Sex-Specific Impact of Fkbp5 on Hippocampal Response to Acute Alcohol Injection: Involvement in Alterations of Metabolism-Related Pathways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Primary Postnatal Neuron Culture
2.3. Immunocytochemistry and Quantification
2.4. β-Galactosidase Staining
2.5. Alcohol Injection
2.6. RNA-Sequencing and Data Analysis
2.7. Western Blot Analysis
2.8. Quantitative Real-Time PCR
3. Results
3.1. Fkbp5 KO Has Enhanced MitoTracker Signal in Cultured Neurons
3.2. Fkbp5 Expression in Brain Regions of Male and Female Mice
3.3. Sex Differences in Hippocampal Gene Alterations of KO and WT Mice with and without Alcohol
3.4. Pathway Analysis of Differentially Expressed Genes in KO and WT Mice in Naïve Condition
3.5. Alcohol Affects the Expression of Genes Related to Metabolism and Neuronal Development
3.6. Common and Sex-Specific Response to Alcohol Injection
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCloskey, M.S.; Berman, M.E.; Echevarria, D.J.; Coccaro, E.F. Effects of Acute Alcohol Intoxication and Paroxetine on Aggression in Men. Alcohol. Clin. Exp. Res. 2009, 33, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Marín, L.; Flores-López, M.; Pastor, A.; Gavito, A.L.; Suárez, J.; de la Torre, R.; Pavón, F.J.; Rodríguez de Fonseca, F.; Serrano, A. Acute Stress and Alcohol Exposure during Adolescence Result in an Anxious Phenotype in Adulthood: Role of Altered Glutamate/Endocannabinoid Transmission Mechanisms. Prog. Neuropsychopharmacol. Biol. Psychiatry 2022, 113, 110460. [Google Scholar] [CrossRef] [PubMed]
- Rivier, C.; Lee, S. Acute Alcohol Administration Stimulates the Activity of Hypothalamic Neurons That Express Corticotropin-Releasing Factor and Vasopressin. Brain Res. 1996, 726, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Szabo, G.; Saha, B. Alcohol’s Effect on Host Defense. Alcohol. Res. 2015, 37, 159–170. [Google Scholar] [PubMed]
- Roy, A.; Mittal, N.; Zhang, H.; Pandey, S.C. Modulation of Cellular Expression of Glucocorticoid Receptor and Glucocorticoid Response Element-DNA Binding in Rat Brain during Alcohol Drinking and Withdrawal. J. Pharmacol. Exp. Ther. 2002, 301, 774–784. [Google Scholar] [CrossRef]
- Lee, S.; Selvage, D.; Hansen, K.; Rivier, C. Site of Action of Acute Alcohol Administration in Stimulating the Rat Hypothalamic-Pituitary-Adrenal Axis: Comparison between the Effect of Systemic and Intracerebroventricular Injection of This Drug on Pituitary and Hypothalamic Responses. Endocrinology 2004, 145, 4470–4479. [Google Scholar] [CrossRef]
- Prendergast, M.A.; Little, H.J. Adolescence, Glucocorticoids and Alcohol. Pharmacol. Biochem. Behav. 2007, 86, 234–245. [Google Scholar] [CrossRef]
- Besheer, J.; Fisher, K.R.; Grondin, J.J.M.; Cannady, R.; Hodge, C.W. The Effects of Repeated Corticosterone Exposure on the Interoceptive Effects of Alcohol in Rats. Psychopharmacology 2012, 220, 809–822. [Google Scholar] [CrossRef]
- Schiene, C.; Fischer, G. Enzymes That Catalyse the Restructuring of Proteins. Curr. Opin. Struct. Biol. 2000, 10, 40–45. [Google Scholar] [CrossRef]
- Quintá, H.R.; Maschi, D.; Gomez-Sanchez, C.; Piwien-Pilipuk, G.; Galigniana, M.D. Subcellular Rearrangement of Hsp90-Binding Immunophilins Accompanies Neuronal Differentiation and Neurite Outgrowth. J. Neurochem. 2010, 115, 716–734. [Google Scholar] [CrossRef]
