BDNF Modulation by microRNAs: An Update on the Experimental Evidence
Abstract
:1. Introduction
2. Methods
3. Discussion
3.1. BDNF by microRNAs
3.2. Neuroplasticity and BDNF Regulation by microRNAs
3.3. Cell Metabolism and BDNF Regulation by microRNAs
4. Conclusions
5. Limitations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smallridge, R. Gene Expression: A Small Fortune. Nat. Rev. Mol. Cell Biol. 2001, 2, 867. [Google Scholar] [CrossRef] [PubMed]
- Lai, E.C. Micro RNAs Are Complementary to 3′ UTR Sequence Motifs That Mediate Negative Post-Transcriptional Regulation. Nat. Genet. 2002, 30, 363–364. [Google Scholar] [CrossRef] [PubMed]
- Shukla, G.C.; Singh, J.; Barik, S. MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions. Mol. Cell. Pharmacol. 2011, 3, 83. [Google Scholar] [PubMed]
- Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA Genes Are Transcribed by RNA Polymerase II. EMBO J. 2004, 23, 4051–4060. [Google Scholar] [CrossRef] [PubMed]
- Gulyaeva, L.F.; Kushlinskiy, N.E. Regulatory Mechanisms of MicroRNA Expression. J. Transl. Med. 2016, 14, 143. [Google Scholar] [CrossRef] [PubMed]
- Ha, M.; Kim, V.N. Regulation of MicroRNA Biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 388354. [Google Scholar] [CrossRef] [PubMed]
- Kaurani, L. Clinical Insights into MicroRNAs in Depression: Bridging Molecular Discoveries and Therapeutic Potential. Int. J. Mol. Sci. 2024, 25, 2866. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Mateski, J.; Gerace, L.; Wheeler, J.; Burl, J.; Prakash, B.; Svedin, C.; Amrick, R.; Adams, B.D. Non-Coding RNAs and Neuroinflammation: Implications for Neurological Disorders. Exp. Biol. Med. 2024, 249, 10120. [Google Scholar] [CrossRef]
- Trzaska, K.A.; King, C.C.; Li, K.Y.; Kuzhikandathil, E.V.; Nowycky, M.C.; Ye, J.H.; Rameshwar, P. Brain-Derived Neurotrophic Factor Facilitates Maturation of Mesenchymal Stem Cell-Derived Dopamine Progenitors to Functional Neurons. J. Neurochem. 2009, 110, 1058–1069. [Google Scholar] [CrossRef]
- Labrador-Velandia, S.; Alonso-Alonso, M.L.; Di Lauro, S.; García-Gutierrez, M.T.; Srivastava, G.K.; Pastor, J.C.; Fernandez-Bueno, I. Mesenchymal Stem Cells Provide Paracrine Neuroprotective Resources That Delay Degeneration of Co-Cultured Organotypic Neuroretinal Cultures. Exp. Eye Res. 2019, 185, 107671. [Google Scholar] [CrossRef] [PubMed]
- Bouron, A.; Boisseau, S.; De Waard, M.; Peris, L. Differential Down-Regulation of Voltage-Gated Calcium Channel Currents by Glutamate and BDNF in Embryonic Cortical Neurons. Eur. J. Neurosci. 2006, 24, 699–708. [Google Scholar] [CrossRef]
- Ibarra, I.L.; Ratnu, V.S.; Gordillo, L.; Hwang, I.; Mariani, L.; Weinand, K.; Hammarén, H.M.; Heck, J.; Bulyk, M.L.; Savitski, M.M.; et al. Comparative Chromatin Accessibility upon BDNF Stimulation Delineates Neuronal Regulatory Elements. Mol. Syst. Biol. 2022, 18, e10473. [Google Scholar] [CrossRef] [PubMed]
- De Assis, G.G.; Hoffman, J.R. The BDNF Val66Met Polymorphism Is a Relevant, But Not Determinant, Risk Factor in the Etiology of Neuropsychiatric Disorders—Current Advances in Human Studies: A Systematic Review. Brain Plast. 2022, 8, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Rajewsky, N. Microrna Target Predictions in Animals. Nat. Genet. 2006, 38, S8–S13. [Google Scholar] [CrossRef] [PubMed]
- Li, S.C.; Chan, W.C.; Hu, L.Y.; Lai, C.H.; Hsu, C.N.; Lin, W.C. Identification of Homologous MicroRNAs in 56 Animal Genomes. Genomics 2010, 96, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Schratt, G.M.; Tuebing, F.; Nigh, E.A.; Kane, C.G.; Sabatini, M.E.; Kiebler, M.; Greenberg, M.E. A Brain-Specific MicroRNA Regulates Dendritic Spine Development. Nature 2006, 439, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.E.; Lioy, D.T.; Ma, L.; Impey, S.; Mandel, G.; Goodman, R.H. Homeostatic Regulation of MeCP2 Expression by a CREB-Induced MicroRNA. Nat. Neurosci. 2007, 10, 1513–1514. [Google Scholar] [CrossRef]
- Mellios, N.; Huang, H.S.; Baker, S.P.; Galdzicka, M.; Ginns, E.; Akbarian, S. Molecular Determinants of Dysregulated GABAergic Gene Expression in the Prefrontal Cortex of Subjects with Schizophrenia. Biol. Psychiatry 2009, 65, 1006–1014. [Google Scholar] [CrossRef]
- Mellios, N.; Huang, H.S.; Grigorenko, A.; Rogaev, E.; Akbarian, S. A Set of Differentially Expressed MiRNAs, Including MiR-30a-5p, Act as Post-Transcriptional Inhibitors of BDNF in Prefrontal Cortex. Hum. Mol. Genet. 2008, 17, 3030–3042. [Google Scholar] [CrossRef]
- Chandrasekar, V.; Dreyer, J.L. MicroRNAs MiR-124, Let-7d and MiR-181a Regulate Cocaine-Induced Plasticity. Mol. Cell. Neurosci. 2009, 42, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Im, H.I.; Hollander, J.A.; Bali, P.; Kenny, P.J. MeCP2 Controls BDNF Expression and Cocaine Intake through Homeostatic Interactions with MicroRNA-212. Nat. Neurosci. 2010, 13, 1120–1127. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wang, W.Y.; Mao, Y.W.; Gräff, J.; Guan, J.S.; Pan, L.; Mak, G.; Kim, D.; Su, S.C.; Tsai, L.H. A Novel Pathway Regulates Memory and Plasticity via SIRT1 and MiR-134. Nature 2010, 466, 1105–1109. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, H.; Numakawa, T.; Kumamaru, E.; Adachi, N.; Mizuno, H.; Ninomiya, M.; Kunugi, H.; Hashido, K. Glucocorticoid Attenuates Brain-Derived Neurotrophic Factor-Dependent Upregulation of Glutamate Receptors via the Suppression of MicroRNA-132 Expression. Neuroscience 2010, 165, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Wen, Z.; Lynn, R.C.; Baudet, M.L.; Holt, C.E.; Sasaki, Y.; Bassell, G.J.; Zheng, J.Q. Regulation of Chemotropic Guidance of Nerve Growth Cones by MicroRNA. Mol. Brain 2011, 4, 40. [Google Scholar] [CrossRef]
- Radzikinas, K.; Aven, L.; Jiang, Z.; Tran, T.; Paez-Cortez, J.; Boppidi, K.; Lu, J.; Fine, A.; Ai, X. A Shh/MiR-206/BDNF Cascade Coordinates Innervation and Formation of Airway Smooth Muscle. J. Neurosci. 2011, 31, 15407–15415. [Google Scholar] [CrossRef] [PubMed]
- Angelucci, F.; Croce, N.; Spalletta, G.; Dinallo, V.; Gravina, P.; Bossù, P.; Federici, G.; Caltagirone, C.; Bernardini, S. Paroxetine Rapidly Modulates the Expression of Brain-Derived Neurotrophic Factor MRNA and Protein in a Human Glioblastoma-Astrocytoma Cell Line. Pharmacology 2011, 87, 5–10. [Google Scholar] [CrossRef]
- Caputo, V.; Sinibaldi, L.; Fiorentino, A.; Parisi, C.; Catalanotto, C.; Pasini, A.; Cogoni, C.; Pizzuti, A. Brain Derived Neurotrophic Factor (BDNF) Expression Is Regulated by MicroRNAs MiR-26a and MiR-26b Allele-Specific Binding. PLoS ONE 2011, 6, e28656. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Zhu, X.; Zhang, Y.; Zhang, S.; Zhang, L.; Xue, L.; Yi, J.; Yao, S.; Zhang, X. Abnormal Hippocampal BDNF and MiR-16 Expression Is Associated with Depression-Like Behaviors Induced by Stress during Early Life. PLoS ONE 2012, 7, e46921. [Google Scholar] [CrossRef]
- Lee, S.T.; Chu, K.; Jung, K.H.; Kim, J.H.; Huh, J.Y.; Yoon, H.; Park, D.K.; Lim, J.Y.; Kim, J.M.; Jeon, D.; et al. MiR-206 Regulates Brain-Derived Neurotrophic Factor in Alzheimer Disease Model. Ann. Neurol. 2012, 72, 269–277. [Google Scholar] [CrossRef]
- Imam, J.S.; Plyler, J.R.; Bansal, H.; Prajapati, S.; Bansal, S.; Rebeles, J.; Chen, H.I.H.; Chang, Y.F.; Panneerdoss, S.; Zoghi, B.; et al. Genomic Loss of Tumor Suppressor MiRNA-204 Promotes Cancer Cell Migration and Invasion by Activating AKT/MTOR/Rac1 Signaling and Actin Reorganization. PLoS ONE 2012, 7, e52397. [Google Scholar] [CrossRef] [PubMed]
- Chen-Plotkin, A.S.; Unger, T.L.; Gallagher, M.D.; Bill, E.; Kwong, L.K.; Volpicelli-Daley, L.; Busch, J.I.; Akle, S.; Grossman, M.; Van Deerlin, V.; et al. TMEM106B, the Risk Gene for Frontotemporal Dementia, Is Regulated by the MicroRNA-132/212 Cluster and Affects Progranulin Pathways. J. Neurosci. 2012, 32, 11213–11227. [Google Scholar] [CrossRef] [PubMed]
- Wibrand, K.; Pai, B.; Siripornmongcolchai, T.; Bittins, M.; Berentsen, B.; Ofte, M.L.; Weigel, A.; Skaftnesmo, K.O.; Bramham, C.R. MicroRNA Regulation of the Synaptic Plasticity-Related Gene Arc. PLoS ONE 2012, 7, e41688. [Google Scholar] [CrossRef]
- Miura, P.; Amirouche, A.; Clow, C.; Bélanger, G.; Jasmin, B.J. Brain-Derived Neurotrophic Factor Expression Is Repressed during Myogenic Differentiation by MiR-206. J. Neurochem. 2012, 120, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Bahi, A.; Dreyer, J.L. Striatal Modulation of BDNF Expression Using MicroRNA124a-Expressing Lentiviral Vectors Impairs Ethanol-Induced Conditioned-Place Preference and Voluntary Alcohol Consumption. Eur. J. Neurosci. 2013, 38, 2328–2337. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.X.; Yang, J.; Wang, P.Y.; Li, Y.J.; Xie, S.Y.; Sun, R.P. Cisplatin Regulates SH-SY5Y Cell Growth through Downregulation of BDNF via MiR-16. Oncol. Rep. 2013, 30, 2343–2349. [Google Scholar] [CrossRef]
- Li, Y.J.; Xu, M.; Gao, Z.H.; Wang, Y.Q.; Yue, Z.; Zhang, Y.X.; Li, X.X.; Zhang, C.; Xie, S.Y.; Wang, P.Y. Alterations of Serum Levels of BDNF-Related MiRNAs in Patients with Depression. PLoS ONE 2013, 8, e63648. [Google Scholar] [CrossRef]
- Kynast, K.L.; Russe, O.Q.; Möser, C.V.; Geisslinger, G.; Niederberger, E. Modulation of Central Nervous System-Specific MicroRNA-124a Alters the Inflammatory Response in the Formalin Test in Mice. Pain 2013, 154, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Croce, N.; Gelfo, F.; Ciotti, M.T.; Federici, G.; Caltagirone, C.; Bernardini, S.; Angelucci, F. NPY Modulates MiR-30a-5p and BDNF in Opposite Direction in an in Vitro Model of Alzheimer Disease: A Possible Role in Neuroprotection? Mol. Cell. Biochem. 2013, 376, 189–195. [Google Scholar] [CrossRef]
- Ryan, K.M.; O’Donovan, S.M.; McLoughlin, D.M. Electroconvulsive Stimulation Alters Levels of BDNF-Associated MicroRNAs. Neurosci. Lett. 2013, 549, 125–129. [Google Scholar] [CrossRef]
- Nagpal, N.; Ahmad, H.M.; Molparia, B.; Kulshreshtha, R. MicroRNA-191, an Estrogen-Responsive MicroRNA, Functions as an Oncogenic Regulator in Human Breast Cancer. Carcinogenesis 2013, 34, 1889–1899. [Google Scholar] [CrossRef] [PubMed]
- Mojtahedi, S.; Kordi, M.R.; Hosseini, S.E.; Omran, S.F.; Soleimani, M. Effect of Treadmill Running on the Expression of Genes That Are Involved in Neuronal Differentiation in the Hippocampus of Adult Male Rats. Cell Biol. Int. 2013, 37, 276/a–283/a. [Google Scholar] [CrossRef] [PubMed]
- Tapocik, J.D.; Barbier, E.; Flanigan, M.; Solomon, M.; Pincus, A.; Pilling, A.; Sun, H.; Schank, J.R.; King, C.; Heilig, M. MicroRNA-206 in Rat Medial Prefrontal Cortex Regulates BDNF Expression and Alcohol Drinking. J. Neurosci. 2014, 34, 4581–4588. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.R.; Chen, K.H.; Yang, C.H.; Huang, H.W.; Sheen-Chen, S.M. Intrathecal MiR-183 Delivery Suppresses Mechanical Allodynia in Mononeuropathic Rats. Eur. J. Neurosci. 2014, 39, 1682–1689. [Google Scholar] [CrossRef] [PubMed]
