Molars to Medicine: A Focused Review on the Pre-Clinical Investigation and Treatment of Secondary Degeneration following Spinal Cord Injury Using Dental Stem Cells
Abstract
:1. Introduction
2. Pathophysiology of the Secondary Injury Cascade following Spinal Cord Injury
2.1. Vascular Events—Hemorrhage and Edema
2.2. Biochemical Events
2.2.1. Excitotoxicity
2.2.2. Oxidative Stress
2.2.3. Apoptosis and Cell Death
2.3. Inflammatory Events—Neuroinflammation and Immune Cell Influx
2.4. Structural Events—Axonal and Myelin Changes, Glial Scarring, and Wallerian Degeneration
3. The Benefits of Stem Cells for SCI Therapy
3.1. Mesenchymal Stem Cells
3.2. Dental Stem Cells
4. DSC Modulation of Secondary Cascades after SCI
4.1. Angiogenesis
4.2. Anti-Excitotoxic Effects
4.3. Anti-Oxidative Effects
4.4. Neuroimmunomodulation
4.5. Anti-Apoptotic Effects
4.6. Tissue Preservation and Regeneration
5. Future Perspectives for Improving DSC Therapy Translation
5.1. Improving DSC Viability
5.2. Optimizing the Delivery of DSC Therapy
5.3. Increasing Measurable Outcomes of DSC Therapy
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Middleton, J.W.; Arora, M.; Kifley, A.; Clark, J.; Borg, S.J.; Tran, Y.; Atresh, S.; Kaur, J.; Shetty, S.; Nunn, A.; et al. Australian arm of the International Spinal Cord Injury (Aus-InSCI) Community Survey: 2. Understanding the lived experience in people with spinal cord injury. Spinal Cord. 2022, 60, 1069–1079. [Google Scholar] [CrossRef]
- Kumar, R.; Lim, J.; Mekary, R.A.; Rattani, A.; Dewan, M.C.; Sharif, S.Y.; Osorio-Fonseca, E.; Park, K.B. Traumatic Spinal Injury: Global Epidemiology and Worldwide Volume. World Neurosurg. 2018, 113, e345–e363. [Google Scholar] [CrossRef]
- Krueger, H.; Noonan, V.K.; Trenaman, L.M.; Joshi, P.; Rivers, C.S. The economic burden of traumatic spinal cord injury in Canada. Chronic Dis. Inj. Can. 2013, 33, 113–122. [Google Scholar] [CrossRef]
- Alizadeh, A.; Dyck, S.M.; Karimi-Abdolrezaee, S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front. Neurol. 2019, 10, 282. [Google Scholar] [CrossRef]
- Ahuja, C.S.; Wilson, J.R.; Nori, S.; Kotter, M.R.N.; Druschel, C.; Curt, A.; Fehlings, M.G. Traumatic spinal cord injury. Nat. Rev. Dis. Primers 2017, 3, 17018. [Google Scholar] [CrossRef]
- Losey, P.; Young, C.; Krimholtz, E.; Bordet, R.; Anthony, D.C. The role of hemorrhage following spinal-cord injury. Brain Res. 2014, 1569, 9–18. [Google Scholar] [CrossRef]
- Matsushita, T.; Lankford, K.L.; Arroyo, E.J.; Sasaki, M.; Neyazi, M.; Radtke, C.; Kocsis, J.D. Diffuse and persistent blood-spinal cord barrier disruption after contusive spinal cord injury rapidly recovers following intravenous infusion of bone marrow mesenchymal stem cells. Exp. Neurol. 2015, 267, 152–164. [Google Scholar] [CrossRef]
- Maikos, J.T.; Shreiber, D.I. Immediate damage to the blood-spinal cord barrier due to mechanical trauma. J. Neurotrauma 2007, 24, 492–507. [Google Scholar] [CrossRef]
- Popovich, P.G.; Horner, P.J.; Mullin, B.B.; Stokes, B.T. A quantitative spatial analysis of the blood-spinal cord barrier. I. Permeability changes after experimental spinal contusion injury. Exp. Neurol. 1996, 142, 258–275. [Google Scholar] [CrossRef]
- Whetstone, W.D.; Hsu, J.Y.; Eisenberg, M.; Werb, Z.; Noble-Haeusslein, L.J. Blood-spinal cord barrier after spinal cord injury: Relation to revascularization and wound healing. J. Neurosci. Res. 2003, 74, 227–239. [Google Scholar] [CrossRef]
- Orem, B.C.; Rajaee, A.; Stirling, D.P. IP(3)R-mediated intra-axonal Ca(2+) release contributes to secondary axonal degeneration following contusive spinal cord injury. Neurobiol. Dis. 2020, 146, 105123. [Google Scholar] [CrossRef]
- Figley, S.A.; Khosravi, R.; Legasto, J.M.; Tseng, Y.F.; Fehlings, M.G. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury. J. Neurotrauma 2014, 31, 541–552. [Google Scholar] [CrossRef]
- Mautes, A.E.; Weinzierl, M.R.; Donovan, F.; Noble, L.J. Vascular events after spinal cord injury: Contribution to secondary pathogenesis. Phys. Ther. 2000, 80, 673–687. [Google Scholar] [CrossRef]
- Sekhon, L.H.; Fehlings, M.G. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 2001, 26, S2–S12. [Google Scholar] [CrossRef]
- Li, Y.; Lucas-Osma, A.M.; Black, S.; Bandet, M.V.; Stephens, M.J.; Vavrek, R.; Sanelli, L.; Fenrich, K.K.; Di Narzo, A.F.; Dracheva, S.; et al. Pericytes impair capillary blood flow and motor function after chronic spinal cord injury. Nat. Med. 2017, 23, 733–741. [Google Scholar] [CrossRef]
- Matute, C.; Alberdi, E.; Ibarretxe, G.; Sánchez-Gómez, M.V. Excitotoxicity in glial cells. Eur. J. Pharmacol. 2002, 447, 239–246. [Google Scholar] [CrossRef]
- Dong, H.W.; Hayar, A.; Callaway, J.; Yang, X.H.; Nai, Q.; Ennis, M. Group I mGluR activation enhances Ca(2+)-dependent nonselective cation currents and rhythmic bursting in main olfactory bulb external tufted cells. J. Neurosci. 2009, 29, 11943–11953. [Google Scholar] [CrossRef]
- Xu, G.Y.; Liu, S.; Hughes, M.G.; McAdoo, D.J. Glutamate-induced losses of oligodendrocytes and neurons and activation of caspase-3 in the rat spinal cord. Neuroscience 2008, 153, 1034–1047. [Google Scholar] [CrossRef]
- Mody, I.; MacDonald, J.F. NMDA receptor-dependent excitotoxicity: The role of intracellular Ca2+ release. Trends Pharmacol. Sci. 1995, 16, 356–359. [Google Scholar] [CrossRef]
- O’Hare Doig, R.L.; Santhakumar, S.; Fehily, B.; Raja, S.; Solomon, T.; Bartlett, C.A.; Fitzgerald, M.; Hodgetts, S.I. Acute Cellular and Functional Changes With a Combinatorial Treatment of Ion Channel Inhibitors Following Spinal Cord Injury. Front. Mol. Neurosci. 2020, 13, 85. [Google Scholar] [CrossRef]
- Schmidt, J.; Quintá, H.R. Mitochondrial dysfunction as a target in spinal cord injury: Intimate correlation between pathological processes and therapeutic approaches. Neural Regen. Res. 2023, 18, 2161–2166. [Google Scholar] [CrossRef]
- Vaishnav, R.A.; Singh, I.N.; Miller, D.M.; Hall, E.D. Lipid peroxidation-derived reactive aldehydes directly and differentially impair spinal cord and brain mitochondrial function. J. Neurotrauma 2010, 27, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Bastani, N.E.; Kostovski, E.; Sakhi, A.K.; Karlsen, A.; Carlsen, M.H.; Hjeltnes, N.; Blomhoff, R.; Iversen, P.O. Reduced antioxidant defense and increased oxidative stress in spinal cord injured patients. Arch. Phys. Med. Rehabil. 2012, 93, 2223–2228. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.D.; Wang, J.A.; Bosken, J.M.; Singh, I.N. Lipid peroxidation in brain or spinal cord mitochondria after injury. J. Bioenerg. Biomembr. 2016, 48, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.G.; Krishnamurthy, S.; Patel, S.P.; Pandya, J.D.; Rabchevsky, A.G. Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J. Neurotrauma 2007, 24, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Visavadiya, N.P.; Patel, S.P.; VanRooyen, J.L.; Sullivan, P.G.; Rabchevsky, A.G. Cellular and subcellular oxidative stress parameters following severe spinal cord injury. Redox Biol. 2016, 8, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Huntemer-Silveira, A.; Patil, N.; Brickner, M.A.; Parr, A.M. Strategies for Oligodendrocyte and Myelin Repair in Traumatic CNS Injury. Front. Cell Neurosci. 2020, 14, 619707. [Google Scholar] [CrossRef] [PubMed]
- Fleming, J.C.; Norenberg, M.D.; Ramsay, D.A.; Dekaban, G.A.; Marcillo, A.E.; Saenz, A.D.; Pasquale-Styles, M.; Dietrich, W.D.; Weaver, L.C. The cellular inflammatory response in human spinal cords after injury. Brain 2006, 129, 3249–3269. [Google Scholar] [CrossRef]
- Casella, G.T.; Bunge, M.B.; Wood, P.M. Endothelial cell loss is not a major cause of neuronal and glial cell death following contusion injury of the spinal cord. Exp. Neurol. 2006, 202, 8–20. [Google Scholar] [CrossRef]
- Springer, J.E.; Azbill, R.D.; Knapp, P.E. Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat. Med. 1999, 5, 943–946. [Google Scholar] [CrossRef]
- Chen, K.B.; Uchida, K.; Nakajima, H.; Yayama, T.; Hirai, T.; Watanabe, S.; Guerrero, A.R.; Kobayashi, S.; Ma, W.Y.; Liu, S.Y.; et al. Tumor necrosis factor-α antagonist reduces apoptosis of neurons and oligodendroglia in rat spinal cord injury. Spine 2011, 36, 1350–1358. [Google Scholar] [CrossRef] [PubMed]
