In Vivo Monitoring of Fabp7 Expression in Transgenic Zebrafish
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Generation and Characterization of Transgenic Reporter Lines Expressing Fluorescent Proteins under Control of a Mouse Fatty Acid Binding Protein 7 (Fabp7) Derived Regulatory Element
3.2. Colocalization among Different Fluorescent Fabp7 Enhancer-Controlled Reporter Lines
3.3. Specificity of Fabp7 Enhancer-Mediated Reporter Line Expression Pattern
3.4. Comparison of Fabp7 Enhancer-Regulated Reporter Lines to Other Cell Type-Specific Transgenic Reporter Lines
3.4.1. Coexpression of Fabp7- and gfap-enhancer-Mediated Reporter Strains in Radial Glia
3.4.2. Oligodendrocytes: A Subset of Fabp7-Expressing Cells Become Oligodendrocytes
3.4.3. Neuronal Cells: Some Fabp7 Regulatory Element-Mediated Fluorescent Protein Expressing Cells Are Neurogenic
3.4.4. Fabp7 Regulatory Element-Mediated Fluorescent Protein Expression in Neural Progenitor Cells of the Hindbrain
3.4.5. Fabp7-Regulatory Element Regulated Fluorescent Protein Expression is expressed in Cerebellar Bergman Glia, which are derived from Cerebellar Ventricular Zone
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaslin, J.; Kroehne, V.; Ganz, J.; Hans, S.; Brand, M. Distinct Roles of Neuroepithelial-like and Radial Glia-like Progenitor Cells in Cerebellar Regeneration. Development 2017, 144, 1462–1471. [Google Scholar] [CrossRef] [PubMed]
- Diotel, N.; Vaillant, C.; Kah, O.; Pellegrini, E. Mapping of Brain Lipid Binding Protein (Blbp) in the Brain of Adult Zebrafish, Co-Expression with Aromatase B and Links with Proliferation. Gene Expr. Patterns 2016, 20, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Than-Trong, E.; Bally-Cuif, L. Radial Glia and Neural Progenitors in the Adult Zebrafish Central Nervous System. Glia 2015, 63, 1406–1428. [Google Scholar] [CrossRef] [PubMed]
- März, M.; Chapouton, P.; Diotel, N.; Vaillant, C.; Hesl, B.; Takamiya, M.; Lam, C.S.; Kah, O.; Bally-Cuif, L.; Strähle, U. Heterogeneity in Progenitor Cell Subtypes in the Ventricular Zone of the Zebrafish Adult Telencephalon. Glia 2010, 58, 870–888. [Google Scholar] [CrossRef] [PubMed]
- Kaslin, J.; Ganz, J.; Geffarth, M.; Grandel, H.; Hans, S.; Brand, M. Stem Cells in the Adult Zebrafish Cerebellum: Initiation and Maintenance of a Novel Stem Cell Niche. J. Neurosci. 2009, 29, 6142–6153. [Google Scholar] [CrossRef] [PubMed]
- Docampo-Seara, A.; Santos-Durán, G.N.; Candal, E.; Rodríguez Díaz, M.Á. Expression of Radial Glial Markers (GFAP, BLBP and GS) during Telencephalic Development in the Catshark (Scyliorhinus canicula). Brain Struct. Funct. 2019, 224, 33–56. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.; Barragan, J.; Bashiruddin, S.; Smith, C.J.; Tyrrell, C.; Parsons, M.J.; Doris, R.; Kucenas, S.; Downes, G.B.; Velez, C.M.; et al. Gfap-Positive Radial Glial Cells Are an Essential Progenitor Population for Later-Born Neurons and Glia in the Zebrafish Spinal Cord. Glia 2016, 64, 1170–1189. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.-K.; Mouriec, K.; Kuo, M.-W.; Pellegrini, E.; Gueguen, M.-M.; Brion, F.; Kah, O.; Chung, B. A Cyp19a1b-Gfp (Aromatase B) Transgenic Zebrafish Line That Expresses GFP in Radial Glial Cells. Genesis 2009, 47, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Nolte, C.; Matyash, M.; Pivneva, T.; Schipke, C.G.; Ohlemeyer, C.; Hanisch, U.K.; Kirchhoff, F.; Kettenmann, H. GFAP Promoter-Controlled EGFP-Expressing Transgenic Mice: A Tool to Visualize Astrocytes and Astrogliosis in Living Brain Tissue. Glia 2001, 33, 72–86. [Google Scholar] [CrossRef]
