Ferroptosis and Iron Metabolism after Intracerebral Hemorrhage
Abstract
:1. Introduction
2. The Mechanisms and Regulation of Ferroptosis after ICH
2.1. Iron Metabolism
2.2. The Lipid Peroxidation Pathway
2.3. Antioxidant System
2.3.1. GPX4 and GSH in Ferroptosis
2.3.2. FSP1–CoQ10–NAD (P) H Pathway
2.3.3. GCH1–BH4–DHFR Axis
2.3.4. The Mevalonate Pathway
2.3.5. The Nrf2/ARE–GPX4 Pathway
2.4. Other Ways
2.4.1. Mitochondrial Role in Ferroptosis
2.4.2. Energy Stress
3. Potential Interventions Targeting Ferroptosis after ICH
3.1. The Lipid Peroxidation Pathway
3.1.1. ACSL4
3.1.2. LOXs and Its Products
3.1.3. ROS
3.2. Antioxidant System
3.2.1. GPX4
3.2.2. The Nrf2/ARE–GPX4 Pathway
3.2.3. PPARγ
3.2.4. SLC7A11
3.3. Iron Metabolism
3.3.1. Iron Chelator
3.3.2. FPN
4. Summary
5. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilkinson, D.A.; Keep, R.F.; Hua, Y.; Xi, G. Hematoma clearance as a therapeutic target in intracerebral hemorrhage: From macro to micro. J. Cereb. Blood Flow Metab. 2018, 38, 741–745. [Google Scholar] [CrossRef]
- Wei, Y.; Song, X.; Gao, Y.; Gao, Y.; Li, Y.; Gu, L. Iron toxicity in intracerebral hemorrhage: Physiopathological and therapeutic implications. Brain Res. Bull. 2022, 178, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Heeley, E.; Arima, H.; Delcourt, C.; Hirakawa, Y.; Pamidimukkala, V.; Li, Z.; Tao, Q.; Xu, Y.; Hennerici, M.G.; et al. Higher mortality in patients with right hemispheric intracerebral haemorrhage: INTERACT1 and 2. J. Neurol. Neurosurg. Psychiatry 2015, 86, 1319–1323. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.; Palesch, Y. Expansion of recruitment time window in antihypertensive treatment of acute cerebral hemorrhage (ATACH) II trial. J. Vasc. Interv. Neurol. 2012, 5, 6–9. [Google Scholar] [PubMed]
- Christensen, M.C.; Mayer, S.; Ferran, J.-M. Quality of life after intracerebral hemorrhage: Results of the Factor Seven for Acute Hemorrhagic Stroke (FAST) trial. Stroke 2009, 40, 1677–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sprigg, N.; Flaherty, K.; Appleton, J.P.; Al-Shahi Salman, R.; Bereczki, D.; Beridze, M.; Christensen, H.; Ciccone, A.; Collins, R.; Czlonkowska, A.; et al. Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): An international randomised, placebo-controlled, phase 3 superiority trial. Lancet 2018, 391, 2107–2115. [Google Scholar] [CrossRef] [Green Version]
- Mendelow, A.D.; Gregson, B.A.; Rowan, E.N.; Murray, G.D.; Gholkar, A.; Mitchell, P.M. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): A randomised trial. Lancet 2013, 382, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Mendelow, A.D.; Gregson, B.A.; Fernandes, H.M.; Murray, G.D.; Teasdale, G.M.; Hope, D.T.; Karimi, A.; Shaw, M.D.M.; Barer, D.H. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): A randomised trial. Lancet 2005, 365, 387–397. [Google Scholar] [CrossRef]
- Hanley, D.F.; Thompson, R.E.; Rosenblum, M.; Yenokyan, G.; Lane, K.; McBee, N.; Mayo, S.W.; Bistran-Hall, A.J.; Gandhi, D.; Mould, W.A.; et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): A randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet 2019, 393, 1021–1032. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.Y.; Dixon, S.J. Mechanisms of ferroptosis. Cell. Mol. Life Sci. 2016, 73, 2195–2209. [Google Scholar] [CrossRef]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirschhorn, T.; Stockwell, B.R. The development of the concept of ferroptosis. Free. Radic. Biol. Med. 2019, 133, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Hostettler, I.C.; Seiffge, D.J.; Werring, D.J. Intracerebral hemorrhage: An update on diagnosis and treatment. Expert Rev. Neurother. 2019, 19, 679–694. [Google Scholar] [CrossRef]
- Galaris, D.; Barbouti, A.; Pantopoulos, K. Iron homeostasis and oxidative stress: An intimate relationship. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1866, 118535. [Google Scholar] [CrossRef] [PubMed]