- Kotipatruni, R.R.; Dasari, V.R.; Veeravalli, K.K.; Dinh, D.H.; Fassett, D.; Rao, J.S. p53- and Bax-mediated apoptosis in injured rat spinal cord. Neurochem. Res. 2011, 36, 2063–2074. [Google Scholar] [CrossRef] [PubMed]
- Guha, L.; Singh, N.; Kumar, H. Different Ways to Die: Cell Death Pathways and Their Association With Spinal Cord Injury. Neurospine 2023, 20, 430–448. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Biswas, S.K.; Galdiero, M.R.; Sica, A.; Locati, M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 2013, 229, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Kigerl, K.A.; Gensel, J.C.; Ankeny, D.P.; Alexander, J.K.; Donnelly, D.J.; Popovich, P.G. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 2009, 29, 13435–13444. [Google Scholar] [CrossRef] [PubMed]
- Pineau, I.; Lacroix, S. Proinflammatory cytokine synthesis in the injured mouse spinal cord: Multiphasic expression pattern and identification of the cell types involved. J. Comp. Neurol. 2007, 500, 267–285. [Google Scholar] [CrossRef] [PubMed]
- Hellenbrand, D.J.; Quinn, C.M.; Piper, Z.J.; Elder, R.T.; Mishra, R.R.; Marti, T.L.; Omuro, P.M.; Roddick, R.M.; Lee, J.S.; Murphy, W.L.; et al. The secondary injury cascade after spinal cord injury: An analysis of local cytokine/chemokine regulation. Neural Regen. Res. 2024, 19, 1308–1317. [Google Scholar] [CrossRef] [PubMed]
- Rosas Almanza, J.; Stehlik, K.E.; Page, J.J.; Xiong, S.H.; Tabor, E.G.; Aperi, B.; Patel, K.; Kodali, R.; Kurpad, S.; Budde, M.D.; et al. IL-12p40 promotes secondary damage and functional impairment after spinal cord contusional injury. J. Neurosci. Res. 2022, 100, 2213–2231. [Google Scholar] [CrossRef]
- Schnell, L.; Schneider, R.; Berman, M.A.; Perry, V.H.; Schwab, M.E. Lymphocyte recruitment following spinal cord injury in mice is altered by prior viral exposure. Eur. J. Neurosci. 1997, 9, 1000–1007. [Google Scholar] [CrossRef]
- Greenhalgh, A.D.; David, S. Differences in the phagocytic response of microglia and peripheral macrophages after spinal cord injury and its effects on cell death. J. Neurosci. 2014, 34, 6316–6322. [Google Scholar] [CrossRef]
- Wanner, I.B.; Anderson, M.A.; Song, B.; Levine, J.; Fernandez, A.; Gray-Thompson, Z.; Ao, Y.; Sofroniew, M.V. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J. Neurosci. 2013, 33, 12870–12886. [Google Scholar] [CrossRef]
- Schnell, L.; Fearn, S.; Klassen, H.; Schwab, M.E.; Perry, V.H. Acute inflammatory responses to mechanical lesions in the CNS: Differences between brain and spinal cord. Eur. J. Neurosci. 1999, 11, 3648–3658. [Google Scholar] [CrossRef] [PubMed]
- Bresnahan, J.C. An electron-microscopic analysis of axonal alterations following blunt contusion of the spinal cord of the rhesus monkey (Macaca mulatta). J. Neurol. Sci. 1978, 37, 59–82. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.R.; Marincu, B.N.; Sorbara, C.D.; Mahler, C.F.; Schumacher, A.M.; Griesbeck, O.; Kerschensteiner, M.; Misgeld, T. A recoverable state of axon injury persists for hours after spinal cord contusion in vivo. Nat. Commun. 2014, 5, 5683. [Google Scholar] [CrossRef] [PubMed]
- Fehlings, M.G.; Tator, C.H. The relationships among the severity of spinal cord injury, residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury. Exp. Neurol. 1995, 132, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Soderblom, C.; Luo, X.; Blumenthal, E.; Bray, E.; Lyapichev, K.; Ramos, J.; Krishnan, V.; Lai-Hsu, C.; Park, K.K.; Tsoulfas, P.; et al. Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J. Neurosci. 2013, 33, 13882–13887. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Selzer, M.E.; Li, S. Scar-mediated inhibition and CSPG receptors in the CNS. Exp. Neurol. 2012, 237, 370–378. [Google Scholar] [CrossRef]
- Gonzenbach, R.R.; Schwab, M.E. Disinhibition of neurite growth to repair the injured adult CNS: Focusing on Nogo. Cell Mol. Life Sci. 2008, 65, 161–176. [Google Scholar] [CrossRef]
- Monnier, P.P.; Sierra, A.; Schwab, J.M.; Henke-Fahle, S.; Mueller, B.K. The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol. Cell Neurosci. 2003, 22, 319–330. [Google Scholar] [CrossRef]
- Duncan, G.J.; Manesh, S.B.; Hilton, B.J.; Assinck, P.; Plemel, J.R.; Tetzlaff, W. The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury. Glia 2020, 68, 227–245. [Google Scholar] [CrossRef]
- Ankeny, D.P.; Lucin, K.M.; Sanders, V.M.; McGaughy, V.M.; Popovich, P.G. Spinal cord injury triggers systemic autoimmunity: Evidence for chronic B lymphocyte activation and lupus-like autoantibody synthesis. J. Neurochem. 2006, 99, 1073–1087. [Google Scholar] [CrossRef] [PubMed]
- Beattie, M.S.; Hermann, G.E.; Rogers, R.C.; Bresnahan, J.C. Cell death in models of spinal cord injury. Prog. Brain Res. 2002, 137, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Rowland, J.W.; Hawryluk, G.W.; Kwon, B.; Fehlings, M.G. Current status of acute spinal cord injury pathophysiology and emerging therapies: Promise on the horizon. Neurosurg. Focus 2008, 25, E2. [Google Scholar] [CrossRef] [PubMed]
- Sharif-Alhoseini, M.; Khormali, M.; Rezaei, M.; Safdarian, M.; Hajighadery, A.; Khalatbari, M.M.; Safdarian, M.; Meknatkhah, S.; Rezvan, M.; Chalangari, M.; et al. Animal models of spinal cord injury: A systematic review. Spinal Cord. 2017, 55, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Estrada, V.; Oldenburg, E.; Popa, O.; Müller, H.W. Mapping the Long Rocky Road to Effective Spinal Cord Injury Therapy: A Meta-Review of Pre-Clinical and Clinical Research. J. Neurotrauma 2022, 39, 591–612. [Google Scholar] [CrossRef] [PubMed]
- Varma, A.K.; Das, A.; Wallace, G.; Barry, J.; Vertegel, A.A.; Ray, S.K.; Banik, N.L. Spinal Cord Injury: A Review of Current Therapy, Future Treatments, and Basic Science Frontiers. Neurochem. Res. 2013, 38, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Bracken, M.B. Methylprednisolone and acute spinal cord injury: An update of the randomized evidence. Spine 2001, 26, S47–S54. [Google Scholar] [CrossRef]
- Fehlings, M.G.; Moghaddamjou, A.; Harrop, J.S.; Stanford, R.; Ball, J.; Aarabi, B.; Freeman, B.J.C.; Arnold, P.M.; Guest, J.D.; Kurpad, S.N.; et al. Safety and Efficacy of Riluzole in Acute Spinal Cord Injury Study (RISCIS): A Multi-Center, Randomized, Placebo-Controlled, Double-Blinded Trial. J. Neurotrauma 2023, 40, 1878–1888. [Google Scholar] [CrossRef]
- Zhang, Y.; Al Mamun, A.; Yuan, Y.; Lu, Q.; Xiong, J.; Yang, S.; Wu, C.; Wu, Y.; Wang, J. Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review). Mol. Med. Rep. 2021, 23, 417. [Google Scholar] [CrossRef]
- Meletis, K.; Barnabé-Heider, F.; Carlén, M.; Evergren, E.; Tomilin, N.; Shupliakov, O.; Frisén, J. Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol. 2008, 6, e182. [Google Scholar] [CrossRef]
- Hamilton, L.K.; Truong, M.K.V.; Bednarczyk, M.R.; Aumont, A.; Fernandes, K.J.L. Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord. Neuroscience 2009, 164, 1044–1056. [Google Scholar] [CrossRef]
- Marichal, N.; García, G.; Radmilovich, M.; Trujillo-Cenóz, O.; Russo, R.E. Spatial Domains of Progenitor-Like Cells and Functional Complexity of a Stem Cell Niche in the Neonatal Rat Spinal Cord. Stem Cells 2012, 30, 2020–2031. [Google Scholar] [CrossRef]
- Torrillas de la Cal, A.; Paniagua-Torija, B.; Arevalo-Martin, A.; Faulkes, C.G.; Jiménez, A.J.; Ferrer, I.; Molina-Holgado, E.; Garcia-Ovejero, D. The Structure of the Spinal Cord Ependymal Region in Adult Humans Is a Distinctive Trait among Mammals. Cells 2021, 10, 2235. [Google Scholar] [CrossRef]
- Paniagua-Torija, B.; Norenberg, M.; Arevalo-Martin, A.; Carballosa-Gautam, M.M.; Campos-Martin, Y.; Molina-Holgado, E.; Garcia-Ovejero, D. Cells in the adult human spinal cord ependymal region do not proliferate after injury. J. Pathol. 2018, 246, 415–421. [Google Scholar] [CrossRef]
- Huang, L.; Fu, C.; Xiong, F.; He, C.; Wei, Q. Stem Cell Therapy for Spinal Cord Injury. Cell Transplant. 2021, 30, 0963689721989266. [Google Scholar] [CrossRef]
- Wang, Y.; Yi, H.; Song, Y. The safety of MSC therapy over the past 15 years: A meta-analysis. Stem Cell Res. Ther. 2021, 12, 545. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Ghaneialvar, H.; Soltani, L.; Rahmani, H.R.; Lotfi, A.S.; Soleimani, M. Characterization and Classification of Mesenchymal Stem Cells in Several Species Using Surface Markers for Cell Therapy Purposes. Indian J. Clin. Biochem. 2018, 33, 46–52. [Google Scholar] [CrossRef]