- Tian, N.; Cao, Z.; Zhang, Y. MiR-206 Decreases Brain-Derived Neurotrophic Factor Levels in a Transgenic Mouse Model of Alzheimer’s Disease. Neurosci. Bull. 2014, 30, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Bahi, A.; Chandrasekar, V.; Dreyer, J.L. Selective Lentiviral-Mediated Suppression of MicroRNA124a in the Hippocampus Evokes Antidepressants-like Effects in Rats. Psychoneuroendocrinology 2014, 46, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Marler, K.J.; Suetterlin, P.; Dopplapudi, A.; Rubikaite, A.; Adnan, J.; Maiorano, N.A.; Lowe, A.S.; Thompson, I.D.; Pathania, M.; Bordey, A.; et al. BDNF Promotes Axon Branching of Retinal Ganglion Cells via MiRNA-132 and P250GAP. J. Neurosci. 2014, 34, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, Q.; Wang, X.; Luo, C.; Wan, Y.; Li, J.; Liu, K.; Zhou, M.; Zhang, C. MicroRNA Expression Profile and Functional Analysis Reveal That MiR-206 Is a Critical Novel Gene for the Expression of BDNF Induced by Ketamine. NeuroMolecular Med. 2014, 16, 594–605. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.T.; Li, J.; Liu, B.; Luo, L.; Liu, Q.; Geng, D. BDNF-ERK-CREB Signalling Mediates the Role of MiR-132 in the Regulation of the Effects of Oleanolic Acid in Male Mice. J. Psychiatry Neurosci. 2014, 39, 348–359. [Google Scholar] [CrossRef]
- Giannotti, G.; Caffino, L.; Calabrese, F.; Racagni, G.; Riva, M.A.; Fumagalli, F. Prolonged Abstinence from Developmental Cocaine Exposure Dysregulates BDNF and Its Signaling Network in the Medial Prefrontal Cortex of Adult Rats. Int. J. Neuropsychopharmacol. 2014, 17, 625–634. [Google Scholar] [CrossRef]
- Varendi, K.; Kumar, A.; Härma, M.A.; Andressoo, J.O. MIR-1, MiR-10b, MiR-155, and MiR-191 Are Novel Regulators of BDNF. Cell. Mol. Life Sci. 2014, 71, 4443–4456. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, X.; Shi, Y.W.; Ma, J.; Wang, G.F. Intermittent Hypoxia with or without Hypercapnia Is Associated with Tumorigenesis by Decreasing the Expression of Brain Derived Neurotrophic Factor and MiR-34a in Rats. Chin. Med. J. 2014, 127, 43–47. [Google Scholar] [CrossRef]
- Cho, K.J.; Song, J.; Oh, Y.; Lee, J.E. MicroRNA-Let-7a Regulates the Function of Microglia in Inflammation. Mol. Cell. Neurosci. 2015, 68, 167–176. [Google Scholar] [CrossRef]
- Li, H.; Gong, Y.; Qian, H.; Chen, T.; Liu, Z.; Jiang, Z.; Wei, S. Brain-Derived Neurotrophic Factor Is a Novel Target Gene of the Has-MiR-183/96/182 Cluster in Retinal Pigment Epithelial Cells Following Visible Light Exposure. Mol. Med. Rep. 2015, 12, 2793–2799. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.C.; Duan, M.J.; Sun, L.L.; Yan, M.L.; Liu, T.; Wang, Q.; Liu, C.D.; Wang, X.; Kang, X.H.; Pei, S.C.; et al. Cardiac Over-Expression of MicroRNA-1 Induces Impairment of Cognition in Mice. Neuroscience 2015, 299, 66–78. [Google Scholar] [CrossRef]
- Yang, G.; Song, Y.; Zhou, X.; Deng, Y.; Liu, T.; Weng, G.; Yu, D.; Pan, S. DNA Methyltransferase 3, a Target of MicroRNA-29c, Contributes to Neuronal Proliferation by Regulating the Expression of Brain-Derived Neurotrophic Factor. Mol. Med. Rep. 2015, 12, 1435–1442. [Google Scholar] [CrossRef]
- Neumann, E.; Hermanns, H.; Barthel, F.; Werdehausen, R.; Brandenburger, T. Expression Changes of MicroRNA-1 and Its Targets Connexin 43 and Brain-Derived Neurotrophic Factor in the Peripheral Nervous System of Chronic Neuropathic Rats. Mol. Pain 2015, 11, s12990-015. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; He, Q.Z.; Wu, C.Q.; Pan, X.Y.; Wang, J.; Tan, Y.; Shan, X.Y.; Zeng, H.C. PFOS Disturbs BDNF-ERK-CREB Signalling in Association with Increased MicroRNA-22 in SH-SY5Y Cells. Biomed Res. Int. 2015, 2015, 302653. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Ren, Y.; Cai, H.; Zhao, W.; Song, Y. MicroRNA-132 Aggravates Epileptiform Discharges via Suppression of BDNF/TrkB Signaling in Cultured Hippocampal Neurons. Brain Res. 2015, 1622, 484–495. [Google Scholar] [CrossRef]
- Yan, H.; Wu, W.; Ge, H.; Li, P.; Wang, Z. Up-Regulation of MiR-204 Enhances Anoikis Sensitivity in Epithelial Ovarian Cancer Cell Line via Brain-Derived Neurotrophic Factor Pathway in Vitro. Int. J. Gynecol. Cancer 2015, 25, 944–952. [Google Scholar] [CrossRef]
- Mu, Y.; Zhou, H.; Wu, W.J.; Hu, L.C.; Chen, H.B. Dynamic Expression of MiR-206-3p during Mouse Skin Development Is Independent of Keratinocyte Differentiation. Mol. Med. Rep. 2015, 12, 8113–8120. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Armelloni, S.; Zennaro, C.; Wei, C.; Corbelli, A.; Ikehata, M.; Berra, S.; Giardino, L.; Mattinzoli, D.; Watanabe, S.; et al. BDNF Repairs Podocyte Damage by MicroRNA-Mediated Increase of Actin Polymerization. J. Pathol. 2015, 235, 731–744. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, C.; Wang, X.; Xu, S. Therapeutic Effects of Transplantation of As-MiR-937-Expressing Mesenchymal Stem Cells in Murine Model of Alzheimer’s Disease. Cell. Physiol. Biochem. 2015, 37, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Hong, J.; Zhao, Y.; Liu, S.; Xue, X. MeCP2 Controls Hippocampal Brain-Derived Neurotrophic Factor Expression via Homeostatic Interactions with MicroRNA-132 in Rats with Depression. Mol. Med. Rep. 2015, 12, 5399–5406. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Rapp, J.; Smith, P.Y.; Filali, M.; Goupil, C.; Planel, E.; Magill, S.T.; Goodman, R.H.; Hébert, S.S. Memory Formation and Retention Are Affected in Adult MiR-132/212 Knockout Mice. Behav. Brain Res. 2015, 287, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Cao, J.; Liu, X.; Meng, F.; Li, M.; Chen, B.; Zhang, J. AMPK Plays a Dual Role in Regulation of CREB/BDNF Pathway in Mouse Primary Hippocampal Cells. J. Mol. Neurosci. 2015, 56, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Oikawa, H.; Goh, W.W.B.; Lim, V.K.J.; Wong, L.; Sng, J.C.G. Valproic Acid Mediates MiR-124 to down-Regulate a Novel Protein Target, GNAI1. Neurochem. Int. 2015, 91, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhu, J. Effects of Sleep Deprivation on Behaviors and Abnormal Hippocampal BDNF/MiR-10B Expression in Rats with Chronic Stress Depression. Int. J. Clin. Exp. Pathol. 2015, 8, 586–593. [Google Scholar] [PubMed]
- Shao, Y.; Yu, Y.; Zhou, Q.; Li, C.; Yang, L.; Pei, C. Inhibition of MiR-134 Protects Against Hydrogen Peroxide-Induced Apoptosis in Retinal Ganglion Cells. J. Mol. Neurosci. 2015, 56, 461–471. [Google Scholar] [CrossRef]
- Gao, Y.; Su, J.; Guo, W.; Polich, E.D.; Magyar, D.P.; Xing, Y.; Li, H.; Smrt, R.D.; Chang, Q.; Zhao, X. Inhibition of MiR-15a Promotes BDNF Expression and Rescues Dendritic Maturation Deficits in MeCP2-Deficient Neurons. Stem Cells 2015, 33, 1618–1629. [Google Scholar] [CrossRef]
- Darcq, E.; Warnault, V.; Phamluong, K.; Besserer, G.M.; Liu, F.; Ron, D. MicroRNA-30a-5p in the Prefrontal Cortex Controls the Transition from Moderate to Excessive Alcohol Consumption. Mol. Psychiatry 2015, 20, 1240–1250. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Jiang, C.; Liu, B.; Fang, S.; Kuang, M. MicroRNA-15a-5p Suppresses Cancer Proliferation and Division in Human Hepatocellular Carcinoma by Targeting BDNF. Tumor Biol. 2016, 37, 5821–5828. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.M.; Cao, S.; Zhang, H.L.; Lyu, D.M.; Chen, L.P.; Xu, H.; Pan, Z.Q.; Shen, W. Downregulation of MiR-219 Enhances Brain-Derived Neurotrophic Factor Production in Mouse Dorsal Root Ganglia to Mediate Morphine Analgesic Tolerance by Upregulating CaMKIIγ. Mol. Pain. 2016, 12, 1744806916666283. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, S.; Yan, J.; Wang, D.; Yin, R.; Zhao, L.; Zhu, Y.; Zhu, X. MiR-182 (MicroRNA-182) Suppression in the Hippocampus Evokes Antidepressant-like Effects in Rats. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2016, 65, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.Y.; An, X.P.; Fang, F.; Gao, K.X.; Xin, H.Y.; Han, P.; Bao, L.J.; Ma, H.D.; Cao, B.Y. MicroRNA-10b Suppresses Goat Granulosa Cell Proliferation by Targeting Brain-Derived Neurotropic Factor. Domest. Anim. Endocrinol. 2016, 54, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Yuan, Y.; Chen, Q.; Wang, X.; Gong, L.; Liu, J.; Gu, X.; Li, S. Regulation of Schwann Cell Proliferation and Migration by MIR-1 Targeting Brain-Derived Neurotrophic Factor after Peripheral Nerve Injury. Sci. Rep. 2016, 6, 29121. [Google Scholar] [CrossRef] [PubMed]
- Bahi, A. Sustained Lentiviral-Mediated Overexpression of MicroRNA124a in the Dentate Gyrus Exacerbates Anxiety- and Autism-like Behaviors Associated with Neonatal Isolation in Rats. Behav. Brain Res. 2016, 311, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Li, Y.; Lv, X. MicroRNA-107 Inhibits Tumor Growth and Metastasis by Targeting the BDNF-Mediated PI3K/AKT Pathway in Human Non-Small Lung Cancer. Int. J. Oncol. 2016, 49, 1325–1333. [Google Scholar] [CrossRef] [PubMed]
- Neumann, E.; Brandenburger, T.; Santana-Varela, S.; Deenen, R.; Köhrer, K.; Bauer, I.; Hermanns, H.; Wood, J.N.; Zhao, J.; Werdehausen, R. MicroRNA-1-Associated Effects of Neuron-Specific Brain-Derived Neurotrophic Factor Gene Deletion in Dorsal Root Ganglia. Mol. Cell. Neurosci. 2016, 75, 36–43. [Google Scholar] [CrossRef]
- Kumari, A.; Singh, P.; Baghel, M.S.; Thakur, M.K. Social Isolation Mediated Anxiety like Behavior Is Associated with Enhanced Expression and Regulation of BDNF in the Female Mouse Brain. Physiol. Behav. 2016, 158, 34–42. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, Y.; Hou, B.; Zhang, W.; Liu, M.; Sun, Y.E.; Ma, Z.; Gu, X. CREB-Regulated Transcription Coactivator 1 Enhances CREB-Dependent Gene Expression in Spinal Cord to Maintain the Bone Cancer Pain in Mice. Mol. Pain 2016, 12, 1744806916641679. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Gao, L.; Lei, D.; Liu, J.; Shao, Z.; Zhou, X.; Li, R.; Wu, D.; Xue, F.; Zhu, Y.; et al. Decreased Expression of MiR-9 Due to E50K OPTN Mutation Causes Disruption of the Expression of BDNF Leading to RGC-5 Cell Apoptosis. Mol. Med. Rep. 2016, 14, 4901–4905. [Google Scholar] [CrossRef]
- Hang, P.; Sun, C.; Guo, J.; Zhao, J.; Du, Z. BDNF-Mediates down-Regulation of MicroRNA-195 Inhibits Ischemic Cardiac Apoptosis in Rats. Int. J. Biol. Sci. 2016, 12, 979–989. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, X.; Xin, X.; Kan, P.-C.; Yan, Y. MicroRNA-613 Regulates the Expression of Brain-Derived Neurotrophic Factor in Alzheimer’s Disease. Biosci. Trends 2016, 10, 372–377. [Google Scholar] [CrossRef]
- Jimenez-Gonzalez, A.; García-Concejo, A.; López-Benito, S.; Gonzalez-Nunez, V.; Arévalo, J.C.; Rodriguez, R.E. Role of Morphine, MiR-212/132 and Mu Opioid Receptor in the Regulation of Bdnf in Zebrafish Embryos. Biochim. Biophys. Acta Gen. Subj. 2016, 1860, 1308–1316. [Google Scholar] [CrossRef]
- Aili, A.; Chen, Y.; Zhang, H. MicroRNA-10b Suppresses the Migration and Invasion of Chondrosarcoma Cells by Targeting Brain-Derived Neurotrophic Factor. Mol. Med. Rep. 2016, 13, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.-L.; He, X.-S.; Liu, J.-R.; Zheng, C.-B.; Wang, Y.-T.; Yang, G.-Y. Lentivirus-Mediated Overexpression of MicroRNA-210 Improves Long-Term Outcomes after Focal Cerebral Ischemia in Mice. CNS Neurosci. Ther. 2016, 22, 961–969. [Google Scholar] [CrossRef]
- Xiang, L.; Ren, Y.; Li, X.; Zhao, W.; Song, Y. MicroRNA-204 Suppresses Epileptiform Discharges through Regulating TrkB-ERK1/2-CREB Signaling in Cultured Hippocampal Neurons. Brain Res. 2016, 1639, 99–107. [Google Scholar] [CrossRef]