- Preston, A.N.; Cervasio, D.A.; Laughlin, S.T. Chapter Six—Visualizing the Brain’s Astrocytes. In Chemical and Synthetic Biology Approaches To Understand Cellular Functions—Part B; Shukla, A.K., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 622, pp. 129–151. ISBN 0076-6879. [Google Scholar]
- Liu, R.-Z.; Denovan-Wright, E.M.; Wright, J.M. Structure, MRNA Expression and Linkage Mapping of the Brain-Type Fatty Acid-Binding Protein Gene (Fabp7) from Zebrafish (Danio rerio). Eur. J. Biochem. 2003, 270, 715–725. [Google Scholar] [CrossRef]
- Raymond, P.A.; Barthel, L.K.; Bernardos, R.L.; Perkowski, J.J. Molecular Characterization of Retinal Stem Cells and Their Niches in Adult Zebrafish. BMC Dev. Biol. 2006, 6, 36. [Google Scholar] [CrossRef]
- Anthony, T.E.; Mason, H.A.; Gridley, T.; Fishell, G.; Heintz, N. Brain Lipid-Binding Protein Is a Direct Target of Notch Signaling in Radial Glial Cells. Genes Dev. 2005, 19, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.; Schartl, M. Gene and Genome Duplications in Vertebrates: The One-to-Four (-to-Eight in Fish) Rule and the Evolution of Novel Gene Functions. Curr. Opin. Cell Biol. 1999, 11, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Heintz, N. Differentiating Neurons Activate Transcription of the Brain Lipid-Binding Protein Gene in Radial Glia through a Novel Regulatory Element. Development 1995, 121, 1719–1730. [Google Scholar] [CrossRef] [PubMed]
- Scheer, N.; Campos-Ortega, J.A. Use of the Gal4-UAS Technique for Targeted Gene Expression in the Zebrafish. Mech. Dev. 1999, 80, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Aleström, P.; D’Angelo, L.; Midtlyng, P.J.; Schorderet, D.F.; Schulte-Merker, S.; Sohm, F.; Warner, S. Zebrafish: Housing and Husbandry Recommendations. Lab. Anim. 2019, 54, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Westerfield, M. The Zebrafish Book. In A Guide for the Laboratory Use of Zebrafish (Danio Rerio), 5th ed.; University of Orgeon: Eugene, OR, USA, 2007. [Google Scholar]
- Bernardos, R.L.; Raymond, P.A. GFAP Transgenic Zebrafish. Gene Expr. Patterns 2006, 6, 1007–1013. [Google Scholar] [CrossRef]
- Shin, J.; Park, H.-C.; Topczewska, J.M.; Mawdsley, D.J.; Appel, B. Neural Cell Fate Analysis in Zebrafish Using Olig2 BAC Transgenics. Methods Cell Sci. 2003, 25, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Kucenas, S.; Snell, H.; Appel, B. Nkx2.2a Promotes Specification and Differentiation of a Myelinating Subset of Oligodendrocyte Lineage Cells in Zebrafish. Neuron Glia Biol. 2008, 4, 71–81. [Google Scholar] [CrossRef]
- Peri, F.; Nüsslein-Volhard, C. Live Imaging of Neuronal Degradation by Microglia Reveals a Role for V0-ATPase A1 in Phagosomal Fusion In Vivo. Cell 2008, 133, 916–927. [Google Scholar] [CrossRef]
- Distel, M.; Wullimann, M.F.; Köster, R.W. Optimized Gal4 Genetics for Permanent Gene Expression Mapping in Zebrafish. Proc. Natl. Acad. Sci. USA 2009, 106, 13365–13370. [Google Scholar] [CrossRef] [PubMed]