- Yang, Y.H.; Lee, A.J.; Barabino, G.A. Coculture-driven mesenchymal stem cell-differentiated articular chondrocyte-like cells support neocartilage development. Stem Cells Transl. Med. 2012, 1, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Witt, R.; Weigand, A.; Boos, A.M.; Cai, A.; Dippold, D.; Boccaccini, A.R.; Schubert, D.W.; Hardt, M.; Lange, C.; Arkudas, A.; et al. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. BMC Cell Biol. 2017, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.S.; Long, M.W.; Hankenson, K.D. Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. J. Cell Biochem. 2006, 98, 538–554. [Google Scholar] [CrossRef]
- Bueno, C.; Martínez-Morga, M.; García-Bernal, D.; Moraleda, J.M.; Martínez, S. Differentiation of human adult-derived stem cells towards a neural lineage involves a dedifferentiation event prior to differentiation to neural phenotypes. Scientific Reports 2021, 11, 12034. [Google Scholar] [CrossRef]
- Pelegri, N.G.; Milthorpe, B.K.; Gorrie, C.A.; Santos, J. Neurogenic marker expression in differentiating human adipose derived adult mesenchymal stem cells. Stem Cell Investig. 2023, 10. [Google Scholar] [CrossRef]
- Bertani, N.; Malatesta, P.; Volpi, G.; Sonego, P.; Perris, R. Neurogenic potential of human mesenchymal stem cells revisited: Analysis by immunostaining, time-lapse video and microarray. J. Cell Sci. 2005, 118, 3925–3936. [Google Scholar] [CrossRef]
- McCormick, J.B.; Huso, H.A. Stem cells and ethics: Current issues. J. Cardiovasc. Transl. Res. 2010, 3, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef]
- von Bahr, L.; Batsis, I.; Moll, G.; Hägg, M.; Szakos, A.; Sundberg, B.; Uzunel, M.; Ringden, O.; Le Blanc, K. Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells 2012, 30, 1575–1578. [Google Scholar] [CrossRef]
- Gu, L.-H.; Zhang, T.-T.; Li, Y.; Yan, H.-J.; Qi, H.; Li, F.-R. Immunogenicity of allogeneic mesenchymal stem cells transplanted via different routes in diabetic rats. Cell. Mol. Immunol. 2015, 12, 444–455. [Google Scholar] [CrossRef]
- Le Blanc, K.; Tammik, C.; Rosendahl, K.; Zetterberg, E.; Ringdén, O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol. 2003, 31, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Sivanathan, K.N.; Gronthos, S.; Rojas-Canales, D.; Thierry, B.; Coates, P.T. Interferon-gamma modification of mesenchymal stem cells: Implications of autologous and allogeneic mesenchymal stem cell therapy in allotransplantation. Stem Cell Rev. Rep. 2014, 10, 351–375. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Robey, P.G.; Gronthos, S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone 2001, 29, 532–539. [Google Scholar] [CrossRef]
- Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13625–13630. [Google Scholar] [CrossRef]
- Huang, G.T.; Gronthos, S.; Shi, S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. J. Dent. Res. 2009, 88, 792–806. [Google Scholar] [CrossRef]
- Luo, L.; He, Y.; Wang, X.; Key, B.; Lee, B.H.; Li, H.; Ye, Q. Potential Roles of Dental Pulp Stem Cells in Neural Regeneration and Repair. Stem Cells Int. 2018, 2018, 1731289. [Google Scholar] [CrossRef]
- Gronthos, S.; Brahim, J.; Li, W.; Fisher, L.W.; Cherman, N.; Boyde, A.; DenBesten, P.; Robey, P.G.; Shi, S. Stem cell properties of human dental pulp stem cells. J. Dent. Res. 2002, 81, 531–535. [Google Scholar] [CrossRef]
- Al-Maswary, A.A.; O’Reilly, M.; Holmes, A.P.; Walmsley, A.D.; Cooper, P.R.; Scheven, B.A. Exploring the neurogenic differentiation of human dental pulp stem cells. PLoS ONE 2022, 17, e0277134. [Google Scholar] [CrossRef]
- Sakai, K.; Yamamoto, A.; Matsubara, K.; Nakamura, S.; Naruse, M.; Yamagata, M.; Sakamoto, K.; Tauchi, R.; Wakao, N.; Imagama, S.; et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J. Clin. Investig. 2012, 122, 80–90. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V.; Rattan, V.; Jha, V.; Bhattacharyya, S. Secretome Cues Modulate the Neurogenic Potential of Bone Marrow and Dental Stem Cells. Mol. Neurobiol. 2017, 54, 4672–4682. [Google Scholar] [CrossRef]
- Arthur, A.; Rychkov, G.; Shi, S.; Koblar, S.A.; Gronthos, S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 2008, 26, 1787–1795. [Google Scholar] [CrossRef] [PubMed]
- Pagella, P.; Miran, S.; Neto, E.; Martin, I.; Lamghari, M.; Mitsiadis, T.A. Human dental pulp stem cells exhibit enhanced properties in comparison to human bone marrow stem cells on neurites outgrowth. FASEB J. 2020, 34, 5499–5511. [Google Scholar] [CrossRef] [PubMed]
- Gronthos, S.; Arthur, A.; Bartold, P.M.; Shi, S. A method to isolate and culture expand human dental pulp stem cells. Methods Mol. Biol. 2011, 698, 107–121. [Google Scholar] [CrossRef]
- Kang, Y.H.; Lee, H.J.; Jang, S.J.; Byun, J.H.; Lee, J.S.; Lee, H.C.; Park, W.U.; Lee, J.H.; Rho, G.J.; Park, B.W. Immunomodulatory properties and in vivo osteogenesis of human dental stem cells from fresh and cryopreserved dental follicles. Differentiation 2015, 90, 48–58. [Google Scholar] [CrossRef]
- Xavier Acasigua, G.A.; Bernardi, L.; Braghirolli, D.I.; Filho, M.S.; Pranke, P.; Medeiros Fossati, A.C. Nanofiber scaffolds support bone regeneration associated with pulp stem cells. Curr. Stem Cell Res. Ther. 2014, 9, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Nicola, F.; Marques, M.R.; Odorcyk, F.; Petenuzzo, L.; Aristimunha, D.; Vizuete, A.; Sanches, E.F.; Pereira, D.P.; Maurmann, N.; Gonçalves, C.A.; et al. Stem Cells from Human Exfoliated Deciduous Teeth Modulate Early Astrocyte Response after Spinal Cord Contusion. Mol. Neurobiol. 2019, 56, 748–760. [Google Scholar] [CrossRef] [PubMed]
- Albashari, A.; He, Y.; Zhang, Y.; Ali, J.; Lin, F.; Zheng, Z.; Zhang, K.; Cao, Y.; Xu, C.; Luo, L.; et al. Thermosensitive bFGF-Modified Hydrogel with Dental Pulp Stem Cells on Neuroinflammation of Spinal Cord Injury. ACS Omega 2020, 5, 16064–16075. [Google Scholar] [CrossRef]
- Albashari, A.A.; He, Y.; Luo, Y.; Duan, X.; Ali, J.; Li, M.; Fu, D.; Xiang, Y.; Peng, Y.; Li, S.; et al. Local Spinal Cord Injury Treatment Using a Dental Pulp Stem Cell Encapsulated H(2) S Releasing Multifunctional Injectable Hydrogel. Adv. Heal. Mater. 2023, 13, e2302286. [Google Scholar] [CrossRef]
- de Almeida, F.M.; Marques, S.A.; Ramalho Bdos, S.; Rodrigues, R.F.; Cadilhe, D.V.; Furtado, D.; Kerkis, I.; Pereira, L.V.; Rehen, S.K.; Martinez, A.M. Human dental pulp cells: A new source of cell therapy in a mouse model of compressive spinal cord injury. J. Neurotrauma 2011, 28, 1939–1949. [Google Scholar] [CrossRef] [PubMed]
- Asadi-Golshan, R.; Razban, V.; Mirzaei, E.; Rahmanian, A.; Khajeh, S.; Mostafavi-Pour, Z.; Dehghani, F. Sensory and Motor Behavior Evidences Supporting the Usefulness of Conditioned Medium from Dental Pulp-Derived Stem Cells in Spinal Cord Injury in Rats. Asian Spine J. 2018, 12, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Asadi-Golshan, R.; Razban, V.; Mirzaei, E.; Rahmanian, A.; Khajeh, S.; Mostafavi-Pour, Z.; Dehghani, F. Efficacy of dental pulp-derived stem cells conditioned medium loaded in collagen hydrogel in spinal cord injury in rats: Stereological evidence. J. Chem. Neuroanat. 2021, 116, 101978. [Google Scholar] [CrossRef]
- Guo, S.; Redenski, I.; Landau, S.; Szklanny, A.; Merdler, U.; Levenberg, S. Prevascularized Scaffolds Bearing Human Dental Pulp Stem Cells for Treating Complete Spinal Cord Injury. Adv. Health Mater. 2020, 9, e2000974. [Google Scholar] [CrossRef]
- Hu, Z.B.; Chen, H.C.; Wei, B.; Zhang, Z.M.; Wu, S.K.; Sun, J.C.; Xiang, M. Platelet rich plasma enhanced neuro-regeneration of human dental pulp stem cells in vitro and in rat spinal cord. Ann. Transl. Med. 2022, 10, 584. [Google Scholar] [CrossRef] [PubMed]
