites. Metabolites 2021, 11, 869. [Google Scholar] [CrossRef] [PubMed]
- Dewailly, D. Diagnostic criteria for PCOS: Is there a need for a rethink? Best Pract. Res. Clin. Obstet. Gynaecol. 2016, 37, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Gao, S.; Ye, C.; Zhao, W. Gut microbiota dysbiosis in polycystic ovary syndrome: Mechanisms of progression and clinical applications. Front. Cell Infect. Microbiol. 2023, 13, 1142041. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.J.; Ullah, A.; Basit, S. Genetic Basis of Polycystic Ovary Syndrome (PCOS): Current Perspectives. Appl. Clin. Genet. 2019, 12, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Repaci, A.; Gambineri, A.; Pasquali, R. The role of low-grade inflammation in the polycystic ovary syndrome. Mol. Cell Endocrinol. 2011, 335, 30–41. [Google Scholar] [CrossRef]
- Myers, S.H.; Russo, M.; Dinicola, S.; Forte, G.; Unfer, V. Questioning PCOS phenotypes for reclassification and tailored therapy. Trends Endocrinol. Metab. 2023, 34, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Ehrmann, D.A.; Barnes, R.B.; Rosenfield, R.L. Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion. Endocr. Rev. 1995, 16, 322–353. [Google Scholar] [CrossRef]
- McGee, A.E.; Strauss, J.F., 3rd. Ovarian hormone synthesis. In Endocrinology: Adult and Pediatric, 7th ed.; Jameson, J.L., De Groot, L.J., Eds.; Saunders/Elsevier: Philadelphia, PA, USA, 2016; pp. 2192–2206. [Google Scholar]
- Nelson, V.L.; Legro, R.S.; Strauss, J.F., 3rd; McAllister, J.M. Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Mol. Endocrinol. 1999, 13, 946–957. [Google Scholar] [CrossRef]
- Stocco, C. Tissue physiology and pathology of aromatase. Steroids 2012, 77, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Short, R.V.; London, D.R. Defective Biosynthesis of Ovarian Steroids in the Stein-Leventhal Syndrome. Br. Med. J. 1961, 1, 1724–1727. [Google Scholar] [CrossRef]
- Erickson, G.F.; Hsueh, A.J.; Quigley, M.E.; Rebar, R.W.; Yen, S.S. Functional studies of aromatase activity in human granulosa cells from normal and polycystic ovaries. J. Clin. Endocrinol. Metab. 1979, 49, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Yen, S.S.; Chaney, C.; Judd, H.L. Functional aberrations of the hypothalamic-pituitary system in polycystic ovary syndrome: A consideration of the pathogenesis. In The Endocrine Function of Human Ovary; Serio, M., Ed.; Academic Press: London, UK, 1976; pp. 373–385. [Google Scholar]
- Fitzpatrick, S.L.; Carlone, D.L.; Robker, R.L.; Richards, J.S. Expression of aromatase in the ovary: Down-regulation of mRNA by the ovulatory luteinizing hormone surge. Steroids 1997, 62, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Mullis, P.E.; Yoshimura, N.; Kuhlmann, B.; Lippuner, K.; Jaeger, P.; Harada, H. Aromatase deficiency in a female who is compound heterozygote for two new point mutations in the P450arom gene: Impact of estrogens on hypergonadotropic hypogonadism, multicystic ovaries, and bone densitometry in childhood. J. Clin. Endocrinol. Metab. 1997, 82, 1739–1745. [Google Scholar] [CrossRef]
- Ryu, K.J.; Park, H.; Han, Y.I.; Lee, H.J.; Nam, S.; Jeong, H.G.; Kim, T. Effects of time-restricted feeding on letrozole-induced mouse model of polycystic ovary syndrome. Sci. Rep. 2023, 13, 1943. [Google Scholar] [CrossRef]