- Gallo, L.I.; Lagadari, M.; Piwien-Pilipuk, G.; Galigniana, M.D. The 90-kDa Heat-Shock Protein (Hsp90)-Binding Immunophilin FKBP51 Is a Mitochondrial Protein That Translocates to the Nucleus to Protect Cells against Oxidative Stress. J. Biol. Chem. 2011, 286, 30152–30160. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, T.; Shiraishi, T.; Qin, J.; Konno, H.; Akiyama, N.; Shinzawa, M.; Miyauchi, M.; Takizawa, N.; Yanai, H.; Ohashi, H.; et al. Mitochondria-Nucleus Shuttling FK506-Binding Protein 51 Interacts with TRAF Proteins and Facilitates the RIG-I-like Receptor-Mediated Expression of Type I IFN. PLoS ONE 2014, 9, e95992. [Google Scholar] [CrossRef] [PubMed]
- Gassen, N.C.; Hartmann, J.; Zannas, A.S.; Kretzschmar, A.; Zschocke, J.; Maccarrone, G.; Hafner, K.; Zellner, A.; Kollmannsberger, L.K.; Wagner, K.V.; et al. FKBP51 Inhibits GSK3β and Augments the Effects of Distinct Psychotropic Medications. Mol. Psychiatry 2016, 21, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Rein, T. Peptidylprolylisomerases, Protein Folders, or Scaffolders? The Example of FKBP51 and FKBP52. Bioessays 2020, 42, e1900250. [Google Scholar] [CrossRef] [PubMed]
- Denny, W.B.; Valentine, D.L.; Reynolds, P.D.; Smith, D.F.; Scammell, J.G. Squirrel Monkey Immunophilin FKBP51 Is a Potent Inhibitor of Glucocorticoid Receptor Binding. Endocrinology 2000, 141, 4107–4113. [Google Scholar] [CrossRef] [PubMed]
- Ising, M.; Depping, A.-M.; Siebertz, A.; Lucae, S.; Unschuld, P.G.; Kloiber, S.; Horstmann, S.; Uhr, M.; Müller-Myhsok, B.; Holsboer, F. Polymorphisms in the FKBP5 Gene Region Modulate Recovery from Psychosocial Stress in Healthy Controls. Eur. J. Neurosci. 2008, 28, 389–398. [Google Scholar] [CrossRef]
- Guidotti, G.; Calabrese, F.; Anacker, C.; Racagni, G.; Pariante, C.M.; Riva, M.A. Glucocorticoid Receptor and FKBP5 Expression Is Altered Following Exposure to Chronic Stress: Modulation by Antidepressant Treatment. Neuropsychopharmacology 2013, 38, 616–627. [Google Scholar] [CrossRef]
- Levran, O.; Peles, E.; Randesi, M.; Li, Y.; Rotrosen, J.; Ott, J.; Adelson, M.; Kreek, M.J. Stress-Related Genes and Heroin Addiction: A Role for a Functional FKBP5 Haplotype. Psychoneuroendocrinology 2014, 45, 67–76. [Google Scholar] [CrossRef]
- Schmidt, U.; Buell, D.R.; Ionescu, I.A.; Gassen, N.C.; Holsboer, F.; Cox, M.B.; Novak, B.; Huber, C.; Hartmann, J.; Schmidt, M.V.; et al. A Role for Synapsin in FKBP51 Modulation of Stress Responsiveness: Convergent Evidence from Animal and Human Studies. Psychoneuroendocrinology 2015, 52, 43–58. [Google Scholar] [CrossRef]
- Desrivières, S.; Lourdusamy, A.; Müller, C.; Ducci, F.; Wong, C.P.; Kaakinen, M.; Pouta, A.; Hartikainen, A.-L.; Isohanni, M.; Charoen, P.; et al. Glucocorticoid Receptor (NR3C1) Gene Polymorphisms and Onset of Alcohol Abuse in Adolescents. Addict. Biol. 2011, 16, 510–513. [Google Scholar] [CrossRef]
- Qiu, B.; Luczak, S.E.; Wall, T.L.; Kirchhoff, A.M.; Xu, Y.; Eng, M.Y.; Stewart, R.B.; Shou, W.; Boehm, S.L.; Chester, J.A.; et al. The FKBP5 Gene Affects Alcohol Drinking in Knockout Mice and Is Implicated in Alcohol Drinking in Humans. Int. J. Mol. Sci. 2016, 17, 1271. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-C.; Schwandt, M.L.; Chester, J.A.; Kirchhoff, A.M.; Kao, C.-F.; Liang, T.; Tapocik, J.D.; Ramchandani, V.A.; George, D.T.; Hodgkinson, C.A.; et al. FKBP5 Moderates Alcohol Withdrawal Severity: Human Genetic Association and Functional Validation in Knockout Mice. Neuropsychopharmacology 2014, 39, 2029–2038. [Google Scholar] [CrossRef] [PubMed]
- Hadad, N.A.; Wu, L.; Hiller, H.; Krause, E.G.; Schwendt, M.; Knackstedt, L.A. Conditioned Stress Prevents Cue-Primed Cocaine Reinstatement Only in Stress-Responsive Rats. Stress. 2016, 19, 406–418. [Google Scholar] [CrossRef]