- Yanatori, I.; Kishi, F. DMT1 and iron transport. Free. Radic. Biol. Med. 2019, 133, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.-Y.; Wang, J.; Qian, Z.-M.; Yang, Q.-W. Iron and intracerebral hemorrhage: From mechanism to translation. Transl. Stroke Res. 2014, 5, 429–441. [Google Scholar] [CrossRef]
- Li, Q.; Lan, X.; Han, X.; Durham, F.; Wan, J.; Weiland, A.; Koehler, R.C.; Wang, J. Microglia-derived interleukin-10 accelerates post-intracerebral hemorrhage hematoma clearance by regulating CD36. Brain Behav. Immun. 2021, 94, 437–457. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hua, Y.; Keep, R.F.; Wan, S.; Novakovic, N.; Xi, G. Complement Inhibition Attenuates Early Erythrolysis in the Hematoma and Brain Injury in Aged Rats. Stroke 2019, 50, 1859–1868. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-F.; Massey, J.; Osherov, A.; Angenendt da Costa, L.H.; Sansing, L.H. Bexarotene Enhances Macrophage Erythrophagocytosis and Hematoma Clearance in Experimental Intracerebral Hemorrhage. Stroke 2020, 51, 612–618. [Google Scholar] [CrossRef]
- Taylor, R.A.; Chang, C.F.; Goods, B.A.; Hammond, M.D.; Mac Grory, B.; Ai, Y.; Steinschneider, A.F.; Renfroe, S.C.; Askenase, M.H.; McCullough, L.D.; et al. TGF-β1 modulates microglial phenotype and promotes recovery after intracerebral hemorrhage. J. Clin. Investig. 2017, 127, 280–292. [Google Scholar] [CrossRef]
- Lan, X.; Han, X.; Li, Q.; Yang, Q.-W.; Wang, J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat. Rev. Neurol. 2017, 13, 420–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hvidberg, V.; Maniecki, M.B.; Jacobsen, C.; Højrup, P.; Møller, H.J.; Moestrup, S.K. Identification of the receptor scavenging hemopexin-heme complexes. Blood 2005, 106, 2572–2579. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Y.; Wu, J.; Yang, J.; Li, M.; Chen, Q. The Potential Value of Targeting Ferroptosis in Early Brain Injury After Acute CNS Disease. Front. Mol. Neurosci. 2020, 13, 110. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.-Y.; Liu, T.; Zhang, L.; Wang, M.-J.; Yang, Y.; Gao, J. Role of ferroptosis in neurological diseases. Neurosci. Lett. 2021, 747, 135614. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.-Y.; Cui, G.-Z.; Yan, X.-L.; Wang, X.; Qu, Y.; Guo, Z.-N.; Jin, H. Mechanism of Ferroptosis and Its Relationships With Other Types of Programmed Cell Death: Insights for Potential Interventions After Intracerebral Hemorrhage. Front. Neurosci. 2020, 14, 589042. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, X.; Tan, Q.; Zhou, H.; Xu, J.; Gu, Q. Inhibiting Ferroptosis through Disrupting the NCOA4-FTH1 Interaction: A New Mechanism of Action. ACS Cent. Sci. 2021, 7, 980–989. [Google Scholar] [CrossRef]
- Bai, Y.; Meng, L.; Han, L.; Jia, Y.; Zhao, Y.; Gao, H.; Kang, R.; Wang, X.; Tang, D.; Dai, E. Lipid storage and lipophagy regulates ferroptosis. Biochem. Biophys. Res. Commun. 2019, 508, 997–1003. [Google Scholar] [CrossRef]
- Yang, W.S.; Kim, K.J.; Gaschler, M.M.; Patel, M.; Shchepinov, M.S.; Stockwell, B.R. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci. USA 2016, 113, E4966–E4975. [Google Scholar] [CrossRef] [Green Version]
- Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.F.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 2017, 13, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Dixon, S.J.; Winter, G.E.; Musavi, L.S.; Lee, E.D.; Snijder, B.; Rebsamen, M.; Superti-Furga, G.; Stockwell, B.R. Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chem. Biol. 2015, 10, 1604–1609. [Google Scholar] [CrossRef]