- Xu, J.; Dun, J.; Yang, J.; Zhang, J.; Lin, Q.; Huang, M.; Ji, F.; Huang, L.; You, X.; Lin, Y. Letrozole Rat Model Mimics Human Polycystic Ovarian Syndrome and Changes in Insulin Signal Pathways. Med. Sci. Monit. 2020, 26, e923073. [Google Scholar] [CrossRef]
- Dinicola, S.; Unfer, V.; Facchinetti, F.; Soulage, C.O.; Greene, N.D.; Bizzarri, M.; Lagana, A.S.; Chan, S.Y.; Bevilacqua, A.; Pkhaladze, L.; et al. Inositols: From Established Knowledge to Novel Approaches. Int. J. Mol. Sci. 2021, 22, 10575. [Google Scholar] [CrossRef]
- Unfer, V.; Russo, M.; Aragona, C.; Bilotta, G.; Montanino Oliva, M.; Bizzarri, M. Treatment with Myo-Inositol Does Not Improve the Clinical Features in All PCOS Phenotypes. Biomedicines 2023, 11, 1759. [Google Scholar] [CrossRef]
- Bizzarri, M.; Monti, N.; Piombarolo, A.; Angeloni, A.; Verna, R. Myo-Inositol and D-Chiro-Inositol as Modulators of Ovary Steroidogenesis: A Narrative Review. Nutrients 2023, 15, 1875. [Google Scholar] [CrossRef] [PubMed]
- Zacche, M.M.; Caputo, L.; Filippis, S.; Zacche, G.; Dindelli, M.; Ferrari, A. Efficacy of myo-inositol in the treatment of cutaneous disorders in young women with polycystic ovary syndrome. Gynecol. Endocrinol. 2009, 25, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Pkhaladze, L.; Barbakadze, L.; Kvashilava, N. Myo-Inositol in the Treatment of Teenagers Affected by PCOS. Int. J. Endocrinol. 2016, 2016, 1473612. [Google Scholar] [CrossRef] [PubMed]
- Noroozzadeh, M.; Behboudi-Gandevani, S.; Zadeh-Vakili, A.; Ramezani Tehrani, F. Hormone-induced rat model of polycystic ovary syndrome: A systematic review. Life Sci. 2017, 191, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, J.F.; Costoff, A.; Mahesh, V.B. Dehydroepiandrosterone-induced polycystic ovaries and acyclicity in the rat. Fertil. Steril. 1975, 26, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Walters, K.A.; Allan, C.M.; Handelsman, D.J. Rodent models for human polycystic ovary syndrome. Biol. Reprod. 2012, 86, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Salvetti, N.R.; Canal, A.M.; Gimeno, E.J.; Ortega, H.H. Polycystic ovarian syndrome: Temporal characterization of the induction and reversion process in an experimental model. Braz. J. Vet. Res. Anim. Sci. 2004, 41, 389–395. [Google Scholar] [CrossRef]
- Kang, X.; Jia, L.; Shen, X. Manifestation of Hyperandrogenism in the Continuous Light Exposure-Induced PCOS Rat Model. Biomed. Res. Int. 2015, 2015, 943694. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.; Zhai, J.; Xu, J.; Li, S.; Li, W.; Chen, Z.J.; Du, Y. Continuous Light-Induced PCOS-Like Changes in Reproduction, Metabolism, and Gut Microbiota in Sprague-Dawley Rats. Front. Microbiol. 2019, 10, 3145. [Google Scholar] [CrossRef]
- Fedeli, V.; Monti, N.; Canipari, R. A Challenging Task—How to Successfully Separate Theca and Granulosa Cells: A Mandatory Step for Investigating Ovary Steroidogenesis. Org. J. Biol. Sci. 2020, 4, 86–89. [Google Scholar] [CrossRef]
- Garzon, S.; Lagana, A.S.; Monastra, G. Risk of reduced intestinal absorption of myo-inositol caused by D-chiro-inositol or by glucose transporter inhibitors. Expert. Opin. Drug Metab. Toxicol. 2019, 15, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Svingen, T.; Spiller, C.M.; Kashimada, K.; Harley, V.R.; Koopman, P. Identification of suitable normalizing genes for quantitative real-time RT-PCR analysis of gene expression in fetal mouse gonads. Sex. Dev. 2009, 3, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.B. Induction of polycystic ovarian disease in rats by continuous light. I. The reproductive cycle, organ weights, and histology of the ovaries. Am. J. Obstet. Gynecol. 1969, 103, 1078–1083. [Google Scholar] [CrossRef] [PubMed]