- Lieberman, R.; Armeli, S.; Scott, D.M.; Kranzler, H.R.; Tennen, H.; Covault, J. FKBP5 Genotype Interacts with Early Life Trauma to Predict Heavy Drinking in College Students. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2016, 171, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Rovaris, D.L.; Aroche, A.P.; da Silva, B.S.; Kappel, D.B.; Pezzi, J.C.; Levandowski, M.L.; Hess, A.R.B.; Schuch, J.B.; de Almeida, R.M.M.; Grassi-Oliveira, R.; et al. Glucocorticoid Receptor Gene Modulates Severity of Depression in Women with Crack Cocaine Addiction. Eur. Neuropsychopharmacol. 2016, 26, 1438–1447. [Google Scholar] [CrossRef] [PubMed]
- Treadwell, J.A.; Singh, S.M. Microarray Analysis of Mouse Brain Gene Expression Following Acute Ethanol Treatment. Neurochem. Res. 2004, 29, 357–369. [Google Scholar] [CrossRef]
- Kerns, R.T.; Ravindranathan, A.; Hassan, S.; Cage, M.P.; York, T.; Sikela, J.M.; Williams, R.W.; Miles, M.F. Ethanol-Responsive Brain Region Expression Networks: Implications for Behavioral Responses to Acute Ethanol in DBA/2J versus C57BL/6J Mice. J. Neurosci. 2005, 25, 2255–2266. [Google Scholar] [CrossRef]
- McClung, C.A.; Nestler, E.J.; Zachariou, V. Regulation of Gene Expression by Chronic Morphine and Morphine Withdrawal in the Locus Ceruleus and Ventral Tegmental Area. J. Neurosci. 2005, 25, 6005–6015. [Google Scholar] [CrossRef]
- Pöhlmann, M.L.; Häusl, A.S.; Harbich, D.; Balsevich, G.; Engelhardt, C.; Feng, X.; Breitsamer, M.; Hausch, F.; Winter, G.; Schmidt, M.V. Pharmacological Modulation of the Psychiatric Risk Factor FKBP51 Alters Efficiency of Common Antidepressant Drugs. Front. Behav. Neurosci. 2018, 12, 262. [Google Scholar] [CrossRef]
- Connelly, K.L.; Wolsh, C.C.; Barr, J.L.; Bauder, M.; Hausch, F.; Unterwald, E.M. Sex Differences in the Effect of the FKBP5 Inhibitor SAFit2 on Anxiety and Stress-Induced Reinstatement Following Cocaine Self-Administration. Neurobiol. Stress. 2020, 13, 100232. [Google Scholar] [CrossRef]
- König, L.; Kalinichenko, L.S.; Huber, S.E.; Voll, A.M.; Bauder, M.; Kornhuber, J.; Hausch, F.; Müller, C.P. The Selective FKBP51 Inhibitor SAFit2 Reduces Alcohol Consumption and Reinstatement of Conditioned Alcohol Effects in Mice. Addict. Biol. 2020, 25, e12758. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, K.K.; Goggin, S.L.; Tyler, C.R.; Allan, A.M. Prenatal Alcohol Exposure Is Associated with Altered Subcellular Distribution of Glucocorticoid and Mineralocorticoid Receptors in the Adolescent Mouse Hippocampal Formation. Alcohol. Clin. Exp. Res. 2014, 38, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Griffin, W.C.; Lopez, M.F.; Woodward, J.J.; Becker, H.C. Alcohol Dependence and the Ventral Hippocampal Influence on Alcohol Drinking in Male Mice. Alcohol. 2023, 106, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Cole, A.B.; Montgomery, K.; Bale, T.L.; Thompson, S.M. What the Hippocampus Tells the HPA Axis: Hippocampal Output Attenuates Acute Stress Responses via Disynaptic Inhibition of CRF+ PVN Neurons. Neurobiol. Stress. 2022, 20, 100473. [Google Scholar] [CrossRef] [PubMed]
- Agartz, I.; Momenan, R.; Rawlings, R.R.; Kerich, M.J.; Hommer, D.W. Hippocampal Volume in Patients with Alcohol Dependence. Arch. Gen. Psychiatry 1999, 56, 356–363. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Nixon, K.; Shetty, A.K.; Crews, F.T. Chronic Alcohol Exposure Reduces Hippocampal Neurogenesis and Dendritic Growth of Newborn Neurons. Eur. J. Neurosci. 2005, 21, 2711–2720. [Google Scholar] [CrossRef] [PubMed]