- Kabatas, S.; Demir, C.S.; Civelek, E.; Yilmaz, I.; Kircelli, A.; Yilmaz, C.; Akyuva, Y.; Karaoz, E. Neuronal regeneration in injured rat spinal cord after human dental pulp derived neural crest stem cell transplantation. Bratisl. Lek. Listy 2018, 119, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Kandalam, S.; De Berdt, P.; Ucakar, B.; Vanvarenberg, K.; Bouzin, C.; Gratpain, V.; Diogenes, A.; Montero-Menei, C.N.; des Rieux, A. Human dental stem cells of the apical papilla associated to BDNF-loaded pharmacologically active microcarriers (PAMs) enhance locomotor function after spinal cord injury. Int. J. Pharm. 2020, 587, 119685. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Hu, F.; Jiao, G.; Guo, Y.; Zhou, P.; Zhang, Y.; Zhang, Z.; Yi, J.; You, Y.; Li, Z.; et al. Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization through the ROS-MAPK-NFκB P65 signaling pathway after spinal cord injury. J. Nanobiotechnol. 2022, 20, 65. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Ma, Z.; Liu, L.; Pei, Y.; Wu, Q.; Xu, S.; Liu, Y.; Ding, N.; Guan, Y.; Zhang, Y.; et al. Conditioned medium from human dental pulp stem cells treats spinal cord injury by inhibiting microglial pyroptosis. Neural Regen. Res. 2024, 19, 1105–1111. [Google Scholar] [CrossRef]
- Luo, L.; Albashari, A.A.; Wang, X.; Jin, L.; Zhang, Y.; Zheng, L.; Xia, J.; Xu, H.; Zhao, Y.; Xiao, J.; et al. Effects of Transplanted Heparin-Poloxamer Hydrogel Combining Dental Pulp Stem Cells and bFGF on Spinal Cord Injury Repair. Stem Cells Int. 2018, 2018, 2398521. [Google Scholar] [CrossRef]
- Matsubara, K.; Matsushita, Y.; Sakai, K.; Kano, F.; Kondo, M.; Noda, M.; Hashimoto, N.; Imagama, S.; Ishiguro, N.; Suzumura, A.; et al. Secreted ectodomain of sialic acid-binding Ig-like lectin-9 and monocyte chemoattractant protein-1 promote recovery after rat spinal cord injury by altering macrophage polarity. J. Neurosci. 2015, 35, 2452–2464. [Google Scholar] [CrossRef]
- Nagashima, K.; Miwa, T.; Soumiya, H.; Ushiro, D.; Takeda-Kawaguchi, T.; Tamaoki, N.; Ishiguro, S.; Sato, Y.; Miyamoto, K.; Ohno, T.; et al. Priming with FGF2 stimulates human dental pulp cells to promote axonal regeneration and locomotor function recovery after spinal cord injury. Sci. Rep. 2017, 7, 13500. [Google Scholar] [CrossRef] [PubMed]
- Nicola, F.C.; Rodrigues, L.P.; Crestani, T.; Quintiliano, K.; Sanches, E.F.; Willborn, S.; Aristimunha, D.; Boisserand, L.; Pranke, P.; Netto, C.A. Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury. Braz. J. Med. Biol. Res. 2016, 49, e5319. [Google Scholar] [CrossRef]
- Nicola, F.D.C.; Marques, M.R.; Odorcyk, F.; Arcego, D.M.; Petenuzzo, L.; Aristimunha, D.; Vizuete, A.; Sanches, E.F.; Pereira, D.P.; Maurmann, N.; et al. Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis. Brain Res. 2017, 1663, 95–105. [Google Scholar] [CrossRef]
- Nishii, T.; Osuka, K.; Nishimura, Y.; Ohmichi, Y.; Ohmichi, M.; Suzuki, C.; Nagashima, Y.; Oyama, T.; Abe, T.; Kato, H.; et al. Protective Mechanism of Stem Cells from Human Exfoliated Deciduous Teeth in Treating Spinal Cord Injury. J. Neurotrauma 2024. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Nosrat, I.V.; Widenfalk, J.; Olson, L.; Nosrat, C.A. Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev. Biol. 2001, 238, 120–132. [Google Scholar] [CrossRef]
- Paes, S.M.; Castro, M.V.; Barbosa, R.M.; Politti Cartarozzi, L.; Coser, L.O.; Kempe, P.R.G.; Decarli, M.C.; Moraes, Â.M.; Barraviera, B.; Ferreira Júnior, R.S.; et al. Human dental pulp stem cell monolayer and spheroid therapy after spinal motor root avulsion in adult rats. Brain Res. 2023, 1802, 148229. [Google Scholar] [CrossRef] [PubMed]
- Taghipour, Z.; Karbalaie, K.; Kiani, A.; Niapour, A.; Bahramian, H.; Nasr-Esfahani, M.H.; Baharvand, H. Transplantation of undifferentiated and induced human exfoliated deciduous teeth-derived stem cells promote functional recovery of rat spinal cord contusion injury model. Stem Cells Dev. 2012, 21, 1794–1802. [Google Scholar] [CrossRef] [PubMed]
- Tao, N.; Dong, X.; Liu, C.; Lv, L.; Hu, F.; Zhang, H.; Li, X.; Geng, P.; Duan, H.; Wu, C.T.; et al. Co-overexpression of OPN, IGF-1 and CNTF augment the therapeutic effect of DPSC on spinal cord injury. Regen. Ther. 2023, 24, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Li, X.; Sun, L.; Guo, W.; Tian, W. Potential of human dental stem cells in repairing the complete transection of rat spinal cord. J. Neural Eng. 2017, 14, 026005. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.; Huang, Z.; Tu, Y.; Wu, Q.; Li, Z.; Zhang, Y.; Yu, H.; Zeng, A.; Huang, H.; Ye, J.; et al. A shear-thinning, ROS-scavenging hydrogel combined with dental pulp stem cells promotes spinal cord repair by inhibiting ferroptosis. Bioact. Mater. 2023, 22, 274–290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ye, W.; Zhao, M.; Long, L.; Xia, D.; Fan, Z. MLL1 inhibits the neurogenic potential of SCAPs by interacting with WDR5 and repressing HES1. Int. J. Oral Sci. 2023, 15, 48. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, X.; Feng, G.; Gu, Z.; Sun, Y.; Bao, G.; Xu, G.; Lu, Y.; Chen, J.; Xu, L.; et al. Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: Potential roles for spinal cord injury therapy. Cell Tissue Res. 2016, 366, 129–142. [Google Scholar] [CrossRef]
- Zhou, H.; Jing, S.; Xiong, W.; Zhu, Y.; Duan, X.; Li, R.; Peng, Y.; Kumeria, T.; He, Y.; Ye, Q. Metal-organic framework materials promote neural differentiation of dental pulp stem cells in spinal cord injury. J. Nanobiotechnol. 2023, 21, 316. [Google Scholar] [CrossRef]
- Zhu, S.; Ying, Y.; He, Y.; Zhong, X.; Ye, J.; Huang, Z.; Chen, M.; Wu, Q.; Zhang, Y.; Xiang, Z.; et al. Hypoxia response element-directed expression of bFGF in dental pulp stem cells improve the hypoxic environment by targeting pericytes in SCI rats. Bioact. Mater. 2021, 6, 2452–2466. [Google Scholar] [CrossRef] [PubMed]
- Ueda, T.; Inden, M.; Ito, T.; Kurita, H.; Hozumi, I. Characteristics and Therapeutic Potential of Dental Pulp Stem Cells on Neurodegenerative Diseases. Front. Neurosci. 2020, 14, 407. [Google Scholar] [CrossRef]
- Mead, B.; Logan, A.; Berry, M.; Leadbeater, W.; Scheven, B.A. Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: Comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS ONE 2014, 9, e109305. [Google Scholar] [CrossRef]
- Mita, T.; Furukawa-Hibi, Y.; Takeuchi, H.; Hattori, H.; Yamada, K.; Hibi, H.; Ueda, M.; Yamamoto, A. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behav. Brain Res. 2015, 293, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ma, L.; Du, C.; Wang, J.; Zhang, C.; Hu, L.; Wang, S. Dental pulp stem cells accelerate wound healing through CCL2-induced M2 macrophages polarization. iScience 2023, 26, 108043. [Google Scholar] [CrossRef]
- Li, C.; Liu, Y.; Deng, M.; Li, J.; Li, S.; Li, X.; Zuo, Y.; Shen, C.; Wang, Y. Comparison of the therapeutic effects of mesenchymal stem cells derived from human dental pulp (DP), adipose tissue (AD), placental amniotic membrane (PM), and umbilical cord (UC) on postmenopausal osteoporosis. Front. Pharmacol. 2024, 15, 1349199. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.Y.; Ni, S.Y.; Ma, K.; Ma, Y.S.; Wang, Z.S.; Zhao, X.L. Stem cells from human exfoliated deciduous teeth correct the immune imbalance of allergic rhinitis via Treg cells in vivo and in vitro. Stem Cell Res. Ther. 2019, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Yamaza, T.; Kentaro, A.; Chen, C.; Liu, Y.; Shi, Y.; Gronthos, S.; Wang, S.; Shi, S. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res. Ther. 2010, 1, 5. [Google Scholar] [CrossRef]
- Song, M.; Lee, J.H.; Bae, J.; Bu, Y.; Kim, E.C. Human Dental Pulp Stem Cells Are More Effective Than Human Bone Marrow-Derived Mesenchymal Stem Cells in Cerebral Ischemic Injury. Cell Transpl. 2017, 26, 1001–1016. [Google Scholar] [CrossRef]
- Janebodin, K.; Zeng, Y.; Buranaphatthana, W.; Ieronimakis, N.; Reyes, M. VEGFR2-dependent angiogenic capacity of pericyte-like dental pulp stem cells. J. Dent. Res. 2013, 92, 524–531. [Google Scholar] [CrossRef]
- Senthilkumar, S.; Venugopal, C.; Parveen, S.; Shobha, K.; Rai, K.S.; Kutty, B.M.; Dhanushkodi, A. Remarkable migration propensity of dental pulp stem cells towards neurodegenerative milieu: An in vitro analysis. Neurotoxicology 2020, 81, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Jue, S.S.; Cho, Y.A.; Kim, E.C. Comparison of the effects of human dental pulp stem cells and human bone marrow-derived mesenchymal stem cells on ischemic human astrocytes in vitro. J. Neurosci. Res. 2015, 93, 973–983. [Google Scholar] [CrossRef]
