Electric Field Effects on Brain Activity: Implications for Epilepsy and Burst Suppression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Preparation
2.2. Electrophysiological Recording and Microinjections
2.3. Computational Model
2.3.1. Two-Compartment Model
2.3.2. Computational Network
2.3.3. Electric Field Coupling
2.3.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blumenfeld, H. What is a seizure network? Long-range network consequences of focal seizures. Adv. Exp. Med. Biol. 2014, 813, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.S.; Cross, J.H.; French, J.A.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshé, S.L.; Peltola, J.; Roulet Perez, E.; et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 522–530. [Google Scholar] [CrossRef]
- Yuen, A.W.C.; Keezer, M.R.; Sander, J.W. Epilepsy is a neurological and a systemic disorder. Epilepsy Behav. 2018, 78, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Duncan, J.S.; Sander, J.W.; Sisodiya, S.M.; Walker, M.C. Adult epilepsy. Lancet 2006, 367, 1087–1100. [Google Scholar] [CrossRef]
- Perucca, E.; Tomson, T. The pharmacological treatment of epilepsy in adults. Lancet Neurol. 2011, 10, 446–456. [Google Scholar] [CrossRef]
- Shivacharan, R.S.; Chiang, C.; Wei, X.; Subramanian, M.; Couturier, N.H.; Pakalapati, N.; Durand, D.M. Neural recruitment by ephaptic coupling in epilepsy. Epilepsia 2021, 62, 1505–1517. [Google Scholar] [CrossRef]
- Shivacharan, R.S.; Chiang, C.C.; Zhang, M.; Gonzalez-Reyes, L.E.; Durand, D.M. Self-propagating, non-synaptic epileptiform activity recruits neurons by endogenous electric fields. Exp. Neurol. 2019, 317, 119–128. [Google Scholar] [CrossRef]
- Aksenov, D.P.; Li, L.; Serdyukova, N.A.; Gascoigne, D.A.; Doubovikov, E.D.; Drobyshevsky, A. Functional Deficiency of Interneurons and Negative BOLD fMRI Response. Cells 2023, 12, 811. [Google Scholar] [CrossRef]
- Soehle, M.; Dittmann, A.; Ellerkmann, R.K.; Baumgarten, G.; Putensen, C.; Guenther, U. Intraoperative burst suppression is associated with postoperative delirium following cardiac surgery: A prospective, observational study. BMC Anesthesiol. 2015, 15, 61. [Google Scholar] [CrossRef]
- Momeni, M.; Meyer, S.; Docquier, M.-A.; Lemaire, G.; Kahn, D.; Khalifa, C.; Martins, M.R.; Van Dyck, M.; Jacquet, L.-M.; Peeters, A.; et al. Predicting postoperative delirium and postoperative cognitive decline with combined intraoperative electroencephalogram monitoring and cerebral near-infrared spectroscopy in patients undergoing cardiac interventions. J. Clin. Monit. Comput. 2019, 33, 999–1009. [Google Scholar] [CrossRef]
- Pedemonte, J.C.; Plummer, G.S.; Chamadia, S.; Locascio, J.J.; Hahm, E.; Ethridge, B.; Gitlin, J.; Ibala, R.; Mekonnen, J.; Colon, K.M.; et al. Electroencephalogram Burst-suppression during Cardiopulmonary Bypass in Elderly Patients Mediates Postoperative Delirium. Anesthesiology 2020, 133, 280–292. [Google Scholar] [CrossRef]
- Whitlock, E.L.; Vannucci, A.; Avidan, M.S. Postoperative delirium. Minerva Anestesiol. 2011, 77, 448–456. [Google Scholar] [PubMed]
- Karlsen, K.L.; Persson, E.; Wennberg, E.; Stenqvist, O. Anaesthesia, recovery and postoperative nausea and vomiting after breast surgery. A comparison between desflurane, sevoflurane and isoflurane anaesthesia. Acta Anaesthesiol. Scand. 2000, 44, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Aksenov, D.P.; Miller, M.J.; Dixon, C.J.; Wyrwicz, A.M. The effect of sevoflurane and isoflurane anesthesia on single unit and local field potentials. Exp. Brain Res. 2019, 237, 1521–1529. [Google Scholar] [CrossRef]