- Cui, M.; Xiao, H.; Li, Y.; Dong, J.; Luo, D.; Li, H.; Feng, G.; Wang, H.; Fan, S. Total Abdominal Irradiation Exposure Impairs Cognitive Function Involving MiR-34a-5p/BDNF Axis. Biochim. Biophys. Acta-Mol. Basis Dis. 2017, 1863, 2333–2341. [Google Scholar] [CrossRef]
- Thomas, K.T.; Anderson, B.R.; Shah, N.; Zimmer, S.E.; Hawkins, D.; Valdez, A.N.; Gu, Q.; Bassell, G.J. Inhibition of the Schizophrenia-Associated MicroRNA MiR-137 Disrupts Nrg1α Neurodevelopmental Signal Transduction. Cell Rep. 2017, 20, 1–12. [Google Scholar] [CrossRef]
- Mendoza-Viveros, L.; Chiang, C.K.; Ong, J.L.K.; Hegazi, S.; Cheng, A.H.; Bouchard-Cannon, P.; Fana, M.; Lowden, C.; Zhang, P.; Bothorel, B.; et al. MiR-132/212 Modulates Seasonal Adaptation and Dendritic Morphology of the Central Circadian Clock. Cell Rep. 2017, 19, 505–520. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Liu, Z.; Jiang, L.; Liu, W.; Song, M.; Zhang, Q.; Zhang, R.; Cui, D.; Wang, X.; Xu, S. Increased Serum MiR-206 Level Predicts Conversion from Amnestic Mild Cognitive Impairment to Alzheimer’s Disease: A 5-Year Follow-up Study. J. Alzheimer’s Dis. 2017, 55, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Meng, X.; Huang, Y.; Lv, Z.; Liu, J.; Wang, G.; Meng, W.; Xue, S.; Zhang, Q.; Zhang, P.; et al. MicroRNA-497 Inhibits Thyroid Cancer Tumor Growth and Invasion by Suppressing BDNF. Oncotarget 2017, 8, 2825–2834. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Hao, S.; Tian, W.; Jiang, Y.; Zhang, S.; Guo, L.; Zhao, J.; Zhang, G.; Yan, J.; Luo, D. MicroRNA-107 Is Downregulated and Having Tumor Suppressive Effect in Breast Cancer by Negatively Regulating Brain-Derived Neurotrophic Factor. J. Gene Med. 2017, 19, e2932. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Li, Y.; Dai, Y.; Li, L.; Lv, G.; Chen, I.; Wang, B. MiR-140/BDNF Axis Regulates Normal Human Astrocyte Proliferation and LPS-Induced IL-6 and TNF-α Secretion. Biomed. Pharmacother. 2017, 91, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Diao, J.; Yang, Y.; Chen, Y. MicroRNA-382 Inhibits Cell Proliferation and Invasion of Retinoblastoma by Targeting BDNF-Mediated PI3K/AKT Signalling Pathway. Mol. Med. Rep. 2017, 16, 6428–6436. [Google Scholar] [CrossRef]
- Lin, C.Y.; Wang, S.W.; Chen, Y.L.; Chou, W.Y.; Lin, T.Y.; Chen, W.C.; Yang, C.Y.; Liu, S.C.; Hsieh, C.C.; Fong, Y.C.; et al. Brain-Derived Neurotrophic Factor Promotes VEGF-C-Dependent Lymphangiogenesis by Suppressing MiR-624-3p in Human Chondrosarcoma Cells. Cell Death Dis. 2017, 8, e2964. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Chu, Z.; Dang, Y.; Zhu, J.; Su, X. MicroRNA-101 in the Ventrolateral Orbital Cortex (VLO) Modulates Depressive-like Behaviors in Rats and Targets Dual-Specificity Phosphatase 1 (DUSP1). Brain Res. 2017, 1669, 55–62. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, S.; Li, Z.; Zhou, J. MicroRNA-211/BDNF Axis Regulates LPS-Induced Proliferation of Normal Human Astrocyte through PI3K/AKT Pathway. Biosci. Rep. 2017, 37, BSR20170755. [Google Scholar] [CrossRef]
- Bahi, A. Hippocampal BDNF Overexpression or MicroR124a Silencing Reduces Anxiety- and Autism-like Behaviors in Rats. Behav. Brain Res. 2017, 326, 281–290. [Google Scholar] [CrossRef]
- Xu, A.J.; Fu, L.N.; Wu, H.X.; Yao, X.L.; Meng, R. MicroRNA-744 Inhibits Tumor Cell Proliferation and Invasion of Gastric Cancer via Targeting Brain-Derived Neurotrophic Factor. Mol. Med. Rep. 2017, 16, 5055–5061. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zhang, L.; Li, R. Overexpression of MiR-206 Ameliorates Chronic Constriction Injury-Induced Neuropathic Pain in Rats via the MEK/ERK Pathway by Targeting Brain-Derived Neurotrophic Factor. Neurosci. Lett. 2017, 646, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S.; Mu, R.H.; Li, C.F.; Dong, S.Q.; Geng, D.; Liu, Q.; Yi, L.T. MicroRNA-124 Targets Glucocorticoid Receptor and Is Involved in Depression-like Behaviors. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017, 79, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, Y.; Song, J. MicroRNA-103 Suppresses Glioma Cell Proliferation and Invasion by Targeting the Brain-Derived Neurotrophic Factor. Mol. Med. Rep. 2017, 17, 4083–4089. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Meng, F.; Cao, J.; Liu, X.; Zhang, J.; Li, M. Neuroprotective Role of Exogenous Brain-Derived Neurotrophic Factor in Hypoxia–Hypoglycemia-Induced Hippocampal Neuron Injury via Regulating Trkb/MiR134 Signaling. J. Mol. Neurosci. 2017, 62, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Wang, W.; Li, S.; Hu, W. Implantation of Bone Mesenchymal Stem Cells Overexpressing MiRNA-705 Mitigated Ischemic Brain Injury. Mol. Med. Rep. 2017, 16, 8323–8328. [Google Scholar] [CrossRef]
- Fu, Y.; Hou, B.; Weng, C.; Liu, W.; Dai, J.; Zhao, C.; Yin, Z.Q. Functional Ectopic Neuritogenesis by Retinal Rod Bipolar Cells Is Regulated by MiR-125b-5p during Retinal Remodeling in RCS Rats. Sci. Rep. 2017, 7, 1011. [Google Scholar] [CrossRef] [PubMed]
- Lian, N.; Niu, Q.; Lei, Y.; Li, X.; Li, Y.; Song, X. MiR-221 Is Involved in Depression by Regulating Wnt2/CREB/BDNF Axis in Hippocampal Neurons. Cell Cycle 2018, 17, 2745–2755. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Chen, Y.; Wang, X.R. MicroRNA-155 Contributes to the Occurrence of Epilepsy through the PI3K/Akt/MTOR Signaling Pathway. Int. J. Mol. Med. 2018, 42, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.T.; Mu, R.H.; Dong, S.Q.; Wang, S.S.; Li, C.F.; Geng, D.; Liu, Q. MiR-124 Antagonizes the Antidepressant-like Effects of Standardized Gypenosides in Mice. J. Psychopharmacol. 2018, 32, 458–468. [Google Scholar] [CrossRef]
- Nguyen, T.; Su, C.; Singh, M. Let-7i Inhibition Enhances Progesterone-Induced Functional Recovery in a Mouse Model of Ischemia. Proc. Natl. Acad. Sci. USA 2018, 115, E9668–E9677. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Yang, Z.; Huang, F.; Yin, L.; Yan, G.; Gong, G. MicroRNA-107 Inhibits Gastric Cancer Cell Proliferation and Metastasis by Targeting PI3K/AKT Pathway. Microb. Pathog. 2018, 121, 110–114. [Google Scholar] [CrossRef]
- Fang, Y.; Qiu, Q.; Zhang, S.; Sun, L.; Li, G.; Xiao, S.; Li, X. Changes in MiRNA-132 and MiR-124 Levels in Non-Treated and Citalopram-Treated Patients with Depression. J. Affect. Disord. 2018, 227, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, S.; Liu, A.; Wan, J.; Tang, L.; Zheng, N.; Xiong, Y. Inhibition of BDNF Production by MPP+ through Up-Regulation of MiR-210-3p Contributes to Dopaminergic Neuron Damage in MPTP Model. Neurosci. Lett. 2018, 675, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Xing, Q.; Shan, Z.; Gao, Y.; Mao, J.; Liu, X.; Yu, J.; Sun, H.; Fan, C.; Wang, H.; Zhang, H.; et al. Differential Expression of MicroRNAs and MiR-206-Mediated Downregulation of BDNF Expression in the Rat Fetal Brain Following Maternal Hypothyroidism. Horm. Metab. Res. 2018, 50, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Li, X. Long Non-Coding RNA Nuclear Paraspeckle Assembly Transcript 1 Inhibits the Apoptosis of Retina Müller Cells after Diabetic Retinopathy through Regulating MiR-497/Brain-Derived Neurotrophic Factor Axis. Diabetes Vasc. Dis. Res. 2018, 15, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Huang, Z.; Hua, Y.; Xiao, G. Minocycline Promotes BDNF Expression of N2a Cells via Inhibition of MiR-155-Mediated Repression After Oxygen-Glucose Deprivation and Reoxygenation. Cell. Mol. Neurobiol. 2018, 38, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Mao, F.; Liang, J.; Szyf, M.; Wang, Y.; Sun, Z.S. Anxiety-Related Behaviours Associated with MicroRNA-206-3p and BDNF Expression in Pregnant Female Mice Following Psychological Social Stress. Mol. Neurobiol. 2018, 55, 1097–1111. [Google Scholar] [CrossRef] [PubMed]
- Descamps, B.; Saif, J.; Benest, A.V.; Biglino, G.; Bates, D.O.; Chamorro-Jorganes, A.; Emanueli, C. BDNF (Brain-Derived Neurotrophic Factor) Promotes Embryonic Stem Cells Differentiation to Endothelial Cells via a Molecular Pathway, Including MicroRNA-214, EZH2 (Enhancer of Zeste Homolog 2), and ENOS (Endothelial Nitric Oxide Synthase). Arterioscler. Thromb. Vasc. Biol. 2018, 38, 2117–2125. [Google Scholar] [CrossRef]
- Lv, M.; Yang, S.; Cai, L.; Qin, L.; Li, B.; Wan, Z. Effects of Quercetin Intervention on Cognition Function in APP/PS1 Mice Was Affected by Vitamin D Status. Mol. Nutr. Food Res. 2018, 62, 1800621. [Google Scholar] [CrossRef]
- Ge, Q.; Tan, Y.; Luo, Y.; Wang, W.J.; Zhang, H.; Xie, C. MiR-132, MiR-204 and BDNF-TrkB Signaling Pathway May Be Involved in Spatial Learning and Memory Impairment of the Offspring Rats Caused by Fluorine and Aluminum Exposure during the Embryonic Stage and into Adulthood. Environ. Toxicol. Pharmacol. 2018, 63, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Xu, L.; Qu, C.; Sun, H.; Zhang, J. Resveratrol Prevents Cognitive Deficits Induced by Chronic Unpredictable Mild Stress: Sirt1/MiR-134 Signalling Pathway Regulates CREB/BDNF Expression in Hippocampus In Vivo and In Vitro. Behav. Brain Res. 2018, 349, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.W.; Wu, M.S.; Guo, J.D. Effects of MicroRNA-10a on Synapse Remodeling in Hippocampal Neurons and Neuronal Cell Proliferation and Apoptosis through the BDNF-TrkB Signaling Pathway in a Rat Model of Alzheimer’s Disease. J. Cell. Physiol. 2018, 233, 5281–5292. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.C.; Duan, M.J.; Li, K.X.; Biddyut, D.; Zhang, S.; Yan, M.L.; Yang, L.; Jin, Z.; Zhao, H.M.; Huang, S.Y.; et al. Knockdown of MicroRNA-1 in the Hippocampus Ameliorates Myocardial Infarction Induced Impairment of Long-Term Potentiation. Cell. Physiol. Biochem. 2018, 50, 1601–1616. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tang, X.; Li, N.; Zhao, L.; Guo, Y.; Li, X.; Tian, C.; Cheng, D.; Chen, Z.; Zhang, L. GAS5 Promotes Airway Smooth Muscle Cell Proliferation in Asthma via Controlling MiR-10a/BDNF Signaling Pathway. Life Sci. 2018, 212, 93–101. [Google Scholar] [CrossRef]
- Gao, L.; Yan, P.; Guo, F.F.; Liu, H.J.; Zhao, Z.F. MiR-1-3p Inhibits Cell Proliferation and Invasion by Regulating BDNF-TrkB Signaling Pathway in Bladder Cancer. Neoplasma 2018, 65, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, Z.; Pei, Y.; Yang, W.; Xie, C.; Long, S. MicroRNA-322 Cluster Promotes Tau Phosphorylation via Targeting Brain-Derived Neurotrophic Factor. Neurochem. Res. 2018, 43, 736–744. [Google Scholar] [CrossRef]
- Jiang, J.D.; Zheng, X.C.; Huang, F.Y.; Gao, F.; You, M.Z.; Zheng, T. MicroRNA-107 Regulates Anesthesia-Induced Neural Injury in Embryonic Stem Cell Derived Neurons. IUBMB Life 2019, 71, 20–27. [Google Scholar] [CrossRef]
- Yang, W.; Guo, Q.; Li, J.; Wang, X.; Pan, B.; Wang, Y.; Wu, L.; Yan, J.; Cheng, Z. MicroRNA-124 Attenuates Isoflurane-Induced Neurological Deficits in Neonatal Rats via Binding to EGR1. J. Cell. Physiol. 2019, 234, 23017–23032. [Google Scholar] [CrossRef]
- Shrestha, S.; Phay, M.; Kim, H.H.; Pouladvand, P.; Lee, S.J.; Yoo, S. Differential Regulation of Brain-Derived Neurotrophic Factor (BDNF) Expression in Sensory Neuron Axons by MiRNA-206. FEBS Open Bio 2019, 9, 374–383. [Google Scholar] [CrossRef]