- Huang, A.H.; Snyder, B.R.; Cheng, P.H.; Chan, A.W. Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice. Stem Cells 2008, 26, 2654–2663. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, M.; Iohara, K.; Wakita, H.; Hattori, H.; Ueda, M.; Matsushita, K.; Nakashima, M. Dental pulp-derived CD31−/CD146− side population stem/progenitor cells enhance recovery of focal cerebral ischemia in rats. Tissue Eng. Part A 2011, 17, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Bronckaers, A.; Hilkens, P.; Fanton, Y.; Struys, T.; Gervois, P.; Politis, C.; Martens, W.; Lambrichts, I. Angiogenic properties of human dental pulp stem cells. PLoS ONE 2013, 8, e71104. [Google Scholar] [CrossRef]
- Hilkens, P.; Fanton, Y.; Martens, W.; Gervois, P.; Struys, T.; Politis, C.; Lambrichts, I.; Bronckaers, A. Pro-angiogenic impact of dental stem cells in vitro and in vivo. Stem Cell Res. 2014, 12, 778–790. [Google Scholar] [CrossRef] [PubMed]
- Menezes, K.; Rosa, B.G.; Freitas, C.; da Cruz, A.S.; de Siqueira Santos, R.; Nascimento, M.A.; Alves, D.V.L.; Bonamino, M.; Rossi, M.I.; Borojevic, R.; et al. Human mesenchymal stromal/stem cells recruit resident pericytes and induce blood vessels maturation to repair experimental spinal cord injury in rats. Sci. Rep. 2020, 10, 19604. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wen, L.L.; Li, Y.F.; Wu, K.M.; Duan, R.R.; Yao, Y.B.; Jing, L.J.; Gong, Z.; Teng, J.F.; Jia, Y.J. Exosomes derived from bone marrow mesenchymal stem cells protect the injured spinal cord by inhibiting pericyte pyroptosis. Neural Regen. Res. 2022, 17, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Vawda, R.; Badner, A.; Hong, J.; Mikhail, M.; Lakhani, A.; Dragas, R.; Xhima, K.; Barretto, T.; Librach, C.L.; Fehlings, M.G. Early Intravenous Infusion of Mesenchymal Stromal Cells Exerts a Tissue Source Age-Dependent Beneficial Effect on Neurovascular Integrity and Neurobehavioral Recovery After Traumatic Cervical Spinal Cord Injury. Stem Cells Transl. Med. 2019, 8, 639–649. [Google Scholar] [CrossRef]
- Apel, C.; Forlenza, O.V.; de Paula, V.J.; Talib, L.L.; Denecke, B.; Eduardo, C.P.; Gattaz, W.F. The neuroprotective effect of dental pulp cells in models of Alzheimer’s and Parkinson’s disease. J. Neural Transm. 2009, 116, 71–78. [Google Scholar] [CrossRef]
- Hao, P.; Liang, Z.; Piao, H.; Ji, X.; Wang, Y.; Liu, Y.; Liu, R.; Liu, J. Conditioned medium of human adipose-derived mesenchymal stem cells mediates protection in neurons following glutamate excitotoxicity by regulating energy metabolism and GAP-43 expression. Metab. Brain Dis. 2014, 29, 193–205. [Google Scholar] [CrossRef]
- Voulgari-Kokota, A.; Fairless, R.; Karamita, M.; Kyrargyri, V.; Tseveleki, V.; Evangelidou, M.; Delorme, B.; Charbord, P.; Diem, R.; Probert, L. Mesenchymal stem cells protect CNS neurons against glutamate excitotoxicity by inhibiting glutamate receptor expression and function. Exp. Neurol. 2012, 236, 161–170. [Google Scholar] [CrossRef]
- Watanabe, S.; Uchida, K.; Nakajima, H.; Matsuo, H.; Sugita, D.; Yoshida, A.; Honjoh, K.; Johnson, W.E.; Baba, H. Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment. Stem Cells 2015, 33, 1902–1914. [Google Scholar] [CrossRef]
- Nishida, F.; Zappa Villar, M.F.; Zanuzzi, C.N.; Sisti, M.S.; Camiña, A.E.; Reggiani, P.C.; Portiansky, E.L. Intracerebroventricular Delivery of Human Umbilical Cord Mesenchymal Stem Cells as a Promising Therapy for Repairing the Spinal Cord Injury Induced by Kainic Acid. Stem Cell Rev. Rep. 2020, 16, 167–180. [Google Scholar] [CrossRef]
- Gnanasegaran, N.; Govindasamy, V.; Mani, V.; Abu Kasim, N.H. Neuroimmunomodulatory properties of DPSCs in an in vitro model of Parkinson’s disease. IUBMB Life 2017, 69, 689–699. [Google Scholar] [CrossRef]
- Gnanasegaran, N.; Govindasamy, V.; Simon, C.; Gan, Q.F.; Vincent-Chong, V.K.; Mani, V.; Krishnan Selvarajan, K.; Subramaniam, V.; Musa, S.; Abu Kasim, N.H. Effect of dental pulp stem cells in MPTP-induced old-aged mice model. Eur. J. Clin. Investig. 2017, 47, 403–414. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.Y.; Ren, J.L.; Xu, F.; Chen, F.M.; Li, A. Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats. Stem Cell Res. Ther. 2017, 8, 198. [Google Scholar] [CrossRef]
- Oh, J.S.; Kim, K.N.; An, S.S.; Pennant, W.A.; Kim, H.J.; Gwak, S.J.; Yoon, D.H.; Lim, M.H.; Choi, B.H.; Ha, Y. Cotransplantation of mouse neural stem cells (mNSCs) with adipose tissue-derived mesenchymal stem cells improves mNSC survival in a rat spinal cord injury model. Cell Transpl. 2011, 20, 837–849. [Google Scholar] [CrossRef]
- Fujii, H.; Matsubara, K.; Sakai, K.; Ito, M.; Ohno, K.; Ueda, M.; Yamamoto, A. Dopaminergic differentiation of stem cells from human deciduous teeth and their therapeutic benefits for Parkinsonian rats. Brain Res. 2015, 1613, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Saiki, C.; Okamura, H. Oxidative Stress-Tolerant Stem Cells from Human Exfoliated Deciduous Teeth Decrease Hydrogen Peroxide-Induced Damage in Organotypic Brain Slice Cultures from Adult Mice. Int. J. Mol. Sci. 2019, 20, 1858. [Google Scholar] [CrossRef] [PubMed]
- Kitase, Y.; Sato, Y.; Ueda, K.; Suzuki, T.; Mikrogeorgiou, A.; Sugiyama, Y.; Matsubara, K.; Tsukagoshi Okabe, Y.; Shimizu, S.; Hirata, H.; et al. A Novel Treatment with Stem Cells from Human Exfoliated Deciduous Teeth for Hypoxic-Ischemic Encephalopathy in Neonatal Rats. Stem Cells Dev. 2020, 29, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Choe, Y.H.; Khan, M.; Bharti, D.; Shivakumar, S.B.; Lee, H.J.; Son, Y.B.; Shin, Y.; Lee, S.L.; Park, B.W.; et al. Dental pulp-derived stem cells can counterbalance peripheral nerve injury-induced oxidative stress and supraspinal neuro-inflammation in rat brain. Sci. Rep. 2018, 8, 15795. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Jo, S.H.; Kim, W.H.; Kweon, O.K. Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Res. Ther. 2015, 6, 229. [Google Scholar] [CrossRef] [PubMed]
- Allahdadi, K.J.; de Santana, T.A.; Santos, G.C.; Azevedo, C.M.; Mota, R.A.; Nonaka, C.K.; Silva, D.N.; Valim, C.X.R.; Figueira, C.P.; Dos Santos, W.L.C.; et al. IGF-1 overexpression improves mesenchymal stem cell survival and promotes neurological recovery after spinal cord injury. Stem Cell Res. Ther. 2019, 10, 146. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, H.; Uchida, K.; Guerrero, A.R.; Watanabe, S.; Sugita, D.; Takeura, N.; Yoshida, A.; Long, G.; Wright, K.T.; Johnson, W.E.; et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J. Neurotrauma 2012, 29, 1614–1625. [Google Scholar] [CrossRef]
- Bao, C.S.; Li, X.L.; Liu, L.; Wang, B.; Yang, F.B.; Chen, L.G. Transplantation of Human umbilical cord mesenchymal stem cells promotes functional recovery after spinal cord injury by blocking the expression of IL-7. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 6436–6447. [Google Scholar] [CrossRef]
- Ding, G.; Niu, J.; Liu, Y. Dental pulp stem cells suppress the proliferation of lymphocytes via transforming growth factor-β1. Hum. Cell 2015, 28, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Gholaminejhad, M.; Jameie, S.B.; Abdi, M.; Abolhassani, F.; Mohammed, I.; Hassanzadeh, G. All-Trans Retinoic Acid-Preconditioned Mesenchymal Stem Cells Improve Motor Function and Alleviate Tissue Damage After Spinal Cord Injury by Inhibition of HMGB1/NF-κB/NLRP3 Pathway Through Autophagy Activation. J. Mol. Neurosci. 2022, 72, 947–962. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.H.; Fu, C.H.; Xu, Y.; Yin, X.M.; Cao, Y.; Lin, F.Y. Extracellular Vesicles Derived from Epidural Fat-Mesenchymal Stem Cells Attenuate NLRP3 Inflammasome Activation and Improve Functional Recovery After Spinal Cord Injury. Neurochem. Res. 2020, 45, 760–771. [Google Scholar] [CrossRef]
- Kim, J.W.; Ha, K.Y.; Molon, J.N.; Kim, Y.H. Bone marrow-derived mesenchymal stem cell transplantation for chronic spinal cord injury in rats: Comparative study between intralesional and intravenous transplantation. Spine 2013, 38, E1065–E1074. [Google Scholar] [CrossRef]
- White, S.V.; Czisch, C.E.; Han, M.H.; Plant, C.D.; Harvey, A.R.; Plant, G.W. Intravenous Transplantation of Mesenchymal Progenitors Distribute Solely to the Lungs and Improve Outcomes in Cervical Spinal Cord Injury. Stem Cells 2016, 34, 1812–1825. [Google Scholar] [CrossRef] [PubMed]