- Coles, C.D.; Goldstein, F.C.; Lynch, M.E.; Chen, X.; Kable, J.A.; Johnson, K.C.; Hu, X. Memory and Brain Volume in Adults Prenatally Exposed to Alcohol. Brain Cogn. 2011, 75, 67–77. [Google Scholar] [CrossRef]
- Maynard, M.E.; Leasure, J.L. Exercise Enhances Hippocampal Recovery Following Binge Ethanol Exposure. PLoS ONE 2013, 8, e76644. [Google Scholar] [CrossRef]
- Naglich, A.; Van Enkevort, E.; Adinoff, B.; Brown, E.S. Association of Biological Markers of Alcohol Consumption and Self-Reported Drinking with Hippocampal Volume in a Population-Based Sample of Adults. Alcohol. Alcohol. 2018, 53, 539–547. [Google Scholar] [CrossRef]
- Scharf, S.H.; Liebl, C.; Binder, E.B.; Schmidt, M.V.; Müller, M.B. Expression and Regulation of the Fkbp5 Gene in the Adult Mouse Brain. PLoS ONE 2011, 6, e16883. [Google Scholar] [CrossRef]
- Qiu, B.; Zhong, Z.; Righter, S.; Xu, Y.; Wang, J.; Deng, R.; Wang, C.; Williams, K.E.; Ma, Y.-Y.; Tsechpenakis, G.; et al. FKBP51 Modulates Hippocampal Size and Function in Post-Translational Regulation of Parkin. Cell Mol. Life Sci. 2022, 79, 175. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Hu, S.; Liu, L.; Chen, M.; Wang, L.; Zeng, X.; Zhu, S. CART Attenuates Endoplasmic Reticulum Stress Response Induced by Cerebral Ischemia and Reperfusion through Upregulating BDNF Synthesis and Secretion. Biochem. Biophys. Res. Commun. 2013, 436, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Xu, Y.; Wang, J.; Liu, M.; Dou, L.; Deng, R.; Wang, C.; Williams, K.E.; Stewart, R.B.; Xie, Z.; et al. Loss of FKBP5 Affects Neuron Synaptic Plasticity: An Electrophysiology Insight. Neuroscience 2019, 402, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yong, W.; Hinds, T.D.; Yang, Z.; Zhou, Y.; Sanchez, E.R.; Shou, W. Fkbp52 Regulates Androgen Receptor Transactivation Activity and Male Urethra Morphogenesis. J. Biol. Chem. 2010, 285, 27776–27784. [Google Scholar] [CrossRef]
- Grahame, N.J.; Li, T.K.; Lumeng, L. Selective Breeding for High and Low Alcohol Preference in Mice. Behav. Genet. 1999, 29, 47–57. [Google Scholar] [CrossRef]
- Liang, T.; Habegger, K.; Spence, J.P.; Foroud, T.; Ellison, J.A.; Lumeng, L.; Li, T.-K.; Carr, L.G. Glutathione S-Transferase 8-8 Expression Is Lower in Alcohol-Preferring than in Alcohol-Nonpreferring Rats. Alcohol. Clin. Exp. Res. 2004, 28, 1622–1628. [Google Scholar] [CrossRef]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering Splice Junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq--a Python Framework to Work with High-Throughput Sequencing Data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Anders, S.; Huber, W. Differential Expression Analysis for Sequence Count Data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Liang, T.; Spence, J.; Liu, L.; Strother, W.N.; Chang, H.W.; Ellison, J.A.; Lumeng, L.; Li, T.-K.; Foroud, T.; Carr, L.G. Alpha-Synuclein Maps to a Quantitative Trait Locus for Alcohol Preference and Is Differentially Expressed in Alcohol-Preferring and -Nonpreferring Rats. Proc. Natl. Acad. Sci. USA 2003, 100, 4690–4695. [Google Scholar] [CrossRef] [PubMed]
- Toneatto, J.; Guber, S.; Charó, N.L.; Susperreguy, S.; Schwartz, J.; Galigniana, M.D.; Piwien-Pilipuk, G. Dynamic Mitochondrial-Nuclear Redistribution of the Immunophilin FKBP51 Is Regulated by the PKA Signaling Pathway to Control Gene Expression during Adipocyte Differentiation. J. Cell Sci. 2013, 126, 5357–5368. [Google Scholar] [CrossRef] [PubMed]
- Zgajnar, N.; Lagadari, M.; Gallo, L.I.; Piwien-Pilipuk, G.; Galigniana, M.D. Mitochondrial-Nuclear Communication by FKBP51 Shuttling. J. Cell Biochem. 2023. [Google Scholar] [CrossRef] [PubMed]