- Doll, S.; Proneth, B.; Tyurina, Y.Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A.; et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 2017, 13, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.-F.; Tuo, Q.-Z.; Yin, Q.-Z.; Lei, P. The pathological role of ferroptosis in ischemia/reperfusion-related injury. Zool. Res. 2020, 41, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.-L.; Gao, W.-Y.; Liao, S.-J.; Yu, T.; Shi, Q.; Yu, S.-Z.; Cai, Y.-F. Paeonol inhibits the progression of intracerebral haemorrhage by mediating the HOTAIR/UPF1/ACSL4 axis. ASN Neuro 2021, 13, 17590914211010647. [Google Scholar] [CrossRef] [PubMed]
- Bai, Q.; Liu, J.; Wang, G. Ferroptosis, a Regulated Neuronal Cell Death Type After Intracerebral Hemorrhage. Front. Cell. Neurosci. 2020, 14, 591874. [Google Scholar] [CrossRef]
- Karuppagounder, S.S.; Alin, L.; Chen, Y.; Brand, D.; Bourassa, M.W.; Dietrich, K.; Wilkinson, C.M.; Nadeau, C.A.; Kumar, A.; Perry, S.; et al. N-acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with prostaglandin E to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice. Ann. Neurol. 2018, 84, 854–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Wang, H.; Lv, C.; Mao, C.; Cui, Y. Long non-coding RNA H19 protects against intracerebral hemorrhage injuries via regulating microRNA-106b-5p/acyl-CoA synthetase long chain family member 4 axis. Bioengineered 2021, 12, 4004–4015. [Google Scholar] [CrossRef] [PubMed]
- Kajarabille, N.; Latunde-Dada, G.O. Programmed Cell-Death by Ferroptosis: Antioxidants as Mitigators. Int. J. Mol. Sci. 2019, 20, 4968. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Stockwell, B.R. Unsolved mysteries: How does lipid peroxidation cause ferroptosis? PLoS Biol. 2018, 16, e2006203. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Che, W.; Yi, Y.; Zhou, S.; Feng, Y. Methyltransferase-like 3 silenced inhibited the ferroptosis development via regulating the glutathione peroxidase 4 levels in the intracerebral hemorrhage progression. Bioengineered 2022, 13, 14215–14226. [Google Scholar] [CrossRef]
- Zheng, J.; Conrad, M. The Metabolic Underpinnings of Ferroptosis. Cell Metab. 2020, 32, 920–937. [Google Scholar] [CrossRef]
- Bersuker, K.; Hendricks, J.M.; Li, Z.; Magtanong, L.; Ford, B.; Tang, P.H.; Roberts, M.A.; Tong, B.; Maimone, T.J.; Zoncu, R.; et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 2019, 575, 688–692. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.-D.; Zhou, X.-T.; Zhou, L.-T.; Wang, F.; Yin, X.; Lu, Y.; Zhu, L.-Q.; Liu, D. Targeting miR-124/Ferroportin signaling ameliorated neuronal cell death through inhibiting apoptosis and ferroptosis in aged intracerebral hemorrhage murine model. Aging Cell 2020, 19, e13235. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, Y.; Hao, J.; Duan, H.-Q.; Zhao, C.-X.; Sun, C.; Li, B.; Fan, B.-Y.; Wang, X.; Li, W.-X.; et al. Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis. Neural Regen. Res. 2019, 14, 532–541. [Google Scholar] [CrossRef]
- Dodson, M.; Castro-Portuguez, R.; Zhang, D.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019, 23, 101107. [Google Scholar] [CrossRef] [PubMed]
- Villapol, S. Roles of Peroxisome Proliferator-Activated Receptor Gamma on Brain and Peripheral Inflammation. Cell. Mol. Neurobiol. 2018, 38, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Ai, Y.; Sun, Q.; Ma, Y.; Cao, Y.; Wang, J.; Zhang, Z.; Wang, X. Membrane Damage during Ferroptosis Is Caused by Oxidation of Phospholipids Catalyzed by the Oxidoreductases POR and CYB5R1. Mol. Cell 2021, 81, 355–369.e10. [Google Scholar] [CrossRef]
- Zou, Y.; Li, H.; Graham, E.T.; Deik, A.A.; Eaton, J.K.; Wang, W.; Sandoval-Gomez, G.; Clish, C.B.; Doench, J.G.; Schreiber, S.L. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat. Chem. Biol. 2020, 16, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.J.; Patel, D.N.; Welsch, M.; Skouta, R.; Lee, E.D.; Hayano, M.; Thomas, A.G.; Gleason, C.E.; Tatonetti, N.P.; Slusher, B.S.; et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 2014, 3, e02523. [Google Scholar] [CrossRef]
- Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 2017, 171, 273–285. [Google Scholar] [CrossRef] [Green Version]
- Doll, S.; Freitas, F.P.; Shah, R.; Aldrovandi, M.; da Silva, M.C.; Ingold, I.; Goya Grocin, A.; Xavier da Silva, T.N.; Panzilius, E.; Scheel, C.H.; et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 2019, 575, 693–698. [Google Scholar] [CrossRef]
- Li, D.; Li, Y. The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct. Target. Ther. 2020, 5, 108. [Google Scholar] [CrossRef] [PubMed]
- Kraft, V.A.N.; Bezjian, C.T.; Pfeiffer, S.; Ringelstetter, L.; Müller, C.; Zandkarimi, F.; Merl-Pham, J.; Bao, X.; Anastasov, N.; Kössl, J.; et al. GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Cent. Sci. 2020, 6, 41–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soula, M.; Weber, R.A.; Zilka, O.; Alwaseem, H.; La, K.; Yen, F.; Molina, H.; Garcia-Bermudez, J.; Pratt, D.A.; Birsoy, K. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat. Chem. Biol. 2020, 16, 1351–1360. [Google Scholar] [CrossRef] [PubMed]
- Ingold, I.; Berndt, C.; Schmitt, S.; Doll, S.; Poschmann, G.; Buday, K.; Roveri, A.; Peng, X.; Porto Freitas, F.; Seibt, T.; et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell 2018, 172, 409–422.e21. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Bermudez, J.; Baudrier, L.; Bayraktar, E.C.; Shen, Y.; La, K.; Guarecuco, R.; Yucel, B.; Fiore, D.; Tavora, B.; Freinkman, E.; et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 2019, 567, 118–122. [Google Scholar] [CrossRef]
- Gao, M.; Monian, P.; Quadri, N.; Ramasamy, R.; Jiang, X. Glutaminolysis and Transferrin Regulate Ferroptosis. Mol. Cell 2015, 59, 298–308. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Yi, J.; Zhu, J.; Minikes, A.M.; Monian, P.; Thompson, C.B.; Jiang, X. Role of Mitochondria in Ferroptosis. Mol. Cell 2019, 73, 354–363.e3. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Wang, H.; Han, D.; Xie, E.; Yang, X.; Wei, J.; Gu, S.; Gao, F.; Zhu, N.; Yin, X.; et al. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl. Acad. Sci. USA 2019, 116, 2672–2680. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Ding, W.; Ji, X.; Ao, X.; Liu, Y.; Yu, W.; Wang, J. Molecular mechanisms of ferroptosis and its role in cancer therapy. J. Cell. Mol. Med. 2019, 23, 4900–4912. [Google Scholar] [CrossRef] [Green Version]
- Mao, C.; Liu, X.; Zhang, Y.; Lei, G.; Yan, Y.; Lee, H.; Koppula, P.; Wu, S.; Zhuang, L.; Fang, B.; et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 2021, 593, 586–590. [Google Scholar] [CrossRef]
- Lee, H.; Zandkarimi, F.; Zhang, Y.; Meena, J.K.; Kim, J.; Zhuang, L.; Tyagi, S.; Ma, L.; Westbrook, T.F.; Steinberg, G.R.; et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat. Cell. Biol. 2020, 22, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Chen, Z.; Liu, M.; Gao, X.; Cheng, Y.; Wei, Y.; Wu, Z.; Cui, D.; Shang, H. Inhibition of neuronal ferroptosis in the acute phase of intracerebral hemorrhage shows long-term cerebroprotective effects. Brain Res. Bull. 2019, 153, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Qi, X.; Li, H.; Duan, Z.; Wei, Y.; Zhang, F.; Tian, M.; Ma, L.; You, C. Deferoxamine Alleviates Iron Overload and Brain Injury in a Rat Model of Brainstem Hemorrhage. World Neurosurg. 2019, 128, e895–e904. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wen, M.; Chen, J.; Yao, C.; Lin, X.; Lin, Z.; Ru, J.; Zhuge, Q.; Yang, S. Pyridoxal Isonicotinoyl Hydrazone Improves Neurological Recovery by Attenuating Ferroptosis and Inflammation in Cerebral Hemorrhagic Mice. Biomed. Res. Int. 2021, 2021, 9916328. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Hua, Y.; Keep, R.F.; Chaudhary, N.; Xi, G. Minocycline Effects on Intracerebral Hemorrhage-Induced Iron Overload in Aged Rats: Brain Iron Quantification With Magnetic Resonance Imaging. Stroke 2018, 49, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Hua, Y.; Keep, R.F.; Novakovic, N.; Fei, Z.; Xi, G. Minocycline attenuates brain injury and iron overload after intracerebral hemorrhage in aged female rats. Neurobiol. Dis. 2019, 126, 76–84. [Google Scholar] [CrossRef]