- Azziz, R. PCOS: Animal models for PCOS—Not the real thing. Nat. Rev. Endocrinol. 2017, 13, 382–384. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.B. Persistent estrus rat models of polycystic ovary disease: An update. Fertil. Steril. 2005, 84 (Suppl. 2), 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, A.; Dragotto, J.; Giuliani, A.; Bizzarri, M. Myo-inositol and D-chiro-inositol (40:1) reverse histological and functional features of polycystic ovary syndrome in a mouse model. J. Cell Physiol. 2019, 234, 9387–9398. [Google Scholar] [CrossRef] [PubMed]
- Luu-The, V.; Dufort, I.; Pelletier, G.; Labrie, F. Type 5 17beta-hydroxysteroid dehydrogenase: Its role in the formation of androgens in women. Mol. Cell Endocrinol. 2001, 171, 77–82. [Google Scholar] [CrossRef]
- McNatty, K.P.; Makris, A.; DeGrazia, C.; Osathanondh, R.; Ryan, K.J. The production of progesterone, androgens, and estrogens by granulosa cells, thecal tissue, and stromal tissue from human ovaries in vitro. J. Clin. Endocrinol. Metab. 1979, 49, 687–699. [Google Scholar] [CrossRef]
- McGee, E.; Sawetawan, C.; Bird, I.; Rainey, W.E.; Carr, B.R. The effects of insulin on 3 beta-hydroxysteroid dehydrogenase expression in human luteinized granulosa cells. J. Soc. Gynecol. Investig. 1995, 2, 535–541. [Google Scholar] [CrossRef]
- Stokes, C.E.; Gillon, K.R.; Hawthorne, J.N. Free and total lipid myo-inositol concentrations decrease with age in human brain. Biochim. Biophys. Acta 1983, 753, 136–138. [Google Scholar] [CrossRef]
- Kemilainen, H.; Adam, M.; Maki-Jouppila, J.; Damdimopoulou, P.; Damdimopoulos, A.E.; Kere, J.; Hovatta, O.; Laajala, T.D.; Aittokallio, T.; Adamski, J.; et al. The Hydroxysteroid (17beta) Dehydrogenase Family Gene HSD17B12 Is Involved in the Prostaglandin Synthesis Pathway, the Ovarian Function, and Regulation of Fertility. Endocrinology 2016, 157, 3719–3730. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.N.; Qin, Y.; Wu, B.; Peng, H.; Li, M.; Luo, H.; Liu, L.L. DNA methylation in polycystic ovary syndrome: Emerging evidence and challenges. Reprod. Toxicol. 2022, 111, 11–19. [Google Scholar] [CrossRef] [PubMed]
- de Medeiros, S.F.; Rodgers, R.J.; Norman, R.J. Adipocyte and steroidogenic cell cross-talk in polycystic ovary syndrome. Hum. Reprod. Update 2021, 27, 771–796. [Google Scholar] [CrossRef] [PubMed]
- Unfer, V.; Carlomagno, G.; Papaleo, E.; Vailati, S.; Candiani, M.; Baillargeon, J.P. Hyperinsulinemia Alters Myoinositol to d-chiroinositol Ratio in the Follicular Fluid of Patients With PCOS. Reprod. Sci. 2014, 21, 854–858. [Google Scholar] [CrossRef] [PubMed]
- Monastra, G.; Vucenik, I.; Harrath, A.H.; Alwasel, S.H.; Kamenov, Z.A.; Lagana, A.S.; Monti, N.; Fedeli, V.; Bizzarri, M. PCOS and Inositols: Controversial Results and Necessary Clarifications. Basic Differences Between D-Chiro and Myo-Inositol. Front. Endocrinol. 2021, 12, 660381. [Google Scholar] [CrossRef] [PubMed]