- Godinho, L.; Mumm, J.S.; Williams, P.R.; Schroeter, E.H.; Koerber, A.; Park, S.W.; Leach, S.D.; Wong, R.O.L. Targeting of Amacrine Cell Neurites to Appropriate Synaptic Laminae in the Developing Zebrafish Retina. Development 2005, 132, 5069–5079. [Google Scholar] [CrossRef] [PubMed]
- Distel, M.; Hocking, J.C.; Volkmann, K.; Köster, R.W. The Centrosome Neither Persistently Leads Migration nor Determines the Site of Axonogenesis in Migrating Neurons in Vivo. J. Cell Biol. 2010, 191, 875–890. [Google Scholar] [CrossRef]
- Anthony, T.E.; Klein, C.; Fishell, G.; Heintz, N. Radial Glia Serve as Neuronal Progenitors in All Regions of the Central Nervous System. Neuron 2004, 41, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Lam, A.J.; St-Pierre, F.; Gong, Y.; Marshall, J.D.; Cranfill, P.J.; Baird, M.A.; McKeown, M.R.; Wiedenmann, J.; Davidson, M.W.; Schnitzer, M.J.; et al. Improving FRET Dynamic Range with Bright Green and Red Fluorescent Proteins. Nat. Methods 2012, 9, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Bindels, D.S.; Haarbosch, L.; van Weeren, L.; Postma, M.; Wiese, K.E.; Mastop, M.; Aumonier, S.; Gotthard, G.; Royant, A.; Hink, M.A.; et al. MScarlet: A Bright Monomeric Red Fluorescent Protein for Cellular Imaging. Nat. Methods 2017, 14, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, T.; Miyawaki, A.; Nagai, T. Direct Measurement of Protein Dynamics inside Cells Using a Rationally Designed Photoconvertible Protein. Nat. Methods 2008, 5, 339–345. [Google Scholar] [CrossRef]
- Kawakami, K.; Asakawa, K.; Muto, A.; Wada, H. Chapter 2—Tol2-Mediated Transgenesis, Gene Trapping, Enhancer Trapping, and Gal4-UAS System. In The Zebrafish; Detrich, H.W., Westerfield, M., Zon, L.I., Eds.; Academic Press: Cambridge, MA, USA, 2016; Volume 135, pp. 19–37. ISBN 0091-679X. [Google Scholar]
- Kim, J.H.; Lee, S.-R.; Li, L.-H.; Park, H.-J.; Park, J.-H.; Lee, K.Y.; Kim, M.-K.; Shin, B.A.; Choi, S.-Y. High Cleavage Efficiency of a 2A Peptide Derived from Porcine Teschovirus-1 in Human Cell Lines, Zebrafish and Mice. PLoS ONE 2011, 6, e18556. [Google Scholar] [CrossRef]
- Russo, G.; Unkauf, T.; Meier, D.; Wenzel, E.V.; Langreder, N.; Schneider, K.-T.; Wiesner, R.; Bischoff, R.; Stadler, V.; Dübel, S. In Vitro Evolution of Myc-Tag Antibodies: In-Depth Specificity and Affinity Analysis of Myc1-9E10 and Hyper-Myc. Biol. Chem. 2022, 403, 479–494. [Google Scholar] [CrossRef]
- Rieger, S.; Senghaas, N.; Walch, A.; Köster, R.W. Cadherin-2 Controls Directional Chain Migration of Cerebellar Granule Neurons. PLOS Biol. 2009, 7, e1000240. [Google Scholar] [CrossRef]
- Li, S.; Yin, M.; Liu, S.; Chen, Y.; Yin, Y.; Liu, T.; Zhou, J. Expression of Ventral Diencephalon-Enriched Genes in Zebrafish. Dev. Dyn. 2010, 239, 3368–3379. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, X.; Xiao, J.; Wang, Y.; Lu, H.; Teng, J.; Wang, W. Early Postnatal GFAP-Expressing Cells Produce Multilineage Progeny in Cerebrum and Astrocytes in Cerebellum of Adult Mice. Brain Res. 2013, 1532, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Neely, S.A.; Lyons, D.A. Insights Into Central Nervous System Glial Cell Formation and Function From Zebrafish. Front. Cell Dev. Biol. 2021, 9, 754606. [Google Scholar] [CrossRef]