- Novikova, L.N.; Brohlin, M.; Kingham, P.J.; Novikov, L.N.; Wiberg, M. Neuroprotective and growth-promoting effects of bone marrow stromal cells after cervical spinal cord injury in adult rats. Cytotherapy 2011, 13, 873–887. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zeng, Y.S.; Ma, Y.H.; Lu, L.Y.; Du, B.L.; Zhang, W.; Li, Y.; Chan, W.Y. Bone marrow mesenchymal stem cells in a three-dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis, and reduce cavity formation in experimental spinal cord injury. Cell Transpl. 2011, 20, 1881–1899. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.L.; Zhang, X.J.; Zhang, M.Y.; Yan, Z.J.; Xu, Z.M.; Xu, R.X. Transplantation of Human Amniotic Mesenchymal Stem Cells Promotes Functional Recovery in a Rat Model of Traumatic Spinal Cord Injury. Neurochem. Res. 2016, 41, 2708–2718. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Chen, Y.; Zhang, H.; Min, S.; Yu, B.; He, B.; Jin, A. Comparison of mesenchymal stromal cells from human bone marrow and adipose tissue for the treatment of spinal cord injury. Cytotherapy 2013, 15, 434–448. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Liu, O.; Zhang, H.; Zhou, Y.; Zhou, D.; Zhou, Z.; He, Y.; Tang, Z.; Wang, S. Human dental pulp stem cells regulate allogeneic NK cells’ function via induction of anti-inflammatory purinergic signalling in activated NK cells. Cell Prolif. 2019, 52, e12595. [Google Scholar] [CrossRef] [PubMed]
- Kwack, K.H.; Lee, J.M.; Park, S.H.; Lee, H.W. Human Dental Pulp Stem Cells Suppress Alloantigen-induced Immunity by Stimulating T Cells to Release Transforming Growth Factor Beta. J. Endod. 2017, 43, 100–108. [Google Scholar] [CrossRef]
- Liu, O.; Xu, J.; Ding, G.; Liu, D.; Fan, Z.; Zhang, C.; Chen, W.; Ding, Y.; Tang, Z.; Wang, S. Periodontal ligament stem cells regulate B lymphocyte function via programmed cell death protein 1. Stem Cells 2013, 31, 1371–1382. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, Q.; Zhang, Z.; Zheng, Y.; Sun, X.; Cao, X.; Gong, A.; Cui, Y.; He, Q.; Jiang, P. Fibrin scaffolds containing ectomesenchymal stem cells enhance behavioral and histological improvement in a rat model of spinal cord injury. Cells Tissues Organs 2013, 198, 35–46. [Google Scholar] [CrossRef]
- Qiu, X.C.; Jin, H.; Zhang, R.Y.; Ding, Y.; Zeng, X.; Lai, B.Q.; Ling, E.A.; Wu, J.L.; Zeng, Y.S. Donor mesenchymal stem cell-derived neural-like cells transdifferentiate into myelin-forming cells and promote axon regeneration in rat spinal cord transection. Stem Cell Res. Ther. 2015, 6, 105. [Google Scholar] [CrossRef]
- Spejo, A.B.; Chiarotto, G.B.; Ferreira, A.D.F.; Gomes, D.A.; Ferreira, R.S., Jr.; Barraviera, B.; Oliveira, A.L.R. Neuroprotection and immunomodulation following intraspinal axotomy of motoneurons by treatment with adult mesenchymal stem cells. J. Neuroinflamm. 2018, 15, 230. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.L.; Yin, L.W.; Zhang, Z.; Liu, J.; Liu, S.J.; Zhang, L.F.; Wang, T.H. Neurotrophin expression in neural stem cells grafted acutely to transected spinal cord of adult rats linked to functional improvement. Cell Mol. Neurobiol. 2012, 32, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Jin, Z.S.; Wang, C.M.; Yan, X.F.; Mao, Y.Q.; Chen, S. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Improves Spinal Cord Function After Injury in Rats by Activating Autophagy. Drug Des. Devel. Ther. 2020, 14, 1621–1631. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Liu, Y.; Liu, X.; Zhang, Q.; Chen, L.; Peng, J.; Ao, J.; Li, Y.; Wang, S.; Song, G.; et al. Engrafted peripheral blood-derived mesenchymal stem cells promote locomotive recovery in adult rats after spinal cord injury. Am. J. Transl. Res. 2017, 9, 3950–3966. [Google Scholar] [PubMed]
- Wang, J.; Wang, X.; Sun, Z.; Wang, X.; Yang, H.; Shi, S.; Wang, S. Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev. 2010, 19, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Leong, W.K.; Henshall, T.L.; Arthur, A.; Kremer, K.L.; Lewis, M.D.; Helps, S.C.; Field, J.; Hamilton-Bruce, M.A.; Warming, S.; Manavis, J.; et al. Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms. Stem Cells Transl. Med. 2012, 1, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Uchida, K.; Nakajima, H.; Guerrero, A.R.; Watanabe, S.; Hirai, T.; Takeura, N.; Liu, S.Y.; Johnson, W.E.; Baba, H. Blockade of interleukin 6 signaling improves the survival rate of transplanted bone marrow stromal cells and increases locomotor function in mice with spinal cord injury. J. Neuropathol. Exp. Neurol. 2013, 72, 980–993. [Google Scholar] [CrossRef] [PubMed]
- Coyne, T.M.; Marcus, A.J.; Woodbury, D.; Black, I.B. Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cells 2006, 24, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Ide, C.; Nakai, Y.; Nakano, N.; Seo, T.B.; Yamada, Y.; Endo, K.; Noda, T.; Saito, F.; Suzuki, Y.; Fukushima, M.; et al. Bone marrow stromal cell transplantation for treatment of sub-acute spinal cord injury in the rat. Brain Res. 2010, 1332, 32–47. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, H.; Xie, B.; Liu, H.; Chen, Y.; Jiao, G.; Wang, H. Implanted spike wave electric stimulation promotes survival of the bone marrow mesenchymal stem cells and functional recovery in the spinal cord injured rats. Neurosci. Lett. 2011, 491, 73–78. [Google Scholar] [CrossRef]
- Nandoe Tewarie, R.D.; Hurtado, A.; Ritfeld, G.J.; Rahiem, S.T.; Wendell, D.F.; Barroso, M.M.; Grotenhuis, J.A.; Oudega, M. Bone marrow stromal cells elicit tissue sparing after acute but not delayed transplantation into the contused adult rat thoracic spinal cord. J. Neurotrauma 2009, 26, 2313–2322. [Google Scholar] [CrossRef] [PubMed]
- Kholodenko, I.V.; Kholodenko, R.V.; Majouga, A.G.; Yarygin, K.N. Apoptotic MSCs and MSC-Derived Apoptotic Bodies as New Therapeutic Tools. Curr. Issues Mol. Biol. 2022, 44, 351. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; Wang, M.; Zhang, B.; Wang, X.; Wanyan, P. Clinical translation of stem cell therapy for spinal cord injury still premature: Results from a single-arm meta-analysis based on 62 clinical trials. BMC Med. 2022, 20, 284. [Google Scholar] [CrossRef]
- Paul, C.; Samdani, A.F.; Betz, R.R.; Fischer, I.; Neuhuber, B. Grafting of human bone marrow stromal cells into spinal cord injury: A comparison of delivery methods. Spine 2009, 34, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, A.; Barshinger, A.L.; Swanger, S.A.; Madhavani, V.; Shumsky, J.S.; Neuhuber, B.; Fischer, I. Lumbar puncture delivery of bone marrow stromal cells in spinal cord contusion: A novel method for minimally invasive cell transplantation. J. Neurotrauma 2006, 23, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Muthu, S.; Jeyaraman, M.; Gulati, A.; Arora, A. Current evidence on mesenchymal stem cell therapy for traumatic spinal cord injury: Systematic review and meta-analysis. Cytotherapy 2021, 23, 186–197. [Google Scholar] [CrossRef]
- Oliveri, R.S.; Bello, S.; Biering-Sørensen, F. Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: Systematic review with meta-analyses of rat models. Neurobiol. Dis. 2014, 62, 338–353. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; Wang, R.; Li, D.; Chen, J.; Zhang, B.; Wang, M.; Wang, X.; Wanyan, P. Spinal Cord Injury: A Systematic Review and Network Meta-Analysis of Therapeutic Strategies Based on 15 Types of Stem Cells in Animal Models. Front. Pharmacol. 2022, 13, 819861. [Google Scholar] [CrossRef] [PubMed]
- Basso, D.M.; Beattie, M.S.; Bresnahan, J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma 1995, 12, 1–21. [Google Scholar] [CrossRef]
- Basso, D.M.; Fisher, L.C.; Anderson, A.J.; Jakeman, L.B.; McTigue, D.M.; Popovich, P.G. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J. Neurotrauma 2006, 23, 635–659. [Google Scholar] [CrossRef]
Reference | DSC Type and Groups | DSC Dose | Delivery Method | Injury Model | Vascular Events | Apoptosis and Cell Loss | Biochemical Events | Inflammatory Events | Structural Events | Significant DSC Activity | Functional Benefit(s) |
---|---|---|---|---|---|---|---|---|---|---|---|