- Miao, Z.; Zhang, J.; Li, Y.; Li, X.; Song, W.; Sun, Z.S.; Wang, Y. Presence of the Pregnant Partner Regulates MicroRNA-30a and BDNF Levels and Protects Male Mice from Social Defeat-Induced Abnormal Behaviors. Neuropharmacology 2019, 159, 107589. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, G.; Zhuang, J.; Ni, J.; Zhang, S.; Gye, Y.; Xia, W. MicroRNA-584 Prohibits Hepatocellular Carcinoma Cell Proliferation and Invasion by Directly Targeting BDNF. Mol. Med. Rep. 2019, 20, 1994–2001. [Google Scholar] [CrossRef]
- Sun, Z.; Guo, X.; Zang, M.; Wang, P.; Xue, S.; Chen, G. Long Non-Coding RNA LINC00152 Promotes Cell Growth and Invasion of Papillary Thyroid Carcinoma by Regulating the MiR-497/BDNF Axis. J. Cell. Physiol. 2019, 234, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- Mohammadipoor-Ghasemabad, L.; Sangtarash, M.H.; Sheibani, V.; Sasan, H.A.; Esmaeili-Mahani, S. Hippocampal MicroRNA-191a-5p Regulates BDNF Expression and Shows Correlation with Cognitive Impairment Induced by Paradoxical Sleep Deprivation. Neuroscience 2019, 414, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.Y.; Huang, Y.L.; Chang, C.; Kang, H.Y. Deficiency in Androgen Receptor Aggravates the Depressive-like Behaviors in Chronic Mild Stress Model of Depression. Cells 2019, 8, 1021. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Jiang, Y.; Xu, Y.; Li, Y.; Li, B. Identification of MiRNA-7 as a Regulator of Brain-Derived Neurotrophic Factor/α-Synuclein Axis in Atrazine-Induced Parkinson’s Disease by Peripheral Blood and Brain MicroRNA Profiling. Chemosphere 2019, 233, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Zhu, P.; Liu, S.; Gao, B.; Wang, W. MiR-496 Suppress Tumorigenesis via Targeting BDNF-Mediated PI3K/Akt Signaling Pathway in Non-Small Cell Lung Cancer. Biochem. Biophys. Res. Commun. 2019, 518, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Li, Y.; Qu, C.; Xu, L.; Sun, H.; Zhang, J. The Enriched Environment Ameliorates Chronic Unpredictable Mild Stress-Induced Depressive-like Behaviors and Cognitive Impairment by Activating the SIRT1/MiR-134 Signaling Pathway in Hippocampus. J. Affect. Disord. 2019, 248, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Solomon, M.G.; Griffin, W.C.; Lopez, M.F.; Becker, H.C. Brain Regional and Temporal Changes in BDNF MRNA and MicroRNA-206 Expression in Mice Exposed to Repeated Cycles of Chronic Intermittent Ethanol and Forced Swim Stress. Neuroscience 2019, 406, 617–625. [Google Scholar] [CrossRef]
- Zhao, X.; Shu, F.; Wang, X.; Wang, F.; Wu, L.; Li, L.; Lv, H. Inhibition of MicroRNA-375 Ameliorated Ketamine-Induced Neurotoxicity in Human Embryonic Stem Cell Derived Neurons. Eur. J. Pharmacol. 2019, 844, 56–64. [Google Scholar] [CrossRef]
- Panta, A.; Pandey, S.; Duncan, I.N.; Duhamel, S.; Sohrabji, F. Mir363-3p Attenuates Post-Stroke Depressive-like Behaviors in Middle-Aged Female Rats. Brain. Behav. Immun. 2019, 78, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Li, Y.; Chen, L.; Shen, C.; Xiao, Z.; Xu, R.; Wang, J.; Luo, Y. HucMSCs-Derived MiR-206-Knockdown Exosomes Contribute to Neuroprotection in Subarachnoid Hemorrhage Induced Early Brain Injury by Targeting BDNF. Neuroscience 2019, 417, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Xiang, L.; Song, Y.; Tian, X. The Downregulation of Truncated TrkB Receptors Modulated by MicroRNA-185 Activates Full-Length TrkB Signaling and Suppresses the Epileptiform Discharges in Cultured Hippocampal Neurons. Neurochem. Res. 2020, 45, 1647–1660. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Zhu, J.; Yuan, J.; Xiang, Y.; Dai, L. Pramipexole Inhibits MPP+-Induced Neurotoxicity by MiR-494-3p/BDNF. Neurochem. Res. 2020, 45, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.J.; Qin, L.J.; Liu, Z.Y.; Liu, P.; Wei, H.P.; Wang, H.Y.; Zhao, C.C.; Ge, Z.M. MiR-15a Regulates Oxygen Glucose Deprivation/Reperfusion (OGD/R)-Induced Neuronal Injury by Targeting BDNF. Kaohsiung J. Med. Sci. 2020, 36, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cui, X.; Guan, G.; Dong, Y.; Zhang, Z. MicroRNA-192-5p Is Involved in Nerve Repair in Rats with Peripheral Nerve Injury by Regulating XIAP. Cell Cycle 2020, 19, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Liu, C.; Chi, L. Suppression of MiR-10a-5p in Bone Marrow Mesenchymal Stem Cells Enhances the Therapeutic Effect on Spinal Cord Injury via BDNF. Neurosci. Lett. 2020, 714, 134562. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Liu, M.; Zhang, Q.; Zhang, J.; Chen, J.; Chen, Q.; Suo, L. Knockdown of MiR-124 Reduces Depression-like Behavior by Targeting CREB1 and BDNF. Curr. Neurovasc. Res. 2020, 17, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Li, X.; Li, M.; Zhang, Z. Long Non-Coding RNA MALAT1 Promotes the Proliferation and Migration of Schwann Cells by Elevating BDNF through Sponging MiR-129-5p. Exp. Cell Res. 2020, 390, 111937. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Yan, R.; Jin, S.; Wan, Z.; Cheng, J.; Li, N.; Chen, L.; Le, C. Microrna-204-5p Mediates Sevoflurane-Induced Cytotoxicity in Ht22 Cells by Targeting Brain-Derived Neurotrophic Factor. Histol. Histopathol. 2020, 35, 1353–1361. [Google Scholar] [CrossRef]
- Misiorek, J.O.; Schreiber, A.M.; Urbanek-Trzeciak, M.O.; Jazurek-Ciesiołka, M.; Hauser, L.A.; Lynch, D.R.; Napierala, J.S.; Napierala, M. A Comprehensive Transcriptome Analysis Identifies FXN and BDNF as Novel Targets of MiRNAs in Friedreich’s Ataxia Patients. Mol. Neurobiol. 2020, 57, 2639–2653. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, J.; Zheng, J.; Duan, W.; Zhou, Z. MiR-210 Enhances Mesenchymal Stem Cell-Modulated Neural Precursor Cell Migration. Mol. Med. Rep. 2020, 21, 2405–2414. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, W.; Zhang, Y.; Hu, Z.; Guo, H.; Lv, J.; Du, H. Dexmedetomidine Had Neuroprotective Effects on Hippocampal Neuronal Cells via Targeting LncRNA SHNG16 Mediated MicroRNA-10b-5p/BDNF Axis. Mol. Cell. Biochem. 2020, 469, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Feng, A.; Yue, P.; Liu, Y.; Zhou, Q.; Zang, Q.; Teng, J. Lncrna Bc083743 Promotes the Proliferation of Schwann Cells and Axon Regeneration through Mir-103-3p/Bdnf after Sciatic Nerve Crush. J. Neuropathol. Exp. Neurol. 2020, 79, 1100–1114. [Google Scholar] [CrossRef] [PubMed]
- Giordano, M.; Trotta, M.C.; Ciarambino, T.; D’Amico, M.; Galdiero, M.; Schettini, F.; Paternosto, D.; Salzillo, M.; Alfano, R.; Andreone, V.; et al. Circulating MiRNA-195-5p and -451a in Diabetic Patients with Transient and Acute Ischemic Stroke in the Emergency Department. Int. J. Mol. Sci. 2020, 21, 7615. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Jia, Z.; Ma, K.; Zhang, J.; Dai, C.; Yao, Z.; Deng, W.; Su, J.; Wang, R.; Chen, X. Protective Effect of Mesenchymal Stromal Cell-Derived Exosomes on Traumatic Brain Injury via MiR-216a-5p. Med. Sci. Monit. 2020, 26, e920855-1. [Google Scholar] [CrossRef] [PubMed]
- Pejhan, S.; Del Bigio, M.R.; Rastegar, M. The MeCP2E1/E2-BDNF-MiR132 Homeostasis Regulatory Network Is Region-Dependent in the Human Brain and Is Impaired in Rett Syndrome Patients. Front. Cell Dev. Biol. 2020, 8, 763. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Zhao, H.; Li, L.; Zhang, Z.; Jiang, N.; Yang, X.; Zhang, T.; Lian, B.; Liu, Y.; Zhang, C.; et al. Sirt1 Improves Heart Failure Through Modulating the NF-ΚB P65/MicroRNA-155/BNDF Signaling Cascade. Aging 2021, 13, 14482–14498. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Wan, C.; Zhang, J.; Zhang, S.; Zhao, Z.; Zhu, L.; Wang, X.; Ren, X.; Wang, J.; Lei, P. Aerobic Exercise Improves VCI through CircRIMS2/MiR-186/BDNF-Mediated Neuronal Apoptosis. Mol. Med. 2021, 27, 4. [Google Scholar] [CrossRef]
- Zhang, X.; Xue, Y.; Li, J.; Xu, H.; Yan, W.; Zhao, Z.; Yu, W.; Zhai, X.; Sun, Y.; Wu, Y.; et al. The Involvement of ADAR1 in Antidepressant Action by Regulating BDNF via MiR-432. Behav. Brain Res. 2021, 402, 113087. [Google Scholar] [CrossRef]
- Huan, Z.; Mei, Z.; Na, H.; Xinxin, M.; Yaping, W.; Ling, L.; Lei, W.; Kejin, Z.; Yanan, L. LncRNA MIR155HG Alleviates Depression-Like Behaviors in Mice by Regulating the MiR-155/BDNF Axis. Neurochem. Res. 2021, 46, 935–944. [Google Scholar] [CrossRef]
- Zhao, P.; Li, X.; Li, Y.; Zhu, J.; Sun, Y.; Hong, J. Mechanism of MiR-365 in Regulating BDNF-TrkB Signal Axis of HFD/STZ Induced Diabetic Nephropathy Fibrosis and Renal Function. Int. Urol. Nephrol. 2021, 53, 2177–2187. [Google Scholar] [CrossRef]
- Ke, X.; Huang, Y.; Fu, Q.; Lane, R.H.; Majnik, A. Adverse Maternal Environment Alters MicroRNA-10b-5p Expression and Its Epigenetic Profile Concurrently with Impaired Hippocampal Neurogenesis in Male Mouse Hippocampus. Dev. Neurosci. 2021, 43, 95–105. [Google Scholar] [CrossRef]
- Xu, Y.; Fu, Z.; Gao, X.; Wang, R.; Li, Q. Long Non-Coding RNA XIST Promotes Retinoblastoma Cell Proliferation, Migration, and Invasion by Modulating MicroRNA-191-5p/Brain Derived Neurotrophic Factor. Bioengineered 2021, 12, 1587–1598. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Feng, W.; Li, Y.; Huang, J.; Chen, S.; Cui, Y.; Tian, B.; Tan, S.; Wang, Z.; Yao, S.; et al. The MicroRNA-195-BDNF Pathway and Cognitive Deficits in Schizophrenia Patients with Minimal Antipsychotic Medication Exposure. Transl. Psychiatry 2021, 11, 117. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Du, M.; Xu, W.; Wang, Z. MiR-191 Downregulation Protects against Isoflurane-Induced Neurotoxicity through Targeting BDNF. Toxicol. Mech. Methods 2021, 31, 367–373. [Google Scholar] [CrossRef]
- Tang, Y.; Kline, K.T.; Zhong, X.S.; Xiao, Y.; Lian, H.; Peng, J.; Liu, X.; Powell, D.W.; Tang, G.; Li, Q. Chronic Colitis Upregulates MicroRNAs Suppressing Brain-Derived Neurotrophic Factor in the Adult Heart. PLoS ONE 2021, 16, e0257280. [Google Scholar] [CrossRef]
- Li, X.; Yuan, L.; Wang, J.; Zhang, Z.; Fu, S.; Wang, S.; Li, X. MiR-1b up-Regulation Inhibits Rat Neuron Proliferation and Regeneration yet Promotes Apoptosis via Targeting KLF7. Folia Neuropathol. 2021, 59, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Wang, Y.; Xiao, Y.; Peng, M.; Mai, W.; Hu, B.; Jia, Y.; Chen, H.; Yang, Y.; Xiang, Q.; et al. Extracellular Vesicles Derived from Astrocyte-Treated with HaFGF14-154 Attenuate Alzheimer Phenotype in AD Mice. Theranostics 2022, 12, 3862–3881. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, S.; Zheng, Z.; Pan, H.; Jiang, Y.; Bai, X.; Liu, T.; Deng, S.; Li, Y. MiR-191-5p Disturbed the Angiogenesis in a Mice Model of Cerebral Infarction by Targeting Inhibition of BDNF. Neurol. India 2021, 69, 1601–1607. [Google Scholar] [CrossRef]
- Guan, W.; Xu, D.W.; Ji, C.H.; Wang, C.N.; Liu, Y.; Tang, W.Q.; Gu, J.H.; Chen, Y.M.; Huang, J.; Liu, J.F.; et al. Hippocampal MiR-206-3p Participates in the Pathogenesis of Depression via Regulating the Expression of BDNF. Pharmacol. Res. 2021, 174, 105932. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Su, J.; Kong, W.; Fang, Z.; Li, Y.; Huang, Z.; Wen, J.; Wang, Y. Roles of MiR-10a-5p and MiR-103a-3p, Regulators of BDNF Expression in Follicular Fluid, in the Outcomes of IVF-ET. Front. Endocrinol. (Lausanne) 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Ehinger, Y.; Phamluong, K.; Darevesky, D.; Welman, M.; Moffat, J.J.; Sakhai, S.A.; Whiteley, E.L.; Berger, A.L.; Laguesse, S.; Farokhnia, M.; et al. Differential Correlation of Serum BDNF and MicroRNA Content in Rats with Rapid or Late Onset of Heavy Alcohol Use. Addict. Biol. 2021, 26, e12890. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Zhang, X.; Li, B.; Gan, S. MiR-182-5p Combined with Brain-Derived Neurotrophic Factor Assists the Diagnosis of Chronic Heart Failure and Predicts a Poor Prognosis. J. Cardiothorac. Surg. 2022, 17, 88. [Google Scholar] [CrossRef] [PubMed]