- Yong, W.; Yang, Z.; Periyasamy, S.; Chen, H.; Yucel, S.; Li, W.; Lin, L.Y.; Wolf, I.M.; Cohn, M.J.; Baskin, L.S.; et al. Essential Role for Co-Chaperone Fkbp52 but Not Fkbp51 in Androgen Receptor-Mediated Signaling and Physiology. J. Biol. Chem. 2007, 282, 5026–5036. [Google Scholar] [CrossRef] [PubMed]
- Dragan, W.Ł.; Domozych, W.; Czerski, P.M.; Dragan, M. Positive Metacognitions about Alcohol Mediate the Relationship between FKBP5 Variability and Problematic Drinking in a Sample of Young Women. Neuropsychiatr. Dis. Treat. 2018, 14, 2681–2688. [Google Scholar] [CrossRef] [PubMed]
- Basseri, S.; Austin, R.C. Endoplasmic Reticulum Stress and Lipid Metabolism: Mechanisms and Therapeutic Potential. Biochem. Res. Int. 2012, 2012, 841362. [Google Scholar] [CrossRef]
- Roy, A.; Pahan, K. PPARα Signaling in the Hippocampus: Crosstalk between Fat and Memory. J. Neuroimmune Pharmacol. 2015, 10, 30–34. [Google Scholar] [CrossRef]
- Mikolas, P.; Tozzi, L.; Doolin, K.; Farrell, C.; O’Keane, V.; Frodl, T. Effects of Early Life Adversity and FKBP5 Genotype on Hippocampal Subfields Volume in Major Depression. J. Affect. Disord. 2019, 252, 152–159. [Google Scholar] [CrossRef]
- Nold, V.; Richter, N.; Hengerer, B.; Kolassa, I.-T.; Allers, K.A. FKBP5 Polymorphisms Induce Differential Glucocorticoid Responsiveness in Primary CNS Cells—First Insights from Novel Humanized Mice. Eur. J. Neurosci. 2021, 53, 402–415. [Google Scholar] [CrossRef]
- Calvo-Rodriguez, M.; Hou, S.S.; Snyder, A.C.; Kharitonova, E.K.; Russ, A.N.; Das, S.; Fan, Z.; Muzikansky, A.; Garcia-Alloza, M.; Serrano-Pozo, A.; et al. Increased Mitochondrial Calcium Levels Associated with Neuronal Death in a Mouse Model of Alzheimer’s Disease. Nat. Commun. 2020, 11, 2146. [Google Scholar] [CrossRef]
- Fislová, T.; Thomas, B.; Graef, K.M.; Fodor, E. Association of the Influenza Virus RNA Polymerase Subunit PB2 with the Host Chaperonin CCT. J. Virol. 2010, 84, 8691–8699. [Google Scholar] [CrossRef] [PubMed]
- Sidibeh, C.O.; Pereira, M.J.; Abalo, X.M.; Boersma, G.J.; Skrtic, S.; Lundkvist, P.; Katsogiannos, P.; Hausch, F.; Castillejo-López, C.; Eriksson, J.W. FKBP5 Expression in Human Adipose Tissue: Potential Role in Glucose and Lipid Metabolism, Adipogenesis and Type 2 Diabetes. Endocrine 2018, 62, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Davis, T.L.; Walker, J.R.; Ouyang, H.; MacKenzie, F.; Butler-Cole, C.; Newman, E.M.; Eisenmesser, E.Z.; Dhe-Paganon, S. The Crystal Structure of Human WD40 Repeat-Containing Peptidylprolyl Isomerase (PPWD1). FEBS J. 2008, 275, 2283–2295. [Google Scholar] [CrossRef] [PubMed]
- Blair, L.J.; Baker, J.D.; Sabbagh, J.J.; Dickey, C.A. The Emerging Role of Peptidyl-Prolyl Isomerase Chaperones in Tau Oligomerization, Amyloid Processing, and Alzheimer’s Disease. J. Neurochem. 2015, 133, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gräff, J.; Koshibu, K.; Jouvenceau, A.; Dutar, P.; Mansuy, I.M. Protein Phosphatase 1-Dependent Transcriptional Programs for Long-Term Memory and Plasticity. Learn. Mem. 2010, 17, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Schaevitz, L.R.; Picker, J.D.; Rana, J.; Kolodny, N.H.; Shane, B.; Berger-Sweeney, J.E.; Coyle, J.T. Glutamate Carboxypeptidase II and Folate Deficiencies Result in Reciprocal Protection against Cognitive and Social Deficits in Mice: Implications for Neurodevelopmental Disorders. Dev. Neurobiol. 2012, 72, 891–905. [Google Scholar] [CrossRef] [PubMed]