[95] | HeP-hDPSCs, HeP-bFGF-hDPSCs | 1 × 106 | Intra-spinal—immediate | Mice: Thoracic compression | ✓ | ✓ | HeP + bFGF + DPSCs reduced pro-inflammatory factors (decreased in IL-6 and TNF-α); modulation of NF-κB; neuroprotection; promoted neurite and improved cell sprouting; increases in MAP-2 and Ace-Tubulin; nerve repair | Not mentioned | |||
[96] | PF-OMSF/hDPSCs, PF-OMSF@JK2/hDPSCs | 1 × 106 | Intra-spinal—immediate | Rats: Thoracic compression | ✓ | ✓ | Reduced pro-inflammatory factors (decreased in IL-6 and TNF-α); modulation of NF-κB; neuroprotection; promoted neurite and improved cell sprouting; increases in MAP-2 and Ace-Tubulin | Not mentioned | |||
[97] | hDPSCs | 8 × 105 | Intra-spinal—7d or 28d post-SCI | Mice: Thoracic compression | ✓ | ✓ | Increased white matter sparing; increased neurotrophic factor expression, more so in 7 dpi engraftment group; improved tissue preservation | Improved motor function (BMS) in both groups compared to the media control | |||
[98] | SHED-CM, SHED-CM + Col | 3 μL SHED-CM | Intra-spinal—immediate | Rats: Thoracic compression | Not mentioned | SHED-CM alone did not have any effects; SHED-CM delivered with a collagen scaffold demonstrated locomotor, motor, sensory, and sensory–motor improvements | |||||
[99] | SHED-CM, SHED-CM + Col | 3 μL SHED-CM | Intra-spinal—immediate | Rats: Thoracic compression | ✓ | ✓ | No effect of SHED-CM alone; SHED-CM delivered with collagen scaffold preserved gray and white matter, reduced lesion volume, limited neuronal cell loss, and limited oligodendrocyte cell loss | Not mentioned | |||
[100] | hDPSCs + scaffold, hDPSCs + scaffold + HAMECs (prevascularized) | 0.45 × 106 | Intra-spinal—immediate | Rats: Thoracic transection | ✓V ✓ | ✓V ✓ | In vitro angiogenesis and neurogenesis; prevascularized DPSC scaffolds promote axon preservation (B3-tub), myelin deposition (MBP expression), and vessel formation and structure (CD31 expression, vessel volume, and vessel density); partially restored spinal cord microstructure | Prevascularized DPSC scaffolds only improved sensory recovery and small improvement in motor recovery | |||
[101] | hDPSCs + PRP, hDPSCs | 2.5 × 105 | Intra-spinal—3d post-SCI | Rats: Thoracic contusion | ✓ | ✓ | DPSCs reduced syrinx formation, apoptosis (TUNEL Assay); DPSCs survival up to 4 weeks and differentiation into neurons (GFAP and NeuN staining) | Greatest motor function (BBB) improvement in hDPSC + PRP group (no comparisons) | |||
[102] | hDPSCs | 3 × 105 | Intra-spinal—immediate | Rats: Thoracic contusion | ✓ | Neural and glial cell differentiation (co-expression of GFAP, NF, nestin, BNDF, and vimentin); reduced pro-inflammatory factor expression (IL-1β, MPO, MIP2, and IL-6) and increased anti-inflammatory expression (IL-1ra and EP3) | Improved motor function (BBB) in DPSC-treated group | ||||
[103] | hSCAP, hSCAP + PAMs, hSCAP + BDNF-PAMs | 2 × 105 | Intra-spinal—immediate | Rats: Thoracic contusion | ✓ | ✓ | Reduced CD68+ inflammation; reduced iNOS staining; GAP-43 and βIII-Tubulin axon growth; serotenergic fiber growth | Greatest motor function (BBB) improvement in SCAP + BDNF-PAMs compared to both SCAP and the vehicle control | |||
[104] | hDPSC-derived exosomes | N/A | Tail vein—30 min post-SCI | Mice: Thoracic contusion | ✓ | ✓V ✓ | ✓ | In vitro and in vivo LPS-induced ROS reduction, reduced M1 macrophage polarization and reduced P-ERK/ERK levels; in vivo reduction in M1 macrophage number; slight neuronal preservation (NF200 and NeuN staining) and histological reductions in structural damage | Improved motor function (BMS) in the exosome-treated group | ||
[105] | hDPSCs | 200μL DPSC-CM | Intraperitoneal—daily for 3d post-surgery | Rats: Thoracic contusion | ✓ | ✓V ✓ | ✓ | In vitro reduction in LPS-induced NLRP3, CASPASE-1, IL-1β, and IL-18; reduced lesion volume; improved motor-evoked potentials and somatosensory-evoked potentials in anterior fontanelle and hind limb skeletal muscles, respectively; reduced NLRP3, IL-1β, and IL-18 in vivo; reduced microglial pyroptosis; enhanced neural repair (NF200, Tuj1, and MBP staining); reduced glial scarring (GFAP staining) | Improved motor function (BBB, inclined plane test) compared to the untreated group | ||
[106] | HeP-hDPSCs, HeP-bFGF-hDSPCs | 10 μL of hydrogel w/ or w/o cells (no cell dose provided) | Intra-spinal—immediate | Rats: Thoracic compression | ✓ | ✓ | Reduced apoptotic factor expression (Bax and Caspase-3) and increased anti-apoptotic factor expression (Bcl2) in HeP-bFGF-DSPC group; increased neurogenesis (GAP43) and myelination (MBP); increased tissue and ventral motor neuron preservation | Greatest motor function (BBB, inclined plane test) and sensory function (Reuters test) improvements in HeP-bFGF-DSPC and HP-DPSC groups | |||
[107] | SHED, SHED-CM | 1 × 106 + 1 × 105 | Intra-spinal fibrin glue + intrathecal pump CM—immediate | Rats: Thoracic contusion | ✓V ✓ | ✓ | SHED and SHED-CM reduced tissue loss and spared serotonergic fibers and lesion size; SHED-CM suppressed pro-inflammatory mediators for 1 wk after injury (IL-1β and TNFα), increased expression of anti-inflammatory IL-10, TGF-β1, VEGF, CD206, and Arg-1; increased M2 macrophage phenotypes; in vitro M2 macrophage phenotype induction | SHED improved motor function (BBB) compared to the PBS control; SHED-CM improved motor function (BBB) compared to the DMEM control and BMSC-CM | |||
[108] | hDPSCs + FGF2, hDPSCs | 1 × 106 | Intra-spinal—immediate | Rats: Thoracic transection | ✓ | ✓ | DPSCs and DPSC-FGF2 promoted axon regeneration (GAP-43 staining), DPSC-FGF2 more so; DPSC-FGF2 increased VEGF mRNA expression | FGF2-pretreated DPSCs significantly improved motor function (BBB) compared to the vehicle control and DPSC-only treated groups | |||
[94] | SHED | 3 × 105 | Intra-spinal—1h post-SCI | Rats: Thoracic contusion | ✓ | SHED increased neural progenitors (vimentin); SHED reduced astrocytic hypertrophy (GFAP) | Improved motor function (BBB) compared to the untreated group | ||||
[109] | SHED, SHED + TT | 3 × 105 | Intra-spinal—1h post-SCI | Rats: Thoracic contusion | ✓ | ✓ | SHED treatment only reduced cystic cavity areas and glial–scar barrier (GFAP) caudally; SHED only increased myelin (MBP) and axonal preservation (NF-M); SHEDs only reduced intra-spinal TNFα levels (ELISA) | SHED improved motor function (BBB) compared to the untreated group | |||
[110] | SHED | 3 × 105 | Intra-spinal—1h post-SCI | Rats: Thoracic contusion | ✓ | ✓ | ✓ | ✓ | SHED treatment reduced cystic cavity areas caudally and in the lesion epicenter; motor neuron preservation and reduction in neural apoptosis; reduced T-cell infiltration and TNFα levels; reduced excitotoxic EAAT3 expression | Improved motor function (BBB) compared to the untreated group | |
[111] | SHED | 2 × 105 | Intra-spinal—immediate | Rats: Thoracic compression | ✓ | SHED reduced p-STAT3, GFAP expression; reduced CSPG | Improved motor function (BBB, inclined plane test) compared to the untreated group | ||||
[112] | Rat dental pulp | N/A | Intra-spinal—immediate | Rats: Lumbar hemisection | ✓ | Increased motor neuron survival | None mentioned | ||||
[113] | hDPSCs (monolayer-grown), hDPSCs (spheroid-grown) | 3 × 105 | Intra-spinal fibrin glue—immediate | Rats: Lumbar L4-6 spinal root avulsion | ✓ | ✓ | ✓ | Increased motor neuron survival; reduced astrocyte proliferation (GFAP); reduced microglial proliferation (IBA1); preservation of neural circuitry (synatophysin); mixed inflammatory signaling changes | Monolayer DPSCs improved motor function (peroneal nerve functional recovery, base of support hind paws, max contact area, and step sequence regularity) | ||
[87] | hDPSCs, SHED | 1 × 106 + 1 × 105 | Intra-spinal fibrin glue—immediate | Rats: Thoracic transection | ✓ | ✓ | SHED regenerated transected corticospinal tract and seritonergic axons (DPSC not measured); SHED inhibited Rho GTPase growth inhibitor (DPSCs not measured); SHED preserved myelin sheath (Fluoromyelin and MBP) and differentiated into oligodendrocytes (DPSCs not measured); SHED reduced apoptosis of neural cells (TUNEL assay) | SHED and DPSC groups improved motor function (BBB) compared to the untreated group | |||