- McFarland, K.A.; Topczewska, J.M.; Weidinger, G.; Dorsky, R.I.; Appel, B. Hh and Wnt Signaling Regulate Formation of Olig2+ Neurons in the Zebrafish Cerebellum. Dev. Biol. 2008, 318, 162–171. [Google Scholar] [CrossRef]
- Prakash, N.; Wurst, W. Genetic Networks Controlling the Development of Midbrain Dopaminergic Neurons. J. Physiol. 2006, 575, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, M.; Riley, K.; Schubert, F.R. Molecular Mechanisms in the Formation of the Medial Longitudinal Fascicle. J. Anat. 2007, 211, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Danesin, C.; Soula, C. Moving the Shh Source over Time: What Impact on Neural Cell Diversification in the Developing Spinal Cord? J. Dev. Biol. 2017, 5, 4. [Google Scholar] [CrossRef]
- Elsen, G.E.; Choi, L.Y.; Millen, K.J.; Grinblat, Y.; Prince, V.E. Zic1 and Zic4 Regulate Zebrafish Roof Plate Specification and Hindbrain Ventricle Morphogenesis. Dev. Biol. 2008, 314, 376–392. [Google Scholar] [CrossRef]
- Kani, S.; Bae, Y.-K.; Shimizu, T.; Tanabe, K.; Satou, C.; Parsons, M.J.; Scott, E.; Higashijima, S.; Hibi, M. Proneural Gene-Linked Neurogenesis in Zebrafish Cerebellum. Dev. Biol. 2010, 343, 1–17. [Google Scholar] [CrossRef]
- Kaslin, J.; Kroehne, V.; Benato, F.; Argenton, F.; Brand, M. Development and Specification of Cerebellar Stem and Progenitor Cells in Zebrafish: From Embryo to Adult. Neural Dev. 2013, 8, 9. [Google Scholar] [CrossRef]
- Pose-Méndez, S.; Schramm, P.; Winter, B.; Meier, J.C.; Ampatzis, K.; Köster, R.W. Lifelong Regeneration of Cerebellar Purkinje Cells after Induced Cell Ablation in Zebrafish. Elife 2023, 12, e79672. [Google Scholar] [CrossRef] [PubMed]
- Itoh, T.; Uehara, M.; Yura, S.; Wang, J.C.; Nakanishi, A.; Shimizu, T.; Hibi, M. Foxp- and Skor-Family Proteins Control Differentiation of Purkinje Cells from Ptf1a and Neurogenin1-Expressing Progenitors in Zebrafish. bioRxiv 2023, 2023.04.06.535843. [Google Scholar] [CrossRef]
- Xu, H.; Yang, Y.; Tang, X.; Zhao, M.; Liang, F.; Xu, P.; Hou, B.; Xing, Y.; Bao, X.; Fan, X. Bergmann Glia Function in Granule Cell Migration During Cerebellum Development. Mol. Neurobiol. 2013, 47, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.S.; März, M.; Strähle, U. Gfap and Nestin Reporter Lines Reveal Characteristics of Neural Progenitors in the Adult Zebrafish Brain. Dev. Dyn. 2009, 238, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-C.; Shin, J.; Roberts, R.K.; Appel, B. An Olig2 Reporter Gene Marks Oligodendrocyte Precursors in the Postembryonic Spinal Cord of Zebrafish. Dev. Dyn. 2007, 236, 3402–3407. [Google Scholar] [CrossRef] [PubMed]
- Kidwell, C.U.; Su, C.-Y.; Hibi, M.; Moens, C.B. Multiple Zebrafish Atoh1 Genes Specify a Diversity of Neuronal Types in the Zebrafish Cerebellum. Dev. Biol. 2018, 438, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Buffo, A.; Rossi, F. Origin, Lineage and Function of Cerebellar Glia. Prog. Neurobiol. 2013, 109, 42–63. [Google Scholar] [CrossRef] [PubMed]
- Elsaey, M.A.; Namikawa, K.; Köster, R.W. Genetic Modeling of the Neurodegenerative Disease Spinocerebellar Ataxia Type 1 in Zebrafish. Int. J. Mol. Sci. 2021, 22, 7351. [Google Scholar] [CrossRef] [PubMed]