- Su, B.; Cheng, S.; Wang, L.; Wang, B. MicroRNA-139-5p Acts as a Suppressor Gene for Depression by Targeting Nuclear Receptor Subfamily 3, Group C, Member 1. Bioengineered 2022, 13, 11856–11866. [Google Scholar] [CrossRef] [PubMed]
- Yongguang, L.; Xiaowei, W.; Huichao, Y.; Yanxiang, Z. Gastrodin Promotes the Regeneration of Peripheral Nerves by Regulating MiR-497/BDNF Axis. BMC Complement. Med. Ther. 2022, 22, 45. [Google Scholar] [CrossRef]
- Tu, W.; Yue, J.; Li, X.; Wu, Q.; Yang, G.; Li, S.; Sun, Q.; Jiang, S. Electroacupuncture Alleviates Neuropathic Pain through Regulating MiR-206-3p Targeting BDNF after CCI. Neural Plast. 2022, 2022, 1489841. [Google Scholar] [CrossRef]
- Gao, J.; Liang, Z.; Zhao, F.; Liu, X.; Ma, N. Triptolide Inhibits Oxidative Stress and Inflammation via the MicroRNA-155-5p/Brain-Derived Neurotrophic Factor to Reduce Podocyte Injury in Mice with Diabetic Nephropathy. Bioengineered 2022, 13, 12275–12288. [Google Scholar] [CrossRef]
- Zhai, Y.; Liu, B.; Mo, X.; Zou, M.; Mei, X.; Chen, W.; Huang, G.; Wu, L. Gingerol Ameliorates Neuronal Damage Induced by hypoxia-reoxygenation via the miR-210/brain-derived Neurotrophic Factor Axis. Kaohsiung J. Med. Sci. 2022, 38, 367–377. [Google Scholar] [CrossRef]
- Yu, H.C.; Huang, H.; Tseng, H.Y.H.; Lu, M.C. Brain-Derived Neurotrophic Factor Suppressed Proinflammatory Cytokines Secretion and Enhanced MicroRNA(MiR)-3168 Expression in Macrophages. Int. J. Mol. Sci. 2022, 23, 570. [Google Scholar] [CrossRef]
- Kang, E.; Jia, Y.; Wang, J.; Wang, G.; Chen, H.; Chen, X.; Ye, Y.; Zhang, X.; Su, X.; Wang, J.; et al. Downregulation of MicroRNA-124-3p Promotes Subventricular Zone Neural Stem Cell Activation by Enhancing the Function of BDNF Downstream Pathways after Traumatic Brain Injury in Adult Rats. CNS Neurosci. Ther. 2022, 28, 1081–1092. [Google Scholar] [CrossRef]
- Li, C.; Lie, H.; Sun, W. Inhibitory Effect of MiR-182-5p on Retinal Neovascularization by Targeting Angiogenin and BDNF. Mol. Med. Rep. 2022, 25, 61. [Google Scholar] [CrossRef]
- Deng, L.; Lai, S.; Fan, L.; Li, X.; Huang, H.; Mu, Y. MiR-210-3p Suppresses Osteogenic Differentiation of MC3T3-E1 by Targeting Brain Derived Neurotrophic Factor (BDNF). J. Orthop. Surg. Res. 2022, 17, 418. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Jiang, C.; Yang, L.; Wang, X. Relationship and Effect of MiR-1-3p Expression and BDNF Level in Patients with Primary Hypertension Complicated with Depression. Cell. Mol. Biol. 2022, 68, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, L.; Chang, L.; Shan, J.; Qu, Y.; Wang, X.; Wan, X.; Fujita, Y.; Hashimoto, K. A Key Role of MiR-132-5p in the Prefrontal Cortex for Persistent Prophylactic Actions of (R)-Ketamine in Mice. Transl. Psychiatry 2022, 12, 471. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Chen, X.; Liu, J.; Qin, X. Long-Term ITBS Promotes Neural Structural and Functional Recovery by Enhancing Neurogenesis and Migration via MiR-551b-5p/BDNF/TrkB Pathway in a Rat Model of Cerebral Ischemia-Reperfusion Injury. Brain Res. Bull. 2022, 184, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xia, D.; Xu, A. Therapeutic Effect of Fastigial Nucleus Stimulation Is Mediated by the MicroRNA-182 & MicroRNA-382/BDNF Signaling Pathways in the Treatment of Post-Stroke Depression. Biochem. Biophys. Res. Commun. 2022, 627, 137–145. [Google Scholar] [CrossRef]
- Li, Y.; Wei, C.; Wang, W.; Li, Q.; Wang, Z.C. Tropomyosin Receptor Kinase B (TrkB) Signalling: Targeted Therapy in Neurogenic Tumours. J. Pathol. Clin. Res. 2023, 9, 89–99. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, L. Cancer Cachexia: Definition, Staging, and Emerging Treatments. Cancer Manag. Res. 2020, 12, 5597–5605. [Google Scholar] [CrossRef]
- Li, R.; Shang, J.; Zhou, W.; Jiang, L.; Xie, D.; Tu, G. Overexpression of HIPK2 Attenuates Spinal Cord Injury in Rats by Modulating Apoptosis, Oxidative Stress, and Inflammation. Biomed. Pharmacother. 2018, 103, 127–134. [Google Scholar] [CrossRef]
- Wang, M.; Tang, X.; Li, L.; Liu, D.; Liu, H.; Zheng, H.; Deng, W.; Zhao, X.; Yang, G. C1q/TNF-Related Protein-6 Is Associated with Insulin Resistance and the Development of Diabetes in Chinese Population. Acta Diabetol. 2018, 55, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- Boon, R.A.; Vickers, K.C. Intercellular Transport of MicroRNAs. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 186–192. [Google Scholar] [CrossRef]
- Asadi, M.R.; Gharesouran, J.; Sabaie, H.; Moslehian, M.S.; Dehghani, H.; Arsang-Jang, S.; Taheri, M.; Mortazavi, D.; Hussen, B.M.; Sayad, A.; et al. Assessing the Expression of Two Post-Transcriptional BDNF Regulators, TTP and MiR-16 in the Peripheral Blood of Patients with Schizophrenia. BMC Psychiatry 2022, 22, 771. [Google Scholar] [CrossRef] [PubMed]
- Lambert, C.P.; Sullivan, D.H.; Evans, W.J. Effects of Testosterone Replacement and/or Resistance Training on Interleukin-6, Tumor Necrosis Factor Alpha, and Leptin in Elderly Men Ingesting Megestrol Acetate: A Randomized Controlled Trial. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2003, 58, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, A.; Gu, R.; Tong, Y.; Cheng, J. Role and Regulatory Mechanism of MicroRNA Mediated Neuroinflammation in Neuronal System Diseases. Front. Immunol. 2023, 14, 1238930. [Google Scholar] [CrossRef] [PubMed]
- Duclot, F.; Kabbaj, M. The Role of Early Growth Response 1 (EGR1) in Brain Plasticity and Neuropsychiatric Disorders. Front. Behav. Neurosci. 2017, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Roush, S.; Slack, F.J. The Let-7 Family of MicroRNAs. Trends Cell Biol. 2008, 18, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Shen, N.; Wicha, M.S.; Luo, M. The Roles of the Let-7 Family of Micrornas in the Regulation of Cancer Stemness. Cells 2021, 10, 2415. [Google Scholar] [CrossRef] [PubMed]
- Lekk, I.; Cabrera-Cabrera, F.; Turconi, G.; Tuvikene, J.; Esvald, E.E.; Rähni, A.; Casserly, L.; Garton, D.R.; Andressoo, J.O.; Timmusk, T.; et al. Untranslated Regions of Brain-Derived Neurotrophic Factor MRNA Control Its Translatability and Subcellular Localization. J. Biol. Chem. 2023, 299, 102897. [Google Scholar] [CrossRef]
- Barde, Y.A.; Davies, A.M.; Johnson, J.E.; Lindsay, R.M.; Thoenen, H. Brain Derived Neurotrophic Factor. Prog. Brain Res. 1987, 71, 185–189. [Google Scholar] [CrossRef]
- Robinson, M. Timing and Regulation of TrkB and BDNF MRNA Expression in Placode-Derived Sensory Neurons and Their Targets. Eur. J. Neurosci. 1996, 8, 2399–2406. [Google Scholar] [CrossRef] [PubMed]
- Citri, A.; Malenka, R.C. Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacology 2008, 33, 18–41. [Google Scholar] [CrossRef] [PubMed]
- Burckhardt, M.A.; Abraham, M.B.; Mountain, J.; Coenen, D.; Paniora, J.; Clapin, H.; Jones, T.W.; Davis, E.A. Improvement in Psychosocial Outcomes in Children with Type 1 Diabetes and Their Parents Following Subsidy for Continuous Glucose Monitoring. Diabetes Technol. Ther. 2019, 21, 538–545. [Google Scholar] [CrossRef]
- Liang, S.P.; Chen, Q.; Cheng, Y.B.; Xue, Y.Y.; Wang, H.J. Comparative Effects of Monosialoganglioside versus Citicoline on Apoptotic Factor, Neurological Function and Oxidative Stress in Newborns with Hypoxic-Ischemic Encephalopathy. J. Coll. Physicians Surg. Pak. 2019, 29, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Beer, M.; Spindler, M.; Sandstede, J.J.W.; Remmert, H.; Beer, S.; Kötler, H.; Hahn, D. Detection of Myocardial Infarctions by Acquisition-Weighted 31P-MR Spectroscopy in Humans. J. Magn. Reson. Imaging 2004, 20, 798–802. [Google Scholar] [CrossRef] [PubMed]
- Scheen, A.J.; Schmitt, H.; Jiang, H.H.; Ivanyi, T. Individualizing Treatment of Type 2 Diabetes by Targeting Postprandial or Fasting Hyperglycaemia: Response to a Basal vs a Premixed Insulin Regimen by HbA1c Quartiles and Ethnicity. Diabetes Metab. 2015, 41, 216–222. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, F.; Guo, Y.; Zhang, Y.; Li, L.; Dang, R.; Jiang, P. Curcumin Relieves Chronic Unpredictable Mild Stress-Induced Depression-Like Behavior through the PGC-1α/FNDC5/BDNF Pathway. Behav. Neurol. 2021, 2021, 2630445. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Li, X.; Chen, L.; Luo, X.; Shen, S.; Wang, J. Dexmedetomidine Pretreatment Alleviates Ropivacaine-Induced Neurotoxicity via the MiR-10b-5p/BDNF Axis. BMC Anesthesiol. 2022, 22, 304. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, X.; Wang, M.; Liu, Y.; Xue, Z.; Chen, J. Influence of Progestational Stress on BDNF and NMDARs in the Hippocampus of Male Offspring and Amelioration by Chaihu Shugan San. Biomed. Pharmacother. 2021, 135, 111204. [Google Scholar] [CrossRef]
- Wu, R.Q.; Lin, C.G.; Zhang, W.; Lin, X.D.; Chen, X.S.; Chen, C.; Zhang, L.J.; Huang, Z.Y.; Chen, G.D.; Xu, D.L.; et al. Effects of Risperidone and Paliperidone on Brain-Derived Neurotrophic Factor and N400 in First-Episode Schizophrenia. Chin. Med. J. 2018, 131, 2297–2301. [Google Scholar] [CrossRef]
- Zhao, P.; Tassew, G.B.; Lee, J.Y.; Oskouian, B.; Muñoz, D.P.; Hodgin, J.B.; Watson, G.L.; Tang, F.; Wang, J.Y.; Luo, J.; et al. Efficacy of AAV9-Mediated SGPL1 Gene Transfer in a Mouse Model of S1P Lyase Insufficiency Syndrome. JCI Insight 2021, 6, e145936. [Google Scholar] [CrossRef] [PubMed]
- Odent, S.; Attié-Bitach, T.; Blayau, M.; Mathieu, M.; Augé, J.; Delezoïde, A.L.; Le Gall, J.Y.; Le Marec, B.; Munnich, A.; David, V.; et al. Expression of the Sonic Hedgehog (SHH) Gene during Early Human Development and Phenotypic Expression of New Mutations Causing Holoprosencephaly. Hum. Mol. Genet. 1999, 8, 1683–1689. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.I.; Taylor, J.A.; Tan, C.O.; Park, H.; Kim, J.Y.; Park, S.Y.; Chung, K.M.; Lee, Y.H.; Lee, B.S.; Jeon, J.Y. A Pilot Randomized Controlled Trial of 6-Week Combined Exercise Program on Fasting Insulin and Fitness Levels in Individuals with Spinal Cord Injury. Eur. Spine J. 2019, 28, 1082–1091. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Ji, Y.S.; Cai, C.; Chen, Z.Y. LIM Kinase 1 (LIMK1) Interacts with Tropomyosin-Related Kinase B (TrkB) and Mediates Brain-Derived Neurotrophic Factor (BDNF)-Induced Axonal Elongation. J. Biol. Chem. 2012, 287, 41720–41731. [Google Scholar] [CrossRef] [PubMed]
- Wayman, G.A.; Impey, S.; Marks, D.; Saneyoshi, T.; Grant, W.F.; Derkach, V.; Soderling, T.R. Activity-Dependent Dendritic Arborization Mediated by CaM-Kinase I Activation and Enhanced CREB-Dependent Transcription of Wnt-2. Neuron 2006, 50, 897–909. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, J.; Fang, Q.; Shao, H.; Yang, D.; Sun, J.; Gao, L. MiRNA-199a-5p Targets WNT2 to Regulate Depression through the CREB/BDNF Signaling in Hippocampal Neuron. Brain Behav. 2021, 11, e02107. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, Q.; Ju, Y.; Liu, L. Downregulation of MiR-383 Reduces Depression-like Behavior through Targeting Wnt Family Member 2 (Wnt2) in Rats. Sci. Rep. 2021, 11, 9223. [Google Scholar] [CrossRef] [PubMed]