- Merviel, P.; James, P.; Bouee, S.; Le Guillou, M.; Rince, C.; Nachtergaele, C.; Kerlan, V. Impact of myo-inositol treatment in women with polycystic ovary syndrome in assisted reproductive technologies. Reprod. Health 2021, 18, 13. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, S.; Marinaro, F.; Tondelli, D.; Lui, J.; Xella, S.; Marsella, T.; Tagliasacchi, D.; Argento, C.; Tirelli, A.; Giulini, S.; et al. Modulation of gonadotrophin induced steroidogenic enzymes in granulosa cells by d-chiroinositol. Reprod. Biol. Endocrinol. 2016, 14, 52. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, A.; Dragotto, J.; Lucarelli, M.; Di Emidio, G.; Monastra, G.; Tatone, C. High Doses of D-Chiro-Inositol Alone Induce a PCO-Like Syndrome and Other Alterations in Mouse Ovaries. Int. J. Mol. Sci. 2021, 22, 5691. [Google Scholar] [CrossRef]
- Chu, W.; Li, S.; Geng, X.; Wang, D.; Zhai, J.; Lu, G.; Chan, W.Y.; Chen, Z.J.; Du, Y. Long-term environmental exposure of darkness induces hyperandrogenism in PCOS via melatonin receptor 1A and aromatase reduction. Front. Cell Dev. Biol. 2022, 10, 954186. [Google Scholar] [CrossRef]
- Quinkler, M.; Sinha, B.; Tomlinson, J.W.; Bujalska, I.J.; Stewart, P.M.; Arlt, W. Androgen generation in adipose tissue in women with simple obesity--a site-specific role for 17beta-hydroxysteroid dehydrogenase type 5. J. Endocrinol. 2004, 183, 331–342. [Google Scholar] [CrossRef]
- Unfer, V.; Facchinetti, F.; Orru, B.; Giordani, B.; Nestler, J. Myo-inositol effects in women with PCOS: A meta-analysis of randomized controlled trials. Endocr. Connect. 2017, 6, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, N.; Diaz-Ropero, M.P.; Aragon, M.; Maldonado, V.; Llaneza, P.; Lorente, J.; Mendoza-Tesarik, R.; Maldonado-Lobon, J.; Olivares, M.; Fonolla, J. Comparison of the effect of two combinations of myo-inositol and D-chiro-inositol in women with polycystic ovary syndrome undergoing ICSI: A randomized controlled trial. Gynecol. Endocrinol. 2019, 35, 695–700. [Google Scholar] [CrossRef]
- Greff, D.; Juhasz, A.E.; Vancsa, S.; Varadi, A.; Sipos, Z.; Szinte, J.; Park, S.; Hegyi, P.; Nyirady, P.; Acs, N.; et al. Inositol is an effective and safe treatment in polycystic ovary syndrome: A systematic review and meta-analysis of randomized controlled trials. Reprod. Biol. Endocrinol. 2023, 21, 10. [Google Scholar] [CrossRef] [PubMed]
- Papaleo, E.; Unfer, V.; Baillargeon, J.P.; De Santis, L.; Fusi, F.; Brigante, C.; Marelli, G.; Cino, I.; Redaelli, A.; Ferrari, A. Myo-inositol in patients with polycystic ovary syndrome: A novel method for ovulation induction. Gynecol. Endocrinol. 2007, 23, 700–703. [Google Scholar] [CrossRef]
- Lagana, A.S.; Myers, S.H.; Forte, G.; Naem, A.; Krentel, H.; Allahqoli, L.; Alkatout, I.; Unfer, V. Inositols in treating polycystic ovary syndrome and non-insulin dependent diabetes mellitus: Now and the future. Expert. Opin. Drug Metab. Toxicol. 2024, 20, 61–72. [Google Scholar] [CrossRef]
- Pustotina, O.; Myers, S.H.; Unfer, V.; Rasulova, I. The Effects of Myo-Inositol and D-Chiro-Inositol in a Ratio 40:1 on Hormonal and Metabolic Profile in Women with Polycystic Ovary Syndrome Classified as Phenotype A by the Rotterdam Criteria and EMS-Type 1 by the EGOI Criteria. Gynecol. Obstet. Investig. 2024, 89, 131–139. [Google Scholar] [CrossRef]
- Lete, I.; Martinez, A.; Lasaga, I.; Centurion, E.; Vesga, A. Update on the combination of myo-inositol/d-chiro-inositol for the treatment of polycystic ovary syndrome. Gynecol. Endocrinol. 2024, 40, 2301554. [Google Scholar] [CrossRef] [PubMed]