- Criado-Marrero, M.; Gebru, N.T.; Gould, L.A.; Smith, T.M.; Kim, S.; Blackburn, R.J.; Dickey, C.A.; Blair, L.J. Early Life Stress and High FKBP5 Interact to Increase Anxiety-Like Symptoms through Altered AKT Signaling in the Dorsal Hippocampus. Int. J. Mol. Sci. 2019, 20, 2738. [Google Scholar] [CrossRef]
- Wood, S.A.; Hains, P.G.; Muller, A.; Hill, M.; Premarathne, S.; Murtaza, M.; Robinson, P.J.; Mellick, G.D.; Sykes, A.M. Proteomic Profiling of Idiopathic Parkinson’s Disease Primary Patient Cells by SWATH-MS. Proteomics Clin. Appl. 2022, 16, e2200015. [Google Scholar] [CrossRef]
- Abraham, C.R.; Selkoe, D.J.; Potter, H. Immunochemical Identification of the Serine Protease Inhibitor Alpha 1-Antichymotrypsin in the Brain Amyloid Deposits of Alzheimer’s Disease. Cell 1988, 52, 487–501. [Google Scholar] [CrossRef]
- Kamboh, M.I.; Minster, R.L.; Kenney, M.; Ozturk, A.; Desai, P.P.; Kammerer, C.M.; DeKosky, S.T. Alpha-1-Antichymotrypsin (ACT or SERPINA3) Polymorphism May Affect Age-at-Onset and Disease Duration of Alzheimer’s Disease. Neurobiol. Aging 2006, 27, 1435–1439. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, X.; Wang, Q.; Zheng, M.; Pang, L. GSK3β-Ikaros-ANXA4 Signaling Inhibits High-Glucose-Induced Fibroblast Migration. Biochem. Biophys. Res. Commun. 2020, 531, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Mu, X.; Wu, H.; Chen, L.; Liu, J.; Zhao, Y. Calreticulin (CALR)-Induced Activation of NF-ĸB Signaling Pathway Boosts Lung Cancer Cell Proliferation. Bioengineered 2022, 13, 6856–6865. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.; Ki, S.H.; Shin, S.M. Methylglyoxal Induces Mitochondrial Dysfunction and Cell Death in Liver. Toxicol. Res. 2014, 30, 193–198. [Google Scholar] [CrossRef]
- Kim, D.; Kim, K.-A.; Kim, J.-H.; Kim, E.-H.; Bae, O.-N. Methylglyoxal-Induced Dysfunction in Brain Endothelial Cells via the Suppression of Akt/HIF-1α Pathway and Activation of Mitophagy Associated with Increased Reactive Oxygen Species. Antioxidants 2020, 9, 820. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Toyoshima, M.; Hisano, Y.; Balan, S.; Iwayama, Y.; Aono, H.; Futamura, Y.; Osada, H.; Owada, Y.; Yoshikawa, T. Glyoxalase I Disruption and External Carbonyl Stress Impair Mitochondrial Function in Human Induced Pluripotent Stem Cells and Derived Neurons. Transl. Psychiatry 2021, 11, 275. [Google Scholar] [CrossRef] [PubMed]
- Luciani, A.; Devuyst, O. Methylmalonyl Acidemia: From Mitochondrial Metabolism to Defective Mitophagy and Disease. Autophagy 2020, 16, 1159–1161. [Google Scholar] [CrossRef]
- Schmiesing, J.; Lohmöller, B.; Schweizer, M.; Tidow, H.; Gersting, S.W.; Muntau, A.C.; Braulke, T.; Mühlhausen, C. Disease-Causing Mutations Affecting Surface Residues of Mitochondrial Glutaryl-CoA Dehydrogenase Impair Stability, Heteromeric Complex Formation and Mitochondria Architecture. Hum. Mol. Genet. 2017, 26, 538–551. [Google Scholar] [CrossRef]
- Ozsoy, S.; Durak, A.C.; Esel, E. Hippocampal Volumes and Cognitive Functions in Adult Alcoholic Patients with Adolescent-Onset. Alcohol. 2013, 47, 9–14. [Google Scholar] [CrossRef]
- Fowler, A.-K.; Thompson, J.; Chen, L.; Dagda, M.; Dertien, J.; Dossou, K.S.S.; Moaddel, R.; Bergeson, S.E.; Kruman, I.I. Differential Sensitivity of Prefrontal Cortex and Hippocampus to Alcohol-Induced Toxicity. PLoS One 2014, 9, e106945. [Google Scholar] [CrossRef]
- Tunc-Ozcan, E.; Wert, S.L.; Lim, P.H.; Ferreira, A.; Redei, E.E. Hippocampus-Dependent Memory and Allele-Specific Gene Expression in Adult Offspring of Alcohol-Consuming Dams after Neonatal Treatment with Thyroxin or Metformin. Mol. Psychiatry 2018, 23, 1643–1651. [Google Scholar] [CrossRef]