- Hudetz, A.G.; Vizuete, J.A.; Imas, O.A. Desflurane selectively suppresses long-latency cortical neuronal response to flash in the rat. Anesthesiology 2009, 111, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Zarhin, D.; Atsmon, R.; Ruggiero, A.; Baeloha, H.; Shoob, S.; Scharf, O.; Heim, L.R.; Buchbinder, N.; Shinikamin, O.; Shapira, I.; et al. Disrupted neural correlates of anesthesia and sleep reveal early circuit dysfunctions in Alzheimer models. Cell Rep. 2022, 38, 110268. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Tanabe, S.; Wang, S.; Hudetz, A.G. Differential Effect of Anesthesia on Visual Cortex Neurons with Diverse Population Coupling. Neuroscience 2021, 458, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Aksenov, D.P.; Li, L.; Miller, M.J.; Wyrwicz, A.M. Role of the inhibitory system in shaping the BOLD fMRI response. Neuroimage 2019, 201, 116034. [Google Scholar] [CrossRef] [PubMed]
- Aksenov, D.P.; Li, L.; Miller, M.J.; Wyrwicz, A.M. Blood oxygenation level dependent signal and neuronal adaptation to optogenetic and sensory stimulation in somatosensory cortex in awake animals. Eur. J. Neurosci. 2016, 44, 2722–2729. [Google Scholar] [CrossRef]
- Aksenov, D.P.; Li, L.; Iordanescu, G.; Miller, M.J.; Wyrwicz, A.M. Volume effect of localized injection in functional MRI and electrophysiology. Magn. Reson. Med. 2014, 72, 1170–1175. [Google Scholar] [CrossRef]
- Pratt, W. Morphological Image Processing, 2nd ed.; Wiley-Interscience: New York, NY, USA, 1991. [Google Scholar]
- Yin, Y.; Yan, M.; Zhu, T. Minimum alveolar concentration of sevoflurane in rabbits with liver fibrosis. Anesth. Analg. 2012, 114, 561–565. [Google Scholar] [CrossRef]
- Pinsky, P.F.; Rinzel, J. Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J. Comput. Neurosci. 1994, 1, 39–60. [Google Scholar] [CrossRef]
- Reznik, R.I.; Barreto, E.; Sander, E.; So, P. Effects of polarization induced by non-weak electric fields on the excitability of elongated neurons with active dendrites. J. Comput. Neurosci. 2016, 40, 27–50. [Google Scholar] [CrossRef]
- Young, N.A.; Collins, C.E.; Kaas, J.H. Cell and neuron densities in the primary motor cortex of primates. Front. Neural Circuits 2013, 7, 30. [Google Scholar] [CrossRef]
- Khajeh, R.; Fumarola, F.; Abbott, L.F. Sparse balance: Excitatory-inhibitory networks with small bias currents and broadly distributed synaptic weights. PLoS Comput. Biol. 2022, 18, e1008836. [Google Scholar] [CrossRef]
- Ando, N.; Sugasawa, Y.; Inoue, R.; Aosaki, T.; Miura, M.; Nishimura, K. Effects of the volatile anesthetic sevoflurane on tonic GABA currents in the mouse striatum during postnatal development. Eur. J. Neurosci. 2014, 40, 3147–3157. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, M.; Chiang, C.C.; Couturier, N.H.; Durand, D.M. Theta waves, neural spikes and seizures can propagate by ephaptic coupling in vivo. Exp. Neurol. 2022, 354, 114109. [Google Scholar] [CrossRef] [PubMed]
- Dudek, F.E.; Yasumura, T.; Rash, J.E. ‘Non-synaptic’ mechanisms in seizures and epileptogenesis. Cell Biol. Int. 1998, 22, 793–805. [Google Scholar] [CrossRef]