- Xiao, Z.; Shen, D.; Lan, T.; Wei, C.; Wu, W.; Sun, Q.; Luo, Z.; Chen, W.; Zhang, Y.; Hu, L.; et al. Reduction of lactoferrin aggravates neuronal ferroptosis after intracerebral hemorrhagic stroke in hyperglycemic mice. Redox Biol. 2022, 50, 102256. [Google Scholar] [CrossRef]
- Li, N.; Wang, W.; Zhou, H.; Wu, Q.; Duan, M.; Liu, C.; Wu, H.; Deng, W.; Shen, D.; Tang, Q. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free. Radic. Biol. Med. 2020, 160, 303–318. [Google Scholar] [CrossRef]
- Wang, G.; Hu, W.; Tang, Q.; Wang, L.; Sun, X.-G.; Chen, Y.; Yin, Y.; Xue, F.; Sun, Z. Effect Comparison of Both Iron Chelators on Outcomes, Iron Deposit, and Iron Transporters After Intracerebral Hemorrhage in Rats. Mol. Neurobiol. 2016, 53, 3576–3585. [Google Scholar] [CrossRef]
- Mo, Y.; Duan, L.; Yang, Y.; Liu, W.; Zhang, Y.; Zhou, L.; Su, S.; Lo, P.-C.; Cai, J.; Gao, L.; et al. Nanoparticles improved resveratrol brain delivery and its therapeutic efficacy against intracerebral hemorrhage. Nanoscale 2021, 13, 3827–3840. [Google Scholar] [CrossRef]
- Alim, I.; Caulfield, J.T.; Chen, Y.; Swarup, V.; Geschwind, D.H.; Ivanova, E.; Seravalli, J.; Ai, Y.; Sansing, L.H.; Ste Marie, E.J.; et al. Selenium Drives a Transcriptional Adaptive Program to Block Ferroptosis and Treat Stroke. Cell 2019, 177, 1262–1279.e25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, C.; Fu, X.; Wang, K.; Chen, L.; Luo, B.; Huang, N.; Luo, Y.; Chen, W. Dauricine alleviated secondary brain injury after intracerebral hemorrhage by upregulating GPX4 expression and inhibiting ferroptosis of nerve cells. Eur. J. Pharmacol. 2022, 914, 174461. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Han, M.; Li, R.; Zhou, L.; Zhang, Y.; Duan, L.; Su, S.; Li, M.; Wang, Q.; Chen, T.; et al. Curcumin Nanoparticles Inhibiting Ferroptosis for the Enhanced Treatment of Intracerebral Hemorrhage. Int. J. Nanomed. 2021, 16, 8049–8065. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, G.; Wang, K.; Wang, L.; Fu, X.; Lim, L.Y.; Chen, W.; Mo, J. Metal ion-responsive nanocarrier derived from phosphonated calix[4]arenes for delivering dauricine specifically to sites of brain injury in a mouse model of intracerebral hemorrhage. J. Nanobiotechnology 2020, 18, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Li, X.; Yang, L.; Zhang, L.; Jiang, X.; Gao, W.; Chen, P.; Cheng, Y.; Wang, F.; Liu, J. Isorhynchophylline Relieves Ferroptosis-Induced Nerve Damage after Intracerebral Hemorrhage Via miR-122-5p/TP53/SLC7A11 Pathway. Neurochem. Res. 2021, 46, 1981–1994. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Jiao, D.; Wang, H.; Wu, Q.; Men, W.; Yan, H.; Li, C. Activation of the PPARγ Prevents Ferroptosis-Induced Neuronal Loss in Response to Intracerebral Hemorrhage Through Synergistic Actions With the Nrf2. Front. Pharmacol. 2022, 13, 869300. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Zhang, Y.; Yang, Y.; Su, S.; Zhou, L.; Lo, P.-C.; Cai, J.; Qiao, Y.; Li, M.; Huang, S.; et al. Baicalin Inhibits Ferroptosis in Intracerebral Hemorrhage. Front. Pharmacol. 2021, 12, 629379. [Google Scholar] [CrossRef]
- Wang, F.; Li, W.-L.; Shen, L.-J.; Jiang, T.-T.; Xia, J.-J.; You, D.-L.; Hu, S.-Y.; Wang, L.; Wu, X. Crocin Alleviates Intracerebral Hemorrhage-Induced Neuronal Ferroptosis by Facilitating Nrf2 Nuclear Translocation. Neurotox. Res. 2022, 40, 596–604. [Google Scholar] [CrossRef]
- Han, R.; Wan, J.; Han, X.; Ren, H.; Falck, J.R.; Munnuri, S.; Yang, Z.-J.; Koehler, R.C. 20-HETE Participates in Intracerebral Hemorrhage-Induced Acute Injury by Promoting Cell Ferroptosis. Front. Neurol. 2021, 12, 763419. [Google Scholar] [CrossRef]