- Cho, R.W.; Park, J.M.; Wolff, S.B.E.; Xu, D.; Hopf, C.; Kim, J.-A.; Reddy, R.C.; Petralia, R.S.; Perin, M.S.; Linden, D.J.; et al. mGluR1/5-Dependent Long-Term Depression Requires the Regulated Ectodomain Cleavage of Neuronal Pentraxin NPR by TACE. Neuron 2008, 57, 858–871. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Graziane, N.M.; Gu, Z.; Yan, Z. DISC1 Protein Regulates γ-Aminobutyric Acid, Type A (GABAA) Receptor Trafficking and Inhibitory Synaptic Transmission in Cortical Neurons. J. Biol. Chem. 2015, 290, 27680–27687. [Google Scholar] [CrossRef] [PubMed]
- Blair, L.J.; Criado-Marrero, M.; Zheng, D.; Wang, X.; Kamath, S.; Nordhues, B.A.; Weeber, E.J.; Dickey, C.A. The Disease-Associated Chaperone FKBP51 Impairs Cognitive Function by Accelerating AMPA Receptor Recycling. eNeuro 2019, 6, ENEURO.0242-18.2019. [Google Scholar] [CrossRef] [PubMed]
- Gaali, S.; Kirschner, A.; Cuboni, S.; Hartmann, J.; Kozany, C.; Balsevich, G.; Namendorf, C.; Fernandez-Vizarra, P.; Sippel, C.; Zannas, A.S.; et al. Selective Inhibitors of the FK506-Binding Protein 51 by Induced Fit. Nat. Chem. Biol. 2015, 11, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Sabbagh, J.J.; Blair, L.J.; Darling, A.L.; Wen, X.; Dickey, C.A. MicroRNA-511 Binds to FKBP5 mRNA, Which Encodes a Chaperone Protein, and Regulates Neuronal Differentiation. J. Biol. Chem. 2016, 291, 17897–17906. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, R.; Kranzler, H.R.; Levine, E.S.; Covault, J. Examining FKBP5 mRNA Expression in Human iPSC-Derived Neural Cells. Psychiatry Res. 2017, 247, 172–181. [Google Scholar] [CrossRef]
- Farrell, M.R.; Holland, F.H.; Shansky, R.M.; Brenhouse, H.C. Sex-Specific Effects of Early Life Stress on Social Interaction and Prefrontal Cortex Dendritic Morphology in Young Rats. Behav. Brain Res. 2016, 310, 119–125. [Google Scholar] [CrossRef]
- Yayon, N.; Amsalem, O.; Zorbaz, T.; Yakov, O.; Dubnov, S.; Winek, K.; Dudai, A.; Adam, G.; Schmidtner, A.K.; Tessier-Lavigne, M.; et al. High-Throughput Morphometric and Transcriptomic Profiling Uncovers Composition of Naïve and Sensory-Deprived Cortical Cholinergic VIP/CHAT Neurons. EMBO J. 2023, 42, e110565. [Google Scholar] [CrossRef]
- Weinstock, M. Sex-Dependent Changes Induced by Prenatal Stress in Cortical and Hippocampal Morphology and Behaviour in Rats: An Update. Stress. 2011, 14, 604–613. [Google Scholar] [CrossRef]
- Tao, J.; Wu, H.; Coronado, A.A.; de Laittre, E.; Osterweil, E.K.; Zhang, Y.; Bear, M.F. Negative Allosteric Modulation of mGluR5 Partially Corrects Pathophysiology in a Mouse Model of Rett Syndrome. J. Neurosci. 2016, 36, 11946–11958. [Google Scholar] [CrossRef]
- Hosseini, S.; Wilk, E.; Michaelsen-Preusse, K.; Gerhauser, I.; Baumgärtner, W.; Geffers, R.; Schughart, K.; Korte, M. Long-Term Neuroinflammation Induced by Influenza A Virus Infection and the Impact on Hippocampal Neuron Morphology and Function. J. Neurosci. 2018, 38, 3060–3080. [Google Scholar] [CrossRef] [PubMed]
- Jay, T.R.; Hirsch, A.M.; Broihier, M.L.; Miller, C.M.; Neilson, L.E.; Ransohoff, R.M.; Lamb, B.T.; Landreth, G.E. Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer’s Disease. J. Neurosci. 2017, 37, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Ma, Y.; Huang, W.; Cheng, X.; Gao, N.; Li, G.; Tian, S. Up-Regulation of TREM2 Accelerates the Reduction of Amyloid Deposits and Promotes Neuronal Regeneration in the Hippocampus of Amyloid Beta1-42 Injected Mice. J. Chem. Neuroanat. 2019, 97, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Jay, T.R.; von Saucken, V.E.; Muñoz, B.; Codocedo, J.F.; Atwood, B.K.; Lamb, B.T.; Landreth, G.E. TREM2 Is Required for Microglial Instruction of Astrocytic Synaptic Engulfment in Neurodevelopment. Glia 2019, 67, 1873–1892. [Google Scholar] [CrossRef] [PubMed]