[114] | SHED, iSHED | 0.5 × 106 | Intra-spinal—7d post-SCI | Rats: Thoracic contusion | SHED demonstrated greater affinity for astrocytic differentiation (GFAP); iSHEDs demonstrated greater affinity for oligodendral and neural differentiation (MBP and NG2) | SHED and iSHED improved motor function (BBB), more significant in the iSHED group | |||||
[115] | hDPSCs, DPSC-OIC | 4 × 105 | Intra-spinal—immediate | Mice: Thoracic contusion | ✓ | ✓ | ✓V | ✓V ✓ | In vitro DPSC supernatant promoted HT-22 cell line axonal length; in vitro DPSC supernatant protected HT-22 cells from H2O2 oxidative stress-induced apoptosis; DPSC-OIC reduced hemorrhage and edema (MR imaging); DPSCs and DPSC-OIC reduced general spinal cord apoptosis (Caspase-3) and increased general cell proliferation (Ki-67); DPSCs and DPSC-OIC increased neural progenitor marker expression (Nestin) and DPSC-OIC increased progenitor marker expression (Sox2); DPSCs and DPSC-OIC reduced axon inhibitory factor NG2 and increased axon growth promoting factor fironectin | DPSCs and DPSC-OIC groups improved motor function (BMS), DPSC-OIC significantly more than DPSCs only at 28d post-SCI | |
[116] | hDFSCs, hSCAP, hDPSCs | 2.5 × 105 | Intra-spinal—immediate | Rats: Thoracic transection | ✓ | ✓V ✓ | ✓ | In vitro inhibition of general PBMC proliferation by all stem cells; promoted spinal tissue structure and neuron preservation; reduced IL-1β, RhoA, and ARHGAP growth inhibitory factors, and SUR1 necrosis and hemorrhage by all stem cells; neuronal and oligodendral differentiation (NeuN and MBP staining) | All stem cell groups improved motor function (BBB) compared to the untreated group | ||
[117] | hDPSCs + TPA@laponite shear-thinning hydrogel | Not provided | 10 μL hydrogel intra-spinal—immediate | Mice: Thoracic contusion | ✓ | ✓ | ✓ | ✓ | Reduced lipid peroxidation (4HNE staining); increased neuronal survival closer to injury site (NeuN staining); reduced oxidation promotor expression (NOX2, GPX4, and xCT); preserved tissue integrity; reduction in ferroptosis markers; reduced fibrous blood vessel scarring and improved blood vessel organization; improved axonal regeneration (NF200 staining); regulation of excitotoxicity by reduction in Glutaminergic synapses and increase in GABAergic synapses | Improved motor function (BMS, gait mark analysis, and EMG recordings) compared to the hydrogel only and untreated groups | |
[118] | hSCAP + ECM gel + Scramsh, hSCAP + ECM gel + MLL1sh | 2 × 106 | Intra-spinal—immediate | Rats: Thoracic hemisection | ✓ | MLL1 knockdown in SCAP reduced lesion cavities and scars than SCAP + scramsh group; increased neural progenitors (Nestin staining); increased axonal regeneration (NEFM staining); | MLL1 knockdown in SCAP promoted functional recovery (BBB) | ||||
[119] | hDPSCs, hDPSC + chitosan scaffold | 2.5 × 105 | Intra-spinal—7d post-SCI | Rats: Thoracic contusion | ✓ | ✓ | Reduced tissue loss, apoptotic cells and axon degradation (H&E staining); reduced general apoptosis (caspase-3 expression and TUNEL staining) | DPSCs and DPSC + Chitosan scaffold groups improved motor function (BBB), more so in DPSC + Chitosan scaffold group | |||
[120] | hDPSCs + GelMA hydrogel, DPSC + ZIF-8 + GelMA hydrogel | 0.5 × 106 | 10 μL hydrogel intra-spinal—24 h post-SCI | Rats: Thoracic compression | ✓ | ✓ | ✓ | Improved tissue integrity; increased neural and blood vessel regeneration (βIII-tubulin and VEGF-α); restoration of spinal zinc levels; reduced general apoptosis (TUNEL staining) | DPSCs and DPSC + ZIF8 improved motor function (BBB, inclined plan test), DPSC + ZIF8 more so, compared to the untreated group | ||
[121] | hDPSCs, AAV-5HRE-bFGF-DPSCs | 5 × 105 | Intra-spinal—7d post-SCI | Rats: Thoracic contusion | ✓ | ✓ | ✓ | Differentiation into pericytes, secretion of bFGF, and promotion of pericyte adhesion to vascular endothelial cells to regulate vascular diameter and reduce hypoxia; increased neuron survival and axon regeneration (NeuN and GAP43 staining); inhibited autophagy; reduced astrocytic scar (GFAP and laminin staining) | DPSCs and AAV-5HRE-bFGF-DPSCs improved motor function (BBB, inclined plane test), more so in AAV-5HRE-bFGF-DPSCs group, compared to the untreated group |
SCI/Non-SCI | Refer-ence | Stem Cell Types | Study Details | Secondary Injury Target Investigated | Superior DSC Activity Compared to Other MSCs |
---|---|---|---|---|---|
SCI | [107] | SHED vs. BMSCs | Rat SCI contusion model; cell free CM or SHED IS engraftment; in vitro analysis | Neuroinflammation; Angiogenesis; Apoptosis | CM functional recovery; spinal cord M2 gene expression; in vitro CM M2 macrophage induction; VEGF secretion; neuroprotective and anti-apoptotic factor release |
SCI | [87] | hDPSCs, SHED vs. hBMSCs | Rat SCI transection model; SHED IS engraftment; in vitro analysis | Apoptosis/Neuro-protection | Neurotrophin expression; functional recovery; in vitro neurite extension |
Non-SCI | [125] | hDPSCs vs. hPDLSCs, hBMSCs, hAMSCs | Mouse palatal mucosa injury model; stem cell injection | Structural events; Neuroinflammation | DPSC tissue regeneration; anti-inflammatory macrophage polarization |
Non-SCI | [126] | hDPSCs vs. hAMSCs, hUMSCs | Mouse osteoporosis model; tail vein engraftment | Inflammation | Immunoregulatory potential of T-cell and macrophage anti-inflammatory polarization |
Non-SCI | [127] | SHED vs. hBMSCs | Mouse allergic rhinitis model; IV engraftment | Inflammation | Reduced serum IgE and IgG1 levels; decreased inflammatory cytokines in spleen; modulation of T cells |
Non-SCI | [128] | SHED vs. hBMSCs | Mouse systemic lupus erythematosus model; tail vein engraftment | Inflammation | Increased Treg cells to modulate inflammation |
Non-SCI | [129] | hDPSCs vs. hBMSCs | Rat stroke model; hDPSC IV engraftment; in vitro ischemia analysis | Angiogenesis | IV engraftment efficacy; angiogenesis; in vitro neuroprotection; CM in vitro capillary formation |
Non-SCI | [124] | SHED | Mouse Alzheimer’s disease model; SHED CM intranasal administration | Oxidative stress; Neuroinflammation; Neuroprotection/Anti-apoptosis | 3-NT reduction; in vivo anti-inflammatory environment induction; neurotrophin release |
Non-SCI | [130] | Murine DPSCs vs. BMSCs | In vitro and in vivo naïve mouse; tibialis anterior muscle injection | Angiogenesis | In vitro vessel formation; VEGF expression; in vivo vessel formation |
Non-SCI in vitro | [90] | hDPSCs vs. hBMSCs | In vitro trigeminal and dorsal root ganglia microfluidic assay | Apoptosis/Neuro-protection | Neurotrophin expression; in vitro neuronal culture axon growth |
Non-SCI in vitro | [123] | hDPSCs vs. hBMSCs vs. hAMSCs | In vitro axotomized rat RGC analysis | Neuroprotection/Neuritogenesis | RGC survival vs. hAMSCs; RGC neurite extension; neurotrophin expression; VEGF expression |
Non-SCI in vitro | [131] | hDPSCs vs. hBMSCs | In vitro neurodegeneration analysis | Migration | Migration to neurodegenerative hippocampal neurons in vitro; expression of homing factors |
Non-SCI in vitro | [88] | hDPSCs, hDFSCs, hSCAP vs. hBMSCs | In vitro neural differentiation analysis | Neural differentiation | Neural marker expression; CM induced neural differentiation of pre-neuroblastic cell line |
Non-SCI in vitro | [132] | hDPSCs vs. hBMSCs | In vitro ischemia analysis | Oxidative stress | Ischemia-induced astrocyte death reduction by cells and CM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jenkner, S.; Clark, J.M.; Gronthos, S.; O’Hare Doig, R.L. Molars to Medicine: A Focused Review on the Pre-Clinical Investigation and Treatment of Secondary Degeneration following Spinal Cord Injury Using Dental Stem Cells. Cells 2024, 13, 817. https://doi.org/10.3390/cells13100817
Jenkner S, Clark JM, Gronthos S, O’Hare Doig RL. Molars to Medicine: A Focused Review on the Pre-Clinical Investigation and Treatment of Secondary Degeneration following Spinal Cord Injury Using Dental Stem Cells. Cells. 2024; 13(10):817. https://doi.org/10.3390/cells13100817
Chicago/Turabian StyleJenkner, Sandra, Jillian Mary Clark, Stan Gronthos, and Ryan Louis O’Hare Doig. 2024. "Molars to Medicine: A Focused Review on the Pre-Clinical Investigation and Treatment of Secondary Degeneration following Spinal Cord Injury Using Dental Stem Cells" Cells 13, no. 10: 817. https://doi.org/10.3390/cells13100817