- Li, S.; Zhou, C.; Zhu, Y.; Chao, Z.; Sheng, Z.; Zhang, Y.; Zhao, Y. Ferrostatin-1 alleviates angiotensin II (Ang II)- induced inflammation and ferroptosis in astrocytes. Int. Immunopharmacol. 2021, 90, 107179. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Y.; Yuan, S.; Zhang, P.; Zhang, J.; Li, H.; Li, X.; Shen, H.; Wang, Z.; Chen, G. Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage. Brain Res. 2018, 1701, 112–125. [Google Scholar] [CrossRef]
- Selim, M.; Foster, L.D.; Moy, C.S.; Xi, G.; Hill, M.D.; Morgenstern, L.B.; Greenberg, S.M.; James, M.L.; Singh, V.; Clark, W.M.; et al. Deferoxamine mesylate in patients with intracerebral haemorrhage (i-DEF): A multicentre, randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol. 2019, 18, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Foster, L.; Robinson, L.; Yeatts, S.D.; Conwit, R.A.; Shehadah, A.; Lioutas, V.; Selim, M. Effect of Deferoxamine on Trajectory of Recovery After Intracerebral Hemorrhage: A Post Hoc Analysis of the i-DEF Trial. Stroke 2022, 53, 2204–2210. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Zi, L.; Yang, P.; Wei, Y.; Zhong, R.; Wang, Y.; You, C.; Li, Y.; Tian, M.; Gu, Z. Efficient Iron and ROS Nanoscavengers for Brain Protection after Intracerebral Hemorrhage. ACS Appl. Mater. Interfaces 2021, 13, 9729–9738. [Google Scholar] [CrossRef] [PubMed]
- Fouda, A.Y.; Newsome, A.S.; Spellicy, S.; Waller, J.L.; Zhi, W.; Hess, D.C.; Ergul, A.; Edwards, D.J.; Fagan, S.C.; Switzer, J.A. Minocycline in Acute Cerebral Hemorrhage: An Early Phase Randomized Trial. Stroke 2017, 48, 2885–2887. [Google Scholar] [CrossRef]
- Yi, X.; Tang, X. Exosomes From miR-19b-3p-Modified ADSCs Inhibit Ferroptosis in Intracerebral Hemorrhage Mice. Front. Cell. Dev. Biol. 2021, 9, 661317. [Google Scholar] [CrossRef]
- Li, Q.; Weiland, A.; Chen, X.; Lan, X.; Han, X.; Durham, F.; Liu, X.; Wan, J.; Ziai, W.C.; Hanley, D.F.; et al. Ultrastructural Characteristics of Neuronal Death and White Matter Injury in Mouse Brain Tissues After Intracerebral Hemorrhage: Coexistence of Ferroptosis, Autophagy, and Necrosis. Front. Neurol. 2018, 9, 581. [Google Scholar] [CrossRef] [Green Version]
- Luo, T.; Guo, T.; Yang, Q.; Hao, S.; Wang, J.; Cheng, Z.; Qu, Q.; He, Y.; Gong, Y.; Gao, F.; et al. In situ hydrogels enhancing postoperative functional recovery by reducing iron overload after intracerebral haemorrhage. Int. J. Pharm. 2017, 534, 179–189. [Google Scholar] [CrossRef]
Gene | Name | Pathway | Function |
---|---|---|---|
ACSL4 [31] | acyl–CoA synthetase long–chain family member 4 | lipid peroxidation | catalyzes PUFA to PUFA–CoA |
lncRNA H19 [36] | Long non-coding RNA H19 | lipid peroxidation | promotes BMVECs (brain microvascular endothelial cells) ferroptosis by modulating the miR–106b–5p/ACSL4 axis |
LOXs [28] | lipoxygenases | lipid peroxidation | phospholipid (PL) is oxidized by LOXs to PL–OOH |
GPX4 [32] | glutathione peroxidase 4 | GPX4 and GSH | reduces toxic lipids to non-toxic lipids and inhibits lipid peroxidation |
GCL [37] | glutamic acid cysteine ligase | GPX4 and GSH | involved in the synthesis of glutathione |
GS [37] | glutathione synthetase | GPX4 and GSH | involved in the synthesis of glutathione |
SLC7A11 [38] | solute carrier family 7 member 11 | GPX4 and GSH | responsible for transferring cysteine and glutamate |
METTL3 [39] | methyltransferase–like 3 | GPX4 and GSH | lowers N6–methyladentine levels of GPX4; increases mRNA levels of GPX4 by silencing |
HMGCR [40] | 3–hydroxy–3–methylglutaryl–CoA reductase | mevalonate pathway | rate-limiting enzyme in the mevalonate pathway |
FSP1 [41] | Ferroptosis suppressor protein 1 | FSP1–CoQ10–NAD(P)H pathway | reduces CoQ10 to ubiquinol |
FPN [42] | ferroportin | iron metabolism | transports iron out of cells |