- Guidera, J.A.; Taylor, N.E.; Lee, J.T.; Vlasov, K.Y.; Pei, J.; Stephen, E.P.; Mayo, J.P.; Brown, E.N.; Solt, K. Sevoflurane Induces Coherent Slow-Delta Oscillations in Rats. Front. Neural Circuits 2017, 11, 36. [Google Scholar] [CrossRef]
- Chemali, J.; Ching, S.; Purdon, P.L.; Solt, K.; Brown, E.N. Burst suppression probability algorithms: State-space methods for tracking EEG burst suppression. J. Neural Eng. 2013, 10, 056017. [Google Scholar] [CrossRef]
- Vinje, M.L.; Moe, M.C.; Valo, E.T.; Berg-Johnsen, J. The effect of sevoflurane on glutamate release and uptake in rat cerebrocortical presynaptic terminals. Acta Anaesthesiol. Scand. 2002, 46, 103–108. [Google Scholar] [CrossRef]
- Aksenov, D.P.; Doubovikov, E.D.; Serdyukova, N.A.; Gascoigne, D.A.; Linsenmeier, R.A.; Drobyshevsky, A. Brain tissue oxygen dynamics while mimicking the functional deficiency of interneurons. Front. Cell. Neurosci. 2022, 16, 983298. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, L.; Medvedev, A.; Hiscock, J.J.; Pope, K.J.; Willoughby, J.O. Picrotoxin-induced generalised convulsive seizure in rat: Changes in regional distribution and frequency of the power of electroencephalogram rhythms. Clin. Neurophysiol. 2002, 113, 586–596. [Google Scholar] [CrossRef]
- Sameer, M.; Gupta, B. Time–Frequency Statistical Features of Delta Band for Detection of Epileptic Seizures. Wirel. Pers. Commun. 2022, 122, 489–499. [Google Scholar] [CrossRef]
- Avoli, M.; de Curtis, M. GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity. Prog. Neurobiol. 2011, 95, 104–132. [Google Scholar] [CrossRef]
- Vascak, M.; Jin, X.; Jacobs, K.M.; Povlishock, J.T. Mild Traumatic Brain Injury Induces Structural and Functional Disconnection of Local Neocortical Inhibitory Networks via Parvalbumin Interneuron Diffuse Axonal Injury. Cereb. Cortex 2017, 28, 1625–1644. [Google Scholar] [CrossRef]
- Kroeger, D.; Amzica, F. Hypersensitivity of the anesthesia-induced comatose brain. J. Neurosci. 2007, 27, 10597–10607. [Google Scholar] [CrossRef]
- Ching, S.; Purdon, P.L.; Vijayan, S.; Kopell, N.J.; Brown, E.N. A neurophysiological-metabolic model for burst suppression. Proc. Natl. Acad. Sci. USA 2012, 109, 3095–3100. [Google Scholar] [CrossRef]
- Liley, D.T.; Walsh, M. The Mesoscopic Modeling of Burst Suppression during Anesthesia. Front. Comput. Neurosci. 2013, 7, 46. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doubovikov, E.D.; Serdyukova, N.A.; Greenberg, S.B.; Gascoigne, D.A.; Minhaj, M.M.; Aksenov, D.P. Electric Field Effects on Brain Activity: Implications for Epilepsy and Burst Suppression. Cells 2023, 12, 2229. https://doi.org/10.3390/cells12182229
Doubovikov ED, Serdyukova NA, Greenberg SB, Gascoigne DA, Minhaj MM, Aksenov DP. Electric Field Effects on Brain Activity: Implications for Epilepsy and Burst Suppression. Cells. 2023; 12(18):2229. https://doi.org/10.3390/cells12182229
Chicago/Turabian StyleDoubovikov, Evan D., Natalya A. Serdyukova, Steven B. Greenberg, David A. Gascoigne, Mohammed M. Minhaj, and Daniil P. Aksenov. 2023. "Electric Field Effects on Brain Activity: Implications for Epilepsy and Burst Suppression" Cells 12, no. 18: 2229. https://doi.org/10.3390/cells12182229
APA StyleDoubovikov, E. D., Serdyukova, N. A., Greenberg, S. B., Gascoigne, D. A., Minhaj, M. M., & Aksenov, D. P. (2023). Electric Field Effects on Brain Activity: Implications for Epilepsy and Burst Suppression. Cells, 12(18), 2229. https://doi.org/10.3390/cells12182229