- Numakawa, T.; Suzuki, S.; Kumamaru, E.; Adachi, N.; Richards, M.; Kunugi, H. BDNF Function and Intracellular Signaling in Neurons. Histol. Histopathol. 2010, 25, 237–258. [Google Scholar] [CrossRef]
- Buist, M.; Fuss, D.; Rastegar, M. Transcriptional Regulation of Mecp2e1-E2 Isoforms and Bdnf by Metformin and Simvastatin through Analyzing Nascent Rna Synthesis in a Human Brain Cell Line. Biomolecules 2021, 11, 1253. [Google Scholar] [CrossRef]
- Vuu, Y.M.; Roberts, C.T.; Rastegar, M. MeCP2 Is an Epigenetic Factor That Links DNA Methylation with Brain Metabolism. Int. J. Mol. Sci. 2023, 24, 4218. [Google Scholar] [CrossRef]
- De Assis, G.G.; Gasanov, E.V. BDNF and Cortisol Integrative System—Plasticity vs. Degeneration: Implications of the Val66Met Polymorphism. Front. Neuroendocrinol. 2019, 55, 100784. [Google Scholar] [CrossRef] [PubMed]
1 | miR-134 | BDNF inhibition of miR-134 favors synaptic plasticity | Schratt, G. M., et al. (2006) [17] https://doi.org/10.1038/nature04367 |
2 | miR132 | miR132 suppression on MeCP2 reduces BDNF levels in neurons | Klein, M. E., et al. (2007) [18] https://doi.org/10.1038/nn2010 |
3 | miR-30a-5p miR-195 | Inhibitors of BDNF in pre-frontal cortex | Mellios, N., et al. (2008) [19] https://doi.org/10.1093/hmg/ddn201 |
4 | Mellios, N., et al. (2009) [20] https://doi.org/10.1016/j.biopsych.2008.11.019 | ||
5 | miR-124 | miR-124 suppresses BDNF levels in the brain upon cocaine administration | Chandrasekar, V., and Dreyer, J. L. (2009) [21] https://doi.org/10.1016/j.mcn.2009.08.009 |
6 | MeCP2 | miR-212 selectively suppresses the long MeCP2 mRNA form | Im, H.-I., et al. (2010) [22] https://doi.org/10.1038/nn.2615 |
7 | miR-134 | miR-134 suppresses CREB and BDNF impairing synaptic plasticity | Gao J., et al. (2010) [23] https://doi.org/10.1038/NATURE09271 |
8 | miR-132 | BDNF upregulates miR-132 expression in neurons | Kawashima, H., et al. (2010) [24] https://doi.org/10.1016/j.neuroscience.2009.11.057 |
9 | miR-134 | miR-134 suppression on LimK1 impaired BDNF-induced nerve growth | Han, L., et al. (2011) [25] https://doi.org/10.1186/1756-6606-4-40 |
10 | miR-206 | Shh signaling blocks miR-206 suppression on BDNF | Radzikinas, K., et al. (2011) [26] https://doi.org/10.1523/JNEUROSCI.2745-11.2011 |
11 | miR-30a-5p | miR30a-5p suppresses BDNF translation in human glioblastoma-astrocytoma cell | Angelucci, F., et al. (2011) [27] https://doi.org/10.1159/000322528 |
12 | miR-26 | miR-26 suppresses BDNF translation in HeLa cells | Caputo, V., et al. (2011) [28] https://doi.org/10.1371/journal.pone.0028656 |
13 | miR-16 | miR-16 suppresses BDNF translation in the hippocampus | Bai, M., et al. (2012) [29] https://doi.org/10.1371/journal.pone.0046921 |
14 | miR-206 | miR-206 suppresses BDNF in the hippocampi of AD mice | Lee, S. T., et al. (2012) [30] https://doi.org/10.1002/ana.23588 |
15 | miR-204 | miR-204 suppression on BDNF control cancer cell migration and invasion | Imam, J. S., et al. (2012) [31] https://doi.org/10.1371/journal.pone.0052397 |
16 | miR-132 | BDNF upregulated miR-132/212 expression in neuronally differentiated SHSY5Y cells | Chen-Plotkin, A. S., et al. (2012) [32] https://doi.org/10.1523/JNEUROSCI.0521-12.2012 |
17 | miR-132 | BDNF upregulated miR-132 expression in hippocampal neurons | Wibrand, K., et al. (2012) [33] https://doi.org/10.1371/journal.pone.0041688 |
18 | miR-206 | miR-206 suppresses BDNF in skeletal muscle | Miura, P., et al. (2012) [34] https://doi.org/10.1111/j.1471-4159.2011.07583.x |
19 | miR-124a | miR-124a suppresses BDNF in rats’ brain | Bahi, A., & Dreyer, J.-L. (2013) [35] https://doi.org/10.1111/ejn.12228 |
20 | miR-16 | miR-16 suppression on BDNF regulates SHSY5Y cell growth | SUN, Y.-X., et al. (2013) [36] https://doi.org/10.3892/or.2013.2731 |
21 | miR-132 miR-182 | Serum miR-132 and miR-182 levels negatively correlate with BDNF’s in patients with depression | Li, Y.-J., et al. (2013) [37] https://doi.org/10.1371/journal.pone.0063648 |
22 | miR-124a | The ‘pain-relevant’ miRNA-124a targets MeCP2 in spinal cord | Kynast, K. L., et al. (2013) [38] https://doi.org/10.1016/j.pain.2012.11.010 |
23 | miR-30a-5p | miR-30a-5p suppresses BDNF in rat cortical neurons | Croce, N., et al. (2013) [39] https://doi.org/10.1007/s11010-013-1567-0 |
24 | miR-212 | Electroconvulsive therapy increases BDNF and miR-212 in rats’ brain | Ryan, K. M., et al. (2013) [40] https://doi.org/10.1016/j.neulet.2013.05.035 |
25 | miR-191 | miR-191 suppresses BDNF in human breast cancer cells | Nagpal, N., et al. (2013) [41] https://doi.org/10.1093/carcin/bgt107 |
26 | miR-124 | miR-124 increases with exercise intensity | Mojtahedi, S., et al. (2013) [42] https://doi.org/10.1002/cbin.10022 |
27 | miR-206 | miR-206 suppresses BDNF in rat medial prefrontal cortex | Tapocik, J. D., et al. (2014) [43] https://doi.org/10.1523/JNEUROSCI.0445-14.2014 |
28 | miR-183 | miR-183 negatively correlates with BDNF in the dorsal root ganglion | Lin, C. R., et al. (2014) [44] https://doi.org/10.1111/ejn.12522 |
29 | miR-206 | miR-206 suppresses BDNF in hippocampal tissue | Tian, N., et al. (2014) [45] https://doi.org/10.1007/s12264-013-1419-7 |
30 | miR-124a | miR-124a suppressed BDNF in the hippocampus of rodent exposed to social defeat stress | Bahi, A., et al. (2014) [46] https://doi.org/10.1016/j.psyneuen.2014.04.009 |
31 | miR-132 | BDNF promotes axon branching of retinal ganglion cells via upregulation of miR-132 targeting p250GAP | Marler, K. J., et al. (2014) [47] https://doi.org/10.1523/JNEUROSCI.1910-13.2014 |
32 | miR-206 | miR-206 targeting of BDNF in hippocampal cells was attenuated by ketamine | Yang, X., et al. (2014) [48] https://doi.org/10.1007/s12017-014-8312-z |
33 | miR-132 | Activation of ERK/CREB is associated with miR-132 expression and hippocampal neuronal proliferation | Yi, L. T., et al. (2014) [49] https://doi.org/10.1503/jpn.130169 |
34 | miR-124 miR-132 Let7d | let7d, miR-124, and miR-132 were negatively associated with BDNF in the brain of rats exposed to cocaine | Giannotti, G., et al. (2014) [50] https://doi.org/10.1017/S1461145713001454 |
35 | miR-1 miR-10b miR-155 miR-191 | miR-1, -10b, -155, and miR-191 directly target BDNF in various human cell cultures | Varendi, K., et al. (2014) [51] https://doi.org/10.1007/s00018-014-1628-x |
36 | miR-34a | Hypoxia caused a decrease in serum BDNF and miR-34a expression in the lower brainstem | Zhang, J., et al. (2014) [52] https://doi.org/10.3760/cma.j.issn.0366-6999.20131683 |
37 | miR-let-7a | miR-let-7a suppresses the expression of inducible nitric oxide synthase (iNOS), IL-6, favoring BDNF expression | Cho, K. J., et al. (2015) [53] https://doi.org/10.1016/j.mcn.2015.07.004 |
38 | miR-183/96/182 | miR 183/96/182 cluster targets BDNF transcripts | Li, H., et al. (2015) [54] https://doi.org/10.3892/mmr.2015.3736 |
39 | miR-1 | miR-1 suppresses BDNF in heart and hippocampal tissues | Ma, J. C., et al. (2015) [55] https://doi.org/10.1016/j.neuroscience.2015.04.061 |
40 | miR-29c | miR-29c is found to be positively correlated with BDNF in the cerebral fluid of AD patients | Yang, G., et al. (2015) [56] https://doi.org/10.3892/mmr.2015.3531 |
41 | miR-1 | Chronic constriction injury leads to a decrease in miR-1 with a consequent increase in BDNF | Neumann, E., et al. (2015) [57] https://doi.org/10.1186/s12990-015-0045-y |
42 | miR-22 | miR-22 negatively correlates with BDNF in human neuroblastoma cells treated with Perfluorooctane sulfonate | Li, W., et al. (2015) [58] https://doi.org/10.1155/2015/302653 |
43 | miR-132 | miR-132 aggravates epileptiform discharges in cultured hippocampal neurons via BDNF suppression | Xiang, L., et al. (2015) [59] https://doi.org/10.1016/j.brainres.2015.06.046 |
44 | miR-204 | miR-204 decreases BDNF expression and invasive and metastatic behavior in epithelial ovarian cancer cells | Yan, H., et al. (2015) [60] https://doi.org/10.1097/IGC.0000000000000456 |
45 | miR-206-3p | miR-206-3p suppresses BDNF in mouse skin development | Mu, Y., et al. (2015) [61] https://doi.org/10.3892/mmr.2015.4456 |
46 | miR-134 miR-132 | BDNF upregulates Limk1 translation and phosphorylation via modulation of miR-134 and miR-132 | Li, M., et al. (2015) [62] https://doi.org/10.1002/path.4484 |
47 | miR-937 | Transplantation of antisense-miR-937-expressing mesenchymal cells increased BDNF levels in AD mice | Liu, Z., et al. (2015) [63] https://doi.org/10.1159/000430356 |
48 | miR-132 | The levels of MeCP2 and BDNF negatively correlate with those of miR-132 in patients with major depressive disorder | Su, M., et al. (2015) [64] https://doi.org/10.3892/mmr.2015.4104 |
49 | miR-132/212 | miR-132/212 knockout mice present a marked decrease of MeCP2 and BDNF levels in the hippocampus, and an increase in phosphorylated CREB | Hernandez-Rapp, J., et al. (2015). [65] https://doi.org/10.1016/j.bbr.2015.03.032 |
50 | miR-134 | AMPK has a negative effect on total CREB expression by elevating SIRT1/miR-134 | Huang, W., et al. (2015) [66] https://doi.org/10.1007/s12031-015-0500-2 |
51 | miR-124 | miR-124 suppression on guanine nucleotide binding protein alpha inhibitor 1 (GNAI1) increases | Oikawa, H., et al. (2015) [67] http://doi.org/10.1016/j.neuint.2015.10.010 |
52 | miR-10B | BDNF was identified as a direct target gene of miR-10B in rats | Jiang, Y., and Zhu, J. (2015) [68] http://www.ncbi.nlm.nih.gov/pubmed/25755749 |
53 | miR-134 | miR-134 inhibition elevated the expression of CREB and BDNF in retinal ganglion cell | Shao, Y., et al. (2015) [69] https://doi.org/10.1007/s12031-015-0522-9 |
54 | miR-15a | miR-15a suppresses BDNF and neuronal maturation | Gao, Y., et al. (2015) [70] https://doi.org/10.1002/stem.1950 |
55 | miR-30a-5p | miR-30a-5p suppresses BDNF expression in the medial prefrontal cortex | Darcq, E., et al. (2015) [71] https://doi.org/10.1038/mp.2014.120 |
56 | miR-15a-5p | miR-15a-5p suppresses BDNF expression in human hepatocellular carcinoma | Long, J., et al. (2016) [72] https://doi.org/10.1007/s13277-015-4427-6 |
57 | miR-219 | miR-219 suppresses CaMKIIγ and, consequently, enhances BDNF production in mouse dorsal root ganglia | Hu, X. M., et al. (2016) [73] https://doi.org/10.1177/1744806916666283 |
58 | miR-182 | miR-182 upregulation correlated with a decrease in BDNF expression in the hippocampus of rats with chronic unpredictable mild stress | Li, Y., et al. (2016) [74] https://doi.org/10.1016/j.pnpbp.2015.09.004 |
59 | miR-10b | miR-10b suppresses goat granulosa cell proliferation by targeting BDNF | Peng, J. Y., et al. (2016) [75] https://doi.org/10.1016/j.domaniend.2015.09.005 |
60 | miR-1 | miR-1 targeting BDNF regulates Schwann cell proliferation and migration after peripheral nerve injury | Yi, S., et al. (2016) [76] https://doi.org/10.1038/srep29121 |