- Spradling, K.D.; Lumley, L.A.; Robison, C.L.; Meyerhoff, J.L.; Dillman, J.F. Transcriptional Responses of the Nerve Agent-Sensitive Brain Regions Amygdala, Hippocampus, Piriform Cortex, Septum, and Thalamus Following Exposure to the Organophosphonate Anticholinesterase Sarin. J. Neuroinflammation 2011, 8, 84. [Google Scholar] [CrossRef] [PubMed]
- Pollio, G.; Hoozemans, J.J.M.; Andersen, C.A.; Roncarati, R.; Rosi, M.C.; van Haastert, E.S.; Seredenina, T.; Diamanti, D.; Gotta, S.; Fiorentini, A.; et al. Increased Expression of the Oligopeptidase THOP1 Is a Neuroprotective Response to Abeta Toxicity. Neurobiol. Dis. 2008, 31, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Conn, K.J.; Pietropaolo, M.; Ju, S.T.; Abraham, C.R. Monoclonal Antibodies against the Human Metalloprotease EC 3.4.24.15 Label Neurofibrillary Tangles in Alzheimer’s Disease Brain. J. Neurochem. 1996, 66, 2011–2018. [Google Scholar] [CrossRef] [PubMed]
- Blair, L.J.; Nordhues, B.A.; Hill, S.E.; Scaglione, K.M.; O’Leary, J.C.; Fontaine, S.N.; Breydo, L.; Zhang, B.; Li, P.; Wang, L.; et al. Accelerated Neurodegeneration through Chaperone-Mediated Oligomerization of Tau. J. Clin. Investig. 2013, 123, 4158–4169. [Google Scholar] [CrossRef]
- Mucke, L.; Yu, G.Q.; McConlogue, L.; Rockenstein, E.M.; Abraham, C.R.; Masliah, E. Astroglial Expression of Human Alpha(1)-Antichymotrypsin Enhances Alzheimer-like Pathology in Amyloid Protein Precursor Transgenic Mice. Am. J. Pathol. 2000, 157, 2003–2010. [Google Scholar] [CrossRef]
- Nilsson, L.N.; Bales, K.R.; DiCarlo, G.; Gordon, M.N.; Morgan, D.; Paul, S.M.; Potter, H. Alpha-1-Antichymotrypsin Promotes Beta-Sheet Amyloid Plaque Deposition in a Transgenic Mouse Model of Alzheimer’s Disease. J. Neurosci. 2001, 21, 1444–1451. [Google Scholar] [CrossRef]
- Baker, C.; Belbin, O.; Kalsheker, N.; Morgan, K. SERPINA3 (Aka Alpha-1-Antichymotrypsin). Front. Biosci. 2007, 12, 2821–2835. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, K.E.; Zou, Y.; Qiu, B.; Kono, T.; Guo, C.; Garcia, D.; Chen, H.; Graves, T.; Lai, Z.; Evans-Molina, C.; et al. Sex-Specific Impact of Fkbp5 on Hippocampal Response to Acute Alcohol Injection: Involvement in Alterations of Metabolism-Related Pathways. Cells 2024, 13, 89. https://doi.org/10.3390/cells13010089
Williams KE, Zou Y, Qiu B, Kono T, Guo C, Garcia D, Chen H, Graves T, Lai Z, Evans-Molina C, et al. Sex-Specific Impact of Fkbp5 on Hippocampal Response to Acute Alcohol Injection: Involvement in Alterations of Metabolism-Related Pathways. Cells. 2024; 13(1):89. https://doi.org/10.3390/cells13010089
Chicago/Turabian StyleWilliams, Kent E., Yi Zou, Bin Qiu, Tatsuyoshi Kono, Changyong Guo, Dawn Garcia, Hanying Chen, Tamara Graves, Zhao Lai, Carmella Evans-Molina, and et al. 2024. "Sex-Specific Impact of Fkbp5 on Hippocampal Response to Acute Alcohol Injection: Involvement in Alterations of Metabolism-Related Pathways" Cells 13, no. 1: 89. https://doi.org/10.3390/cells13010089
APA StyleWilliams, K. E., Zou, Y., Qiu, B., Kono, T., Guo, C., Garcia, D., Chen, H., Graves, T., Lai, Z., Evans-Molina, C., Ma, Y.-Y., Liangpunsakul, S., Yong, W., & Liang, T. (2024). Sex-Specific Impact of Fkbp5 on Hippocampal Response to Acute Alcohol Injection: Involvement in Alterations of Metabolism-Related Pathways. Cells, 13(1), 89. https://doi.org/10.3390/cells13010089