- Nestler, J.E.; Jakubowicz, D.J.; Reamer, P.; Gunn, R.D.; Allan, G. Ovulatory and metabolic effects of D-chiro-inositol in the polycystic ovary syndrome. N. Engl. J. Med. 1999, 340, 1314–1320. [Google Scholar] [CrossRef]
- Cheang, K.I.; Baillargeon, J.P.; Essah, P.A.; Ostlund, R.E., Jr.; Apridonize, T.; Islam, L.; Nestler, J.E. Insulin-stimulated release of D-chiro-inositol-containing inositolphosphoglycan mediator correlates with insulin sensitivity in women with polycystic ovary syndrome. Metabolism 2008, 57, 1390–1397. [Google Scholar] [CrossRef]
- Heimark, D.; McAllister, J.; Larner, J. Decreased myo-inositol to chiro-inositol (M/C) ratios and increased M/C epimerase activity in PCOS theca cells demonstrate increased insulin sensitivity compared to controls. Endocr. J. 2014, 61, 111–117. [Google Scholar] [CrossRef]
- Nestler, J.E.; Jakubowicz, D.J.; de Vargas, A.F.; Brik, C.; Quintero, N.; Medina, F. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J. Clin. Endocrinol. Metab. 1998, 83, 2001–2005. [Google Scholar] [CrossRef] [PubMed]
- Fedeli, V.; Catizone, A.; Querqui, A.; Unfer, V.; Bizzarri, M. The Role of Inositols in the Hyperandrogenic Phenotypes of PCOS: A Re-Reading of Larner’s Results. Int. J. Mol. Sci. 2023, 24, 6296. [Google Scholar] [CrossRef] [PubMed]
- Monastra, G.; Vazquez-Levin, M.; Bezerra Espinola, M.S.; Bilotta, G.; Lagana, A.S.; Unfer, V. D-chiro-inositol, an aromatase down-modulator, increases androgens and reduces estrogens in male volunteers: A pilot study. Basic. Clin. Androl. 2021, 31, 13. [Google Scholar] [CrossRef] [PubMed]
Gene | Sequence | |
---|---|---|
Rps29 | FW | 5′-TTCCTTTCTCCTCGTTGGGC-3′ |
RV | 5′-TTCAGCCCGTATTTGCGGAT-3′ | |
Cyp19a1 | FW | 5′-GGATTGGAAGTGCCTGCAAC-3′ |
RV | 5′-CATGCTTGAGGACTTGCTGA-3′ | |
Fshr | FW | 5′-TGGGCCAGTCGTTTTAGACAT-3′ |
RV | 5′-AGGGAGCTTTTTCAAGCGGT-3′ | |
Hsd17b | FW | 5′-TGGACGTGCTGGTGTGTAAC-3′ |
RV | 5′-GTCCCCGTTAGGTTCACGTC-3′ | |
Cyp17a1 | FW | 5′-GGAGAGTTTGCCATCCCGAA-3′ |
RV | 5′-TCTAAGAAGCGCTCAGGCAT-3′ | |
Hsd3b | FW | 5′-CGGCTGCTGCACAGGAATAA-3′ |
RV | 5′-ATGCCTGCTTCGTGACCATA-3′ |
Myo-Ins | D-Chiro-Ins | Ratio |
---|---|---|
1 mM | 200 µM | 5:1 |
1 mM | 50 µM | 20:1 |
1 mM | 25 µM | 40:1 |
Myo-Ins | D-Chiro-Ins | Ratio |
---|---|---|
0.005 mM | 0.125 µM | 40:1 |
0.01 mM | 0.25 µM | 40:1 |
0.05 mM | 1.25 µM | 40:1 |
0.1 mM | 2.5 µM | 40:1 |
0.5 mM | 12.5 µM | 40:1 |
1 mM | 25 µM | 40:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedeli, V.; Unfer, V.; Dinicola, S.; Laganà, A.S.; Canipari, R.; Monti, N.; Querqui, A.; Galante, E.; Laurenzi, G.; Bizzarri, M. Inositol Restores Appropriate Steroidogenesis in PCOS Ovaries Both In Vitro and In Vivo Experimental Mouse Models. Cells 2024, 13, 1171. https://doi.org/10.3390/cells13141171
Fedeli V, Unfer V, Dinicola S, Laganà AS, Canipari R, Monti N, Querqui A, Galante E, Laurenzi G, Bizzarri M. Inositol Restores Appropriate Steroidogenesis in PCOS Ovaries Both In Vitro and In Vivo Experimental Mouse Models. Cells. 2024; 13(14):1171. https://doi.org/10.3390/cells13141171
Chicago/Turabian StyleFedeli, Valeria, Vittorio Unfer, Simona Dinicola, Antonio Simone Laganà, Rita Canipari, Noemi Monti, Alessandro Querqui, Emanuele Galante, Gaia Laurenzi, and Mariano Bizzarri. 2024. "Inositol Restores Appropriate Steroidogenesis in PCOS Ovaries Both In Vitro and In Vivo Experimental Mouse Models" Cells 13, no. 14: 1171. https://doi.org/10.3390/cells13141171