IRP2 [43] | Iron regulatory protein 2 | iron metabolism | increases TFR1 levels, and reduces FPN levels |
Nrf2 [44] | nuclear factor erythroid 2–related factor 2 | Nrf2/ARE–GPX4 pathway | directly or indirectly involved in modulating ferroptosis, including metabolism of GSH, iron, and lipids, as well as mitochondrial function |
PPARγ [45] | Peroxisome proliferator-activated receptor gamma | Nrf2/ARE–GPX4 pathway | regulates transcription with the Nrf2/ARE–GPX4 pathway |
Target | Drugs/Molecules | Influence |
---|---|---|
Iron | Deferoxamine (DFO) [63] | Iron chelator, reduces the concentration of intracellular iron |
Pyridoxal Isonicotinoyl Hydrazone(PIH) [64] | Iron chelator, reduces the concentration of intracellular iron | |
Minocycline [65,66] | Iron chelator, reduces the concentration of intracellular iron | |
Lactoferrin (Ltf) [67] | May prevent iron-dependent lipid peroxidation | |
Dexrazoxane (DXZ) [68] | Inhibits ferroptosis in mice with sepsis-induced cardiac injury together with Ferrostatins–1 (Fer-1) | |
Clioquinol (CQ) [69] | Reduces cerebral edema and ROS production | |
Deferiprone (DFP) [69] | Decreases iron content in brain tissue but does not reduce cerebral edema or ROS | |
ROS | Ferrostatins–1 [62] | Inhibits ROS production |
Res–NPs [70] | Inhibits ROS production | |
GPX4 | Selenium [71] | Increases antioxidant GPX4 expression |
Dauricine [72] | Inhibits ferroptosis by upregulating the expression of GPX4 | |
Curcumin Nanoparticles (Cur–NPs) [73] | Inhibits ferroptosis by upregulating the expression of GPX4 | |
DPM [74] | Inhibits ferroptosis by upregulating the expression of GPX4 | |
CoQ10 | Ferroptosis Suppressor Protein 1 (FSP1) [41] | Reduces CoQ10 to generate a lipophilic RTA that halts the propagation of lipid peroxides |
ACSL4 | Paeonol [33] | Mediates HOTAIR/UPF1/ACSL4 axis to inhibit ferroptosis in heme chloride-treated neuronal cells |
lipoxygenase (LOXS) and its products | N–acetylcysteine(NAC) [35] | Protects neurons by inhibiting the toxic arachidonic acid production of ALOX5 |
SLC7A11 | Isorhynchophylline (IRN) [75] | Protects neurons from ICH-induced ferroptosis through the miR–122–5p/TP53/SLC7A11 pathway |
PPARγ | Pioglitazone [76] | Acts as a PPARγ agonist in synergy with the Nrf2/ARE–GPX4 pathway to regulate transcription |
GPX4, SLC7A11 | Baicalin [77] | Inhibits ferroptosis by upregulating the expression of GPX4 and SLC7A11 |
GPX4, SLC7A11, Nrf2 | Crocin [78] | Downregulates iron concentrations and upregulates GPX4 and SLC7A11 by Nrf2 nuclear translocation |
References | In Vitro | In Vivo | Findings | ||
---|---|---|---|---|---|
Cell | Experimental Model | Animal | Animal Model of ICH | ||
[87] | No* | No | 12-week-old C57BL/6 male mice | Collagenase VII–S | We observed ferroptosis in the injured striatum during the acute phase of ICH |
[33] | Primary cortical neurons (PCN), HT22 cells, 293T cells | Hemin, Paeonol, ferrostatin–1, Cell Transfection | C57BL/6 mice aged 8–12 weeks | Collagenase VII–S | Paeonol inhibits the progression of ICH by mediating the HOTAIR/UPF1/ACSL4 axis |
[71] | PCN, HT22 cells | Hemin, L–homocysteic acid, RSL3, FIN56or erastin | Male C57BL/6 mice aged 8–12 weeks | Collagenase | Selenium increases antioxidant GPX4 expression to block ferroptosis |
[42] | No | No | 20-month-old C57bl/6 mice | 20 μL autologous blood | The critical role of miR124/FPN-signaling in iron metabolism |
[65] | No | No | 18-month-old male Fischer rats | 100 μL autologous arterial blood | Minocycline reduces the concentration of intracellular iron to block ferroptosis |
[62] | No | No | 8-week-old male ICR mice and 8-week-old male C57BL/6 mice | 30 μL autologous blood | Inhibition of neuronal ferroptosis in the acute phase of ICH shows long-term cerebroprotective effects |