- Namikawa, K.; Dorigo, A.; Zagrebelsky, M.; Russo, G.; Kirmann, T.; Fahr, W.; Dübel, S.; Korte, M.; Köster, R.W. Modeling Neurodegenerative Spinocerebellar Ataxia Type 13 in Zebrafish Using a Purkinje Neuron Specific Tunable Coexpression System. J. Neurosci. 2019, 39, 3948–3969. [Google Scholar] [CrossRef]
- Kroehne, V.; Freudenreich, D.; Hans, S.; Kaslin, J.; Brand, M. Regeneration of the Adult Zebrafish Brain from Neurogenic Radial Glia-Type Progenitors. Development 2011, 138, 4831–4841. [Google Scholar] [CrossRef]
- Hentig, J.; Cloghessy, K.; Lahne, M.; Jung, Y.J.; Petersen, R.A.; Morris, A.C.; Hyde, D.R. Zebrafish Blunt-Force TBI Induces Heterogenous Injury Pathologies That Mimic Human TBI and Responds with Sonic Hedgehog-Dependent Cell Proliferation across the Neuroaxis. Biomedicines 2021, 9, 861. [Google Scholar] [CrossRef] [PubMed]
- Zupanc, G.K.H.; Hinsch, K.; Gage, F.H. Proliferation, Migration, Neuronal Differentiation, and Long-Term Survival of New Cells in the Adult Zebrafish Brain. J. Comp. Neurol. 2005, 488, 290–319. [Google Scholar] [CrossRef] [PubMed]
- Genade, T.; Benedetti, M.; Terzibasi, E.; Roncaglia, P.; Valenzano, D.R.; Cattaneo, A.; Cellerino, A. Annual Fishes of the Genus Nothobranchius as a Model System for Aging Research. Aging Cell 2005, 4, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Britz, R.; Conway, K.W.; Rüber, L. The Emerging Vertebrate Model Species for Neurophysiological Studies Is Danionella Cerebrum, New Species (Teleostei: Cyprinidae). Sci. Rep. 2021, 11, 18942. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, N.; Englert, C. A Microinjection Protocol for the Generation of Transgenic Killifish (Species: Nothobranchius furzeri). Dev. Dyn. 2012, 241, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Poeschla, M.; Valenzano, D.R. The Turquoise Killifish: A Genetically Tractable Model for the Study of Aging. J. Exp. Biol. 2020, 223, jeb209296. [Google Scholar] [CrossRef] [PubMed]
- Schulze, L.; Henninger, J.; Kadobianskyi, M.; Chaigne, T.; Faustino, A.I.; Hakiy, N.; Albadri, S.; Schuelke, M.; Maler, L.; Del Bene, F.; et al. Transparent Danionella Translucida as a Genetically Tractable Vertebrate Brain Model. Nat. Methods 2018, 15, 977–983. [Google Scholar] [CrossRef] [PubMed]
- Lam, P.-Y. Longitudinal in Vivo Imaging of Adult Danionella Cerebrum Using Standard Confocal Microscopy. Dis. Model. Mech. 2022, 15, dmm049753. [Google Scholar] [CrossRef]
- Platzer, M.; Englert, C. Nothobranchius Furzeri: A Model for Aging Research and More. Trends Genet. 2016, 32, 543–552. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pose-Méndez, S.; Rehbock, M.; Wolf-Asseburg, A.; Köster, R.W. In Vivo Monitoring of Fabp7 Expression in Transgenic Zebrafish. Cells 2024, 13, 1138. https://doi.org/10.3390/cells13131138
Pose-Méndez S, Rehbock M, Wolf-Asseburg A, Köster RW. In Vivo Monitoring of Fabp7 Expression in Transgenic Zebrafish. Cells. 2024; 13(13):1138. https://doi.org/10.3390/cells13131138
Chicago/Turabian StylePose-Méndez, Sol, Michel Rehbock, Alexandra Wolf-Asseburg, and Reinhard W. Köster. 2024. "In Vivo Monitoring of Fabp7 Expression in Transgenic Zebrafish" Cells 13, no. 13: 1138. https://doi.org/10.3390/cells13131138
APA StylePose-Méndez, S., Rehbock, M., Wolf-Asseburg, A., & Köster, R. W. (2024). In Vivo Monitoring of Fabp7 Expression in Transgenic Zebrafish. Cells, 13(13), 1138. https://doi.org/10.3390/cells13131138