61 | miR-124a | Neonatal isolation-inducible cognitive impairments lead to induction of miR124a and suppression on BDNF in rat | Bahi, A. (2016) [77] https://doi.org/10.1016/j.bbr.2016.05.033 |
62 | miR-107 | BDNF is a direct target of miR-107 in non-small-cell lung cancer cells | Xia, H., Li, Y., and Lv, X. (2016) [78] https://doi.org/10.3892/ijo.2016.3628 |
63 | miR-1 | Deletion of Bdnf in dorsal root ganglion neurons leads to a temporary dysregulation of miR-1 | Neumann, E., et al. (2016) [79] https://doi.org/10.1016/j.mcn.2016.06.003 |
64 | miR-132 miR-134 | BDNF acts in concert with Limk-1, miR-132, and miR-134 for the regulation of structural and morphological plasticity | Kumari, A., et al. (2016) [80] https://doi.org/10.1016/j.physbeh.2016.02.032 |
65 | miR-212/132 | Intrathecal Ad-CRTC1 downregulated the expression of miRNA-212/132, p-CREB, and BDNF in spinal cord in tumor-bearing mice | Liang, Y., et al. (2016) [81] https://doi.org/10.1177/1744806916641679 |
66 | miR-9 | miR-9 suppression on the transcriptional repressor RE1-silencing transcription factor favors BDNF expression in mouse retinal ganglion cells. | Jiang, B., et al. (2016) [82] https://doi.org/10.3892/mmr.2016.5810 |
67 | miR-195 | BDNF-mediated downregulation of miR-195 inhibits ischemic cardiac apoptosis in rats | Hang, P., et al. (2016) [83] https://doi.org/10.7150/ijbs.15071 |
68 | miR-613 | miR-613 is found to be negatively correlated with BDNF in serum, cerebrospinal fluid, and hippocampus of patients with AD. | Li, W., et al. (2016) [84] https://doi.org/10.5582/bst.2016.01127 |
69 | miR-212 miR-132 | miR- 212/132 regulates pattern changes and Bdnf through inhibition of MeCP2 | Jimenez-Gonzalez, A., et al. (2016) [85] https://doi.org/10.1016/j.bbagen.2016.03.001 |
70 | miR-10b | miR-10b suppresses the migration and invasion of chondrosarcoma cells by targeting BDNF | Aili, A., Chen, Y., and Zhang, H. (2016) [86] https://doi.org/10.3892/mmr.2015.4506 |
71 | miR-210 | miR-210 upregulation increased mBDNF/proBDNF ratio in normal and ischemic mouse brain | Zeng, L. L., et al. (2016) [87] https://doi.org/10.1111/cns.12589 |
72 | miR-204 | miR-204 suppresses TrkB in cultured hippocampal neurons | Xiang, L., et al. (2016) [88] https://doi.org/10.1016/j.brainres.2016.02.045 |
73 | miR-34a-5p | Total abdominal irradiation elevates miR-34a-5p in the intestine, resulting in reduction of hippocampal BDNF | Cui, M., et al. (2017) [89] https://doi.org/10.1016/j.bbadis.2017.06.021 |
74 | miR-137 | miR-137 targets proteins in the PI3K-Akt-mTOR pathway | Thomas, K. T., et al. (2017) [90] https://doi.org/10.1016/j.celrep.2017.06.038 |
75 | miR-132/212 | Suprachiasmatic nucleus neurons from miR-132/212-deficient mice have reduced dendritic spine density, along with altered MeCP2 and BDNF | Mendoza-Viveros, L., et al. (2017) [91] https://doi.org/10.1016/j.celrep.2017.03.057 |
76 | miR-206 | Serum miR-206 is a biomarker of Alzheimer’s disease | Xie, B., et al. (2017) [92] https://doi.org/10.3233/JAD-160468 |
77 | miR-497 | miR-497 inhibits thyroid cancer tumor growth and invasion by suppressing BDNF | Wang, P., et al. (2017) [93] https://doi.org/10.18632/oncotarget.13747 |
78 | miR-107 | miR-107 has a suppressive effect in breast cancer by negatively regulating BDNF | Gao, B., et al. (2017) [94] https://doi.org/10.1002/jgm.2932 |
79 | miR-140 | miR-140 suppresses BDNF expression in astrocytes | Tu, Z., et al. (2017) [95] https://doi.org/10.1016/j.biopha.2017.05.016 |
80 | miR-382 | miR-382 inhibits cell proliferation and invasion of retinoblastoma by targeting BDNF | Song, D., et al. (2017) [96] https://doi.org/10.3892/mmr.2017.7396 |
81 | miR-624-3p | miR-624-3p expression was negatively regulated by BDNF via the MEK/ERK/mTOR cascade | Lin, C. Y., et al. (2017) [97] https://doi.org/10.1038/cddis.2017.354 |
82 | miR-101 | miR-101 suppresses dual specific phosphatase 1 expression and inhibited the downstream BDNF expression | Zhao, Y., et al. (2017) [98] https://doi.org/10.1016/j.brainres.2017.05.020 |
83 | miR-211 | miR-211 suppresses BDNF expression in human astrocytes | Zhang, K., et al. (2017) [99] https://doi.org/10.1042/BSR20170755 |
84 | miR124a | Hippocampal miR-124a silencing or BDNF overexpression attenuated anxiety- and autism-like behaviors in rats | Bahi, A. (2017) [100] https://doi.org/10.1016/j.bbr.2017.03.010 |
85 | miR-744 | miR-744 inhibits tumor cell proliferation and invasion of gastric cancer via suppression of BDNF | Xu, A. J., et al. (2017) [101] https://doi.org/10.3892/mmr.2017.7167 |
86 | miR-206 | miR-206 ameliorates chronic constriction injury-induced neuropathic pain in rats via suppression on BDNF | Sun, W., et al. (2017) [102] https://doi.org/10.1016/j.neulet.2016.12.047 |
87 | miR-124 | miR-124 suppression on GR has a negative effect on BDNF-TrkB signaling pathway in the hippocampus | Wang, S. S., et al. (2017) [103] https://doi.org/10.1016/j.pnpbp.2017.07.024 |
88 | miR-103 | miR-103 inhibits glioma cell proliferation and invasion by suppressing BDNF | Wang et al., 2017 [104] https://doi.org/10.3892/mmr.2017.8282 |
89 | MiR-134 | BDNF inhibits MiR-134 expression by activating the TrkB pathway | Huang, W., et al. (2017) [105] https://doi.org/10.1007/s12031-017-0907-z |
90 | miR 705 | miR-705 overexpression mitigates neurological deficits in ischemic brain damage | Ji, M., et al. (2017) [106] https://doi.org/10.3892/mmr.2017.7626 |
91 | miR-125b-5p | BDNF expression is negatively regulated by miR-125b-5p in rod bipolar cells under degeneration | Fu et al., (2017) [107] http://dx.doi.org/10.1038/s41598-017-01261-x |
92 | miR-221 | miR-221 suppresses Wnt2 and, consequently, p-CREB and BDNF expression in hippocampal neurons | Lian, N., et al. (2018) [108] https://doi.org/10.1080/15384101.2018.1556060 |
93 | miR-155 | Overexpression of miRNA-155 resulted in decreased BDNF and TrkB protein expression in epilepsy cells | Duan, W., et al. (2018) [109] https://doi.org/10.3892/ijmm.2018.3711 |
94 | miR-124 | Reduction in miR-124 suppression on GR and BDNF was required for the antidepressant-like effects of gypenosides induced by chronic corticosterone injection in mice | Yi, L. T., et al. (2018) [110] https://doi.org/10.1177/0269881118758304 |
95 | let-7i | Inhibition of let-7i suppression on progesterone receptor membrane component 1 and BDNF enhances progesterone’s protective effects against stroke | Nguyen, T., et al. (2018) [111] https://doi.org/10.1073/pnas.1803384115 |
96 | miR-107 | miR-107 acts as tumor inhibitor for gastric cancer through targeting BDNF expression in gastric cancer cells | Cheng, F., et al. (2018) [112] https://doi.org/10.1016/j.micpath.2018.04.060 |
97 | miR-132 | Plasma BDNF levels are increased in patients with major depressive disorder, and miR-132 correlates with anxiety and depression symptoms | Fang, Y., et al. (2018) [113] https://doi.org/10.1016/j.jad.2017.11.090 |
98 | miR-210-3p | Inhibition of BDNF production upregulation of miR-210-3p contributes to dopaminergic neuron damage in MPTP model | Zhang, S., et al. (2018) [114] https://doi.org/10.1016/j.neulet.2017.10.014 |
99 | miR-206 | miR-206 is a post-transcriptional inhibitor of BDNF in pregnant hypothyroid rats | Xing, Q., et al. (2018) [115] https://doi.org/10.1055/a-0658-2095 |
100 | miR-497 | BDNF was found to be negatively regulated by miR-497 and associated with the apoptosis of Müller cells under high glucose | Li, X. J. (2018) [116] https://doi.org/10.1177/1479164117749382 |
101 | miR-155 | Minocycline is neuroprotective against ischemic brain injury through their modulation of miR-155-mediated BDNF repression | Lu, Y., et al. (2018) [117] https://doi.org/10.1007/s10571-018-0599-0 |
102 | miR-206-3p | Stress-induced mood alterations in pregnant mice correlate with changes in miR-206-3p and BDNF expression in the hippocampus and amygdala | Miao, Z., et al. (2018) [118] https://doi.org/10.1007/s12035-016-0378-1 |
103 | miR-214 | miR-214 mediated the BDNF-induced expressional changes in embryonic stem cells, contributing to BDNF-driven endothelial differentiation | Descamps, B., et al. (2018) [119] https://doi.org/10.1161/ATVBAHA.118.311400 |
104 | miR-26a miR-125b | Upregulation of BDNF is associated with reduced miR-26a and miR-125b in APP/PS1 mice under vitamin D treatment | Lv, M., et al. (2018) [120] https://doi.org/10.1002/mnfr.201800621 |
105 | miR-132 miR-204 | Increases in miR-132 and miR-204 and decrease in BDNF expression are found in the hippocampus of rats exposed to fluorine/aluminium. | Ge, Q. Di, et al. (2018) [121] https://doi.org/10.1016/j.etap.2018.08.011 |
106 | miR-134 | Resveratrol treatment increases Sirt1, p-CREB, CREB, and BDNF expression and decreases miR134 levels in hippocampus | Shen, J., et al. (2018) [122] https://doi.org/10.1016/j.bbr.2018.04.050 |
107 | miR-10a | miR-10a suppresses BDNF expression in rats with AD | Wu, B. W., et al. (2018) [123] https://doi.org/10.1002/jcp.26328 |
108 | miR-1 | Inhibition of miR-1 suppression on BDNF in the hippocampus ameliorates myocardial infarction induced impairment of long-term potentiation | Ma, J. C., et al. (2018) [124] https://doi.org/10.1159/000494657 |
109 | miR-10a | miR-10a suppression on BDNF controls airway smooth muscle cell proliferation in asthma | Zhang, X. Yu, et al. (2018) [125] https://doi.org/10.1016/j.lfs.2018.09.002 |
110 | MiR-1-3p | miR-1-3p suppression on BDNF regulates viability, proliferation, invasion, and apoptosis of bladder cancer cells | Gao, L., et al. (2018) [126] https://doi.org/10.4149/neo_2018_161128N594 |
111 | miR-322 | miR-322 suppression on BDNF promotes Tau phosphorylation in AD mouse brain | Zhang, J., et al. (2018) [127] https://doi.org/10.1007/s11064-018-2475-1 |
112 | miR-107 | Ketamine induces neural injury via miR-107 suppression on BDNF in embryonic-stem-cell-derived neurons | Jiang, J. D., et al. (2019) [128] https://doi.org/10.1002/iub.1911 |
113 | miR-124 | miR-124 improved rats’ spatial learning and memory ability and hippocampal neuron viability and resistance to apoptosis, corresponding to an increased BDNF expression | Yang, W., et al. (2019) [129] https://doi.org/10.1002/jcp.28862 |
114 | miR-206 | miR-206 has the potential to specifically regulate BDNF with a long 3′ UTR without affecting its short 3′ UTR counterpart | Shrestha, S., et al. (2019) [130] https://doi.org/10.1002/2211-5463.12581 |
115 | miR-30a | Presence of the pregnant partner regulates miR-30a suppression on BDNF and protects male mice from social-defeat-induced abnormal behaviors | Miao, Z., et al. (2019) [131] https://doi.org/10.1016/j.neuropharm.2019.03.032 |
116 | miR-584 | miR-584 suppression on BDNF inhibits hepatocellular carcinoma cell proliferation and invasion | Song, Y., et al. (2019) [132] https://doi.org/10.3892/mmr.2019.10424 |
117 | miR-497 | miR-497 targets BDNF in papillary thyroid carcinoma | Sun, Z., et al. (2019) [133] https://doi.org/10.1002/jcp.26928 |
118 | miR-191a | miR-191a showed negative correlation with BDNF in ovariectomized rats in sleep deprivation | Mohammadipoor-Ghasemabad, L., et al. (2019) [134] https://doi.org/10.1016/j.neuroscience.2019.06.037 |