[36] | Brain microvascular endothelial cells (BMVECs) | Hemin, Cell Transfection | No | No | Long non-coding RNA H19 protects against ICH injuries via regulating microRNA–106b–5p/acyl–CoA synthetase long-chain family member 4 axis |
[66] | No | No | 18-month-old female Fischer rats | 100 μL autologous whole blood | Minocycline reduces the concentration of intracellular iron to block ferroptosis |
[76] | No | No | Male SD rats aged 10 weeks | 100 μL autologous blood | Activation of the PPARγ prevents ICH through synergistic actions with the Nrf2 |
[77] | PC12 cell line, PCN | Hemin, RSL3 or erastin and baicalin | C57BL/6 mice aged 10 weeks | Type IV collagenase | Baicalin enhanced the expression of GPX4 and SLC7A11 to inhibit ferroptosis in ICH |
[63] | No | No | Adult male Sprague Dawley rats | Type VII collagenase | DFO reduces the concentration of intracellular iron to block ferroptosis |
[79] | No | No | Adult male C57BL/6J mice | Collagenase VII–S | Lipid peroxidation was decreased and expression of GPX4 was increased to block ferroptosis |
[35] | PCN | Hemin | C57BL/6 mice | Collagenase | N–acetylcysteine (NAC) protects neurons by inhibiting the toxic arachidonic acid production of ALOX5 |
[51] | No | No | Adult male C57BL/6 mice | 30 μL autologous whole blood | DPM inhibits ferroptosis by upregulating the expression of GPX4 |
[88] | Primary neuronal cell | Hemoglobin | Male Sprague Dawley rats | 50 μL autologous whole blood | Minocycline reduces the concentration of intracellular iron to block ferroptosis |
[70] | HT22 cells | Erastin | C57BL/6 mice (8 weeks old) | Type IV collagenase | Res–NPs inhibits ROS production in ICH treatment |
[73] | No | No | Male C57BL/6 mice (8–10 weeks old) | Type IV collagenase | Cur–NPs treatment might increase the GPX4 expression by regulating Nrf2/HO–1 pathway |
[86] | PCN | Hemin and Cell Transfection | C57BL/6 mice (8–12 weeks) | Collagenase | ADSC–19bM–Exos inhibits IRP2 expression, reduces TFR1 levels, and significantly increase Fpn levels to block ferroptosis |
[64] | PC12 cell line | PIH and erastin | Adult male C57BL/6 mice | Collagenase VII–S | PIH reduces the concentration of intracellular iron to block ferroptosis |
[39] | BMVECs | Hemin, RSL3, ferrostatin–1 and Cell Transfection | C57BL/6 mice | Collagenase IV | Methyltransferase like 3 silencing effectively suppresses ferroptosis by regulating GPX4. |
[81] | No | No | Male Sprague Dawley (SD) rats | 100 μL autologous blood | Glutathione peroxidase 4 participates in secondary brain injury |
[75] | HT–22 cells | IRN, ferric ammonium citrate (FAC), Cell Transfection | Adult male Sprague Dawley rats (SD rats) aged 11–12 weeks | Collagenase type VII | Isorhynchophylline relieves ferroptosis-induced nerve damage after ICH via miR–122–5p/TP53/SLC7A11 pathway |
[72] | Human SH–SY5Y neuroblastoma cell lines | Dauricine, RSL3, Cell Transfection | Adult male C57BL/6 mice | Collagenase IV | Dauricine alleviated secondary brain injury after ICH by upregulating GPX4 expression |
[78] | No | No | 8-week-old C57BL/6 male mice | 25 μL autologous blood | Crocin alleviates ICH-induced neuronal ferroptosis by facilitating Nrf2 nuclear translocation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Li, Q.; Guo, H.; He, Q. Ferroptosis and Iron Metabolism after Intracerebral Hemorrhage. Cells 2023, 12, 90. https://doi.org/10.3390/cells12010090
Sun Y, Li Q, Guo H, He Q. Ferroptosis and Iron Metabolism after Intracerebral Hemorrhage. Cells. 2023; 12(1):90. https://doi.org/10.3390/cells12010090
Chicago/Turabian StyleSun, Yuanyuan, Qian Li, Hongxiu Guo, and Quanwei He. 2023. "Ferroptosis and Iron Metabolism after Intracerebral Hemorrhage" Cells 12, no. 1: 90. https://doi.org/10.3390/cells12010090
APA StyleSun, Y., Li, Q., Guo, H., & He, Q. (2023). Ferroptosis and Iron Metabolism after Intracerebral Hemorrhage. Cells, 12(1), 90. https://doi.org/10.3390/cells12010090