119 | miR-204-5p | miR-204-5p suppression on BDNF expression influence on the depressive-like behaviors in mice under the chronic mild stress | Hung, Y. Y., et al. (2019) [135] https://doi.org/10.3390/cells8091021 |
120 | miR-7 | miR-7 suppresses BDNF and α-synuclein axis in Parkinson’s disease | Li, B. B., et al. (2019) [136] https://doi.org/10.1016/j.chemosphere.2019.05.064 |
121 | miR-496 | miR-496 suppression on BDNF controls non-small-cell lung cancer growth | Ma, R., et al. (2019) [137] https://doi.org/10.1016/j.bbrc.2019.08.046 |
122 | miR-134 | SIRT1/miR-134 signaling pathway regulates BDNF expression in primary cultured hippocampal neurons | Shen, J., et al. (2019) [138] https://doi.org/10.1016/j.jad.2019.01.031 |
123 | miR-206 | Chronic ethanol, stress, and their combination alter miR-206 suppression on BDNF in brain | Solomon, M. G., et al. (2019) [139] https://doi.org/10.1016/j.neuroscience.2019.02.012 |
124 | miR-375 | Inhibition of miR-375 ameliorates ketamine-induced neurotoxicity and BDNF expression in neurons | Zhao, X., et al. (2019) [140] https://doi.org/10.1016/j.ejphar.2018.11.035 |
125 | miR-363-3p | miR-363-3p attenuates depressive-like behaviors and elevates BDNF levels | Panta, A., et al. (2019) [141] https://doi.org/10.1016/j.bbi.2019.01.003 |
126 | miR-206 | Inhibition of miR-206 suppression on BDNF improves neurological deficit and brain edema and suppresses neuronal apoptosis in subarachnoid hemorrhage | Zhao, H., et al. (2019) [142] https://doi.org/10.1016/j.neuroscience.2019.07.051 |
127 | miR-185 | miR-185 suppression on truncated TrkB receptors activates full-length TrkB signaling and reduces epileptiform discharges in cultured hippocampal neurons | Xie, W., et al. (2020) [143] https://doi.org/10.1007/s11064-020-03013-2 |
128 | miR-494-3p | Pramipexole inhibits MPP+-induced neurotoxicity by miR-494-3p suppression on BDNF | Deng, C., et al. (2020) [144] https://doi.org/10.1007/s11064-019-02910-5 |
129 | miR-15a | miR-15a suppression on BDNF exerts a negative regulatory effect on the oxygen-glucose deprivation/reoxygenation injury. | Hu, J. J., et al. (2020) [145] https://doi.org/10.1002/kjm2.12136 |
130 | miR-192-5p | MiR-192-5p inhibition inhibited neuronal apoptosis by affecting the expression of BDNF | Liu, X., et al. (2020) [146] https://doi.org/10.1080/15384101.2019.1710916 |
131 | miR-10a-5p | Inhibition of miR-10a-5p suppression on BDNF enhances the therapeutic effect on spinal cord in injury bone marrow mesenchymal stem cells | Zhang, T., et al. (2020) [147] https://doi.org/10.1016/j.neulet.2019.134562 |
132 | miR-124 | Knockdown of miR-124 reduces depression-like behavior by suppression on CREB and BDNF | Yang, W., et al. (2020) [148] https://doi.org/10.2174/1567202617666200319141755 |
133 | miR-129-5p | Metastasis-associated lung adenocarcinoma transcript 1 promotes Schwann cell proliferation and migration by reducing miR-129-5p suppression on BDNF | Wu, G., et al. (2020) [149] https://doi.org/10.1016/j.yexcr.2020.111937 |
134 | miR-204-5p | miR-204-5p mediates sevoflurane-induced cytotoxicity in hippocampal cells by targeting BDNF | Liu, H., et al. (2020) [150] https://doi.org/10.14670/HH-18-266 |
135 | miR-10a-5p | miR-10a-5p suppresses BDNF and neuronal growth in Friedreich’s ataxia | Misiorek, J. O., et al. (2020) [151] https://doi.org/10.1007/s12035-020-01899-1 |
136 | mir-210 | miR-210 suppression on BDNF participates in mesenchymal-stem-cell-modulated neural precursor cell migration | Wang, F., et al. (2020) [152]. https://doi.org/10.3892/mmr.2020.11065 |
137 | miR-10b-5p | Dexmedetomidine has neuroprotective effects on hippocampal neuronal cells via regulation of miR-10b-5p suppression on BDNF | Wang, L., et al. (2020) [153] https://doi.org/10.1007/s11010-020-03726-6 |
138 | miR-103-3p | LncRNA BC083743 promotes Schwann cell proliferation and axon regeneration via miR-103-3p suppression on BDNF after sciatic nerve crush | Gao, L., et al. (2020) [154] https://doi.org/10.1093/JNEN/NLAA069 |
139 | miR-195-5p | Serum miR-195-5p and miR-451a levels inversely correlate with those of BDNF in stroke patients | Giordano, M., et al. (2020) [155] https://doi.org/10.3390/ijms21207615 |
140 | miR-216a-5p | BDNF addition to exosome-derived therapy improves recovery after traumatic brain injury via increasing miR-216a-5p expression | Xu, H., et al. (2020) [156] https://doi.org/10.12659/MSM.920855 |
141 | miR-132 | miR-132 (both miR132-3p and miR132-5p) and BDNF transcripts are significantly lower in Rett syndrome patients | Pejhan et al., (2020) [157] https://doi.org/10.3389/fcell.2020.00763 |
142 | miR-155 | Inhibition of miR-155 suppression on BDNF reduces cardiomyocyte apoptosis | Lin, B., et al. (2021) [158] https://doi.org/10.18632/aging.103640 |
143 | miR-186 | Aerobic exercise reduces miR-186 suppression on BDNF and neuronal apoptosis in vascular cognitive impairment | Niu, Y., et al. (2021) [159] https://doi.org/10.1186/s10020-020-00258-z |
144 | miR-432 | Adenosine deaminase acting on RNA1 alleviates the depressive-like behavior via regulation of miR-432 suppression on BDNF | Zhang, X., et al. (2021) [160] https://doi.org/10.1016/j.bbr.2020.113087 |
145 | miR-155 | lncRNA MIR155HG alleviates depression-like behaviors in mice by regulating miR-155 suppression on BDNF | Huan, Z., et al. (2021) [161] https://doi.org/10.1007/s11064-021-03234-z |
146 | miR 365 | miR-365 suppresses BDNF in streptozotocin-induced diabetic nephropathy fibrosis and renal function | Zhao, P., et al. (2021) [162] https://doi.org/10.1007/s11255-021-02853-3 |
147 | miR-10b-5p | Changes in miR-10b promoter may contribute to upregulation of miR-10b-5p suppression on BDNF and hippocampal neurogenesis and cognition in mice | Ke, X., et al. (2021) [163] https://doi.org/10.1159/000515750 |
148 | miR-191-5p | Long non-coding RNA XIST promotes retinoblastoma cell proliferation, migration, and invasion by modulating miR-191-5p suppression on BDNF | Xu, Y., et al. (2021) [164] https://doi.org/10.1080/21655979.2021.1918991 |
149 | miR-195 | Higher miR-195 expression was significantly correlated to lower BDNF in levels and poorer overall cognitive performance in schizophrenia patients | Pan, S., et al. (2021) [165] https://doi.org/10.1038/s41398-021-01240-x |
150 | miR-191 | Inhibition of miR-191 suppression on BDNF protects against isoflurane-induced neurotoxicity | Li, H., et al. (2021) [166] https://doi.org/10.1080/15376516.2021.1886211 |
151 | miR-155 | Chronic colitis impairs heart function through miR-155 suppression on BDNF | Tang, Y., et al. (2021) [167] https://doi.org/10.1371/journal.pone.0257280 |
152 | miR-1b | Upregulation of miR-1b suppression on BDNF reduces neuron viability and regenerative ability | Li, X., et al. (2021) [168] https://doi.org/10.5114/fn.2021.105132 |
153 | miR-206-3p | BDNF was negatively regulated by miR-206-3p in AD mice | Peng, D., et al. (2022) [169] https://doi.org/10.7150/THNO.70951 |
154 | miR-191-5p | miR-191-5p disturbed angiogenesis in a mice model of cerebral infarction by suppressing BDNF | Wu, Y., et al. (2021) [170] https://doi.org/10.4103/0028-3886.333459 |
155 | miR-206-3p | miR-206-3p suppression on hippocampal BDNF participates in the pathogenesis of depression | Guan, W., et al. (2021) [171] https://doi.org/10.1016/j.phrs.2021.105932 |
156 | miR-103a-3p miR-10a-5p | miR-103a-3p or miR-10a-5p negatively affects the maturation of oocytes by suppressing BDNF in follicular fluid | Zhang, Q., et al. (2021) [172] https://doi.org/10.3389/fendo.2021.637384 |
157 | miR30a-5p miR-195-5p miR191-5p miR206-3p | Increased expression of miR30a-5p, miR-195-5p, miR191-5p, and miR206-3p was detected in the rapid drinking onset rats | Ehinger, Y., et al. (2021) [173] https://doi.org/10.1111/adb.12890 |
158 | miR-182-5p | Serum miR-182-5p was elevated and BDNF expression was lowered in chronic heart failure patients | Fang, F., et al. (2022) [174] https://doi.org/10.1186/s13019-022-01802-0 |
159 | miR-139-5p | miR-139-5p inhibition plays an antidepressant-like role via suppression on BDNF | Su, B., et al. (2022) [175] https://doi.org/10.1080/21655979.2022.2059937 |
160 | miR-497 | miR-497 suppression on BDNF impairs the proliferation, migration, and oxidative stress response of Schwann cells | Yongguang, L., et al. (2022) [176] https://doi.org/10.1186/s12906-021-03483-z |
161 | miR-206-3p | Electroacupuncture alleviates neuropathic pain after chronic constriction injury via miR-206-3p suppression on BDNF | Tu, W., et al. (2022) [177] https://doi.org/10.1155/2022/1489841 |
162 | miR-155-5p | Triptolide inhibits miR-155-5p suppression on BDNF and reduces podocyte injury in mice with diabetic nephropathy | Gao, J., et al. (2022) [178] https://doi.org/10.1080/21655979.2022.2067293 |
163 | miR-210 | Inhibition of miR-210 resulted in increased viability and reduced apoptosis, along with increased BDNF levels after hypoxia/reoxygenation | Zhai, Y., et al. (2022) [179] https://doi.org/10.1002/kjm2.12486 |
164 | miR-3168 | BDNF upregulated the expression of miR-3168 in macrophages | Yu, H. C., et al. (2022) [180] https://doi.org/10.3390/ijms23010570 |
165 | miR-124-3p | miR-124-3p inhibition promotes subventricular zone neural stem cell activation by enhancing BDNF function after traumatic brain injury in adult rats | Kang, E. M., et al. (2022) [181] https://doi.org/10.1111/cns.13845 |
166 | miR-182-5p | miR-182-5p suppression on BDNF and angiogenin affects retinal neovascularization | Li, C., et al. (2022) [182] https://doi.org/10.3892/mmr.2021.12577 |
167 | miR-210-3p | miR-210-3p suppresses osteogenic differentiation of osteoblast precursor cell by targeting BDNF | Deng, L., et al. (2022) [183] https://doi.org/10.1186/s13018-022-03315-x |
168 | miR-1-3p | High miR-1-3p expression and low serum BDNF levels were found in patients with primary hypertension complicated with depression | Ding, J., Jiang, C., Yang, L., and Wang, X. (2022) [184] https://doi.org/10.14715/CMB/2022.68.1.10 |
169 | miR-132-5p | miR-132-5p suppression on BDNF in the prefrontal cortex resulted in depression-like behaviors | Ma, L., et al. (2022) [185] https://doi.org/10.1038/s41398-022-02192-6 |
170 | miR-551b-5p | miR-551b-5p suppression on BDNF participates in early convalescence by intermittent theta burst stimulation | Wang, L., et al. (2022) [186] https://doi.org/10.1016/j.brainresbull.2022.03.002 |
171 | miR-382 miR-182 | miR-382/miR-182 suppression on BDNF have a positive effect in the management of post-stroke depression | Zhang, Z., et al. (2022) [187] https://doi.org/10.1016/j.bbrc.2022.05.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Assis, G.G.; Murawska-Ciałowicz, E. BDNF Modulation by microRNAs: An Update on the Experimental Evidence. Cells 2024, 13, 880. https://doi.org/10.3390/cells13100880
De Assis GG, Murawska-Ciałowicz E. BDNF Modulation by microRNAs: An Update on the Experimental Evidence. Cells. 2024; 13(10):880. https://doi.org/10.3390/cells13100880
Chicago/Turabian StyleDe Assis, Gilmara Gomes, and Eugenia Murawska-Ciałowicz. 2024. "BDNF Modulation by microRNAs: An Update on the Experimental Evidence" Cells 13, no. 10: 880. https://doi.org/10.3390/cells13100880