Molecular Markers of Pediatric Solid Tumors—Diagnosis, Optimizing Treatments, and Determining Susceptibility: Current State and Future Directions
Abstract
:1. Introduction
- Central nervous system (CNS) tumors (~20–23% *),
- Neuroblastoma (8–10% *),
- Wilms tumors, (7–8% *),
- Malignant bone tumors, (osteosarcoma and Ewing tumor) (~7% *),
- Soft tissue sarcomas (~7% *),
- Germ cell tumors (3–6% *),
- Hepatoblastoma, rarely hepatocarcinoma (0.5–2% *),
- Retinoblastoma (2.5–3% *),
- Other malignant epithelial neoplasms and malignant melanomas
- Other and unspecified carcinomas.
2. Molecular Markers of Clinical Significance in Childhood Solid Tumors
2.1. Central Nervous System Neoplasms
2.2. Neuroblastoma
2.3. Renal Tumors
- clear cell sarcoma of kidney (CCSK),
- renal cell carcinoma associated with MiTF/TFE translocations,
- malignant rhabdoid tumor of kidney (MRTK),
- congenital mesoblastic nephroma (CMN), and others.
2.4. Malignant Bone Tumors, including Osteosarcoma and Ewing Sarcoma
2.5. Soft-Tissue Sarcomas (STS)
2.6. Germ Cell Tumors
2.7. Liver Tumors
- undifferentiated embryonal sarcoma of the liver (UES) which is a rare liver tumor with onset in children mostly aged between 6 and 10 years. The molecular background of this neoplasm is not fully understood; however, according to literature data, the characteristic features of this neoplasm comprise frequent and extensive chromosome rearrangements, also in the form of chromothripsis [74]. Additionally, alterations were observed within the 19q13.4 region, including a t(11;19) (q13;q13.4) translocation and overexpression of the C19MC region (miRNA cluster). The presence of TP53 gene alterations was also observed [75,76,77,78].
2.8. Retinoblastoma
- bilateral or multifocal (25–30% of cases, hereditary form),
- unilateral or unifocal (70–75% of cases, sporadic form),
- trilateral form, in which the presence of bilateral disease is accompanied by an embryonic intracranial tumor (pineoblastoma) localized in the midline (4%—only in children with the hereditary form of the disease).
2.9. Melanoma
- Spitzoid melanoma (SM), the most common form,
- Melanoma that arises from a congenital melanocytic nevus (CMN)
- Classic melanoma (“adult-type melanoma”), most similar in terms of causes and risk factors to melanoma diagnosed in adults.
2.10. Ovarian Cancers
3. Targeted Treatments for Pediatric Solid Tumours
4. Germline Alterations
5. Material and Conditions for Its Preservation for Genetic Testing
6. Future Directions
6.1. Methylation Profile
6.2. Liquid Biopsy
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://seer.cancer.gov/iccc/iccc-iarc-2017.html#fn (accessed on 27 February 2022).
- Steliarova-Foucher, E.; Colombet, M.; Ries, L.A.G.; Moreno, F.; Dolya, A.; Bray, F.; Hesseling, P.; Shin, H.Y.; Stiller, C.A.; IICC-3 Contributors. International incidence of childhood cancer, 2001–2010: A population-based registry study. Lancet Oncol. 2017, 18, 719–731. [Google Scholar] [CrossRef]
- Styczyński, J.; Balwierz, W.; Dembowska-Bagińska, B.; Kazanowska, B.; Wachowiak, J.; Matysiak, M.; Klukowska, A.; Krawczuk-Rybak, M.; Adamkiewicz-Drożyńska, E.; Młynarski, W.M. Paediatric oncology and haematology in Poland: Position paper. Pediatr. Pol. 2018, 93, 451–461. [Google Scholar] [CrossRef]
- Abeloff, M.D.; Armitage, J.O.; Niederhuber, J.E.; Kastan, M.B.; McKenna, W.G. Abeloff’s Clinical Oncology E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2008. [Google Scholar]
- WHO Classification of Tumours Editorial Board. World Health Organization Classification of Tumours of the Central Nervous System, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2021.
- Ellison, D.W.; Hawkins, C.; Jones, D.T.W.; Onar-Thomas, A.; Pfister, S.M.; Reifenberger, G.; Louis, D.N. cIMPACT-NOW update 4: Diffuse gliomas characterized by MYB, MYBL1, or FGFR1 alterations or BRAFV600E mutation. Acta Neuropathol. 2019, 137, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.; Harreld, J.H.; Tinkle, C.L.; Moreira, D.C.; Li, X.; Acharya, S.; Qaddoumi, I.; Ellison, D.W. A single-center study of the clinicopathologic correlates of gliomas with a MYB or MYBL1 alteration. Acta Neuropathol. 2019, 138, 1091–1092. [Google Scholar] [CrossRef]
- Ryall, S.; Tabori, U.; Hawkins, C. Pediatric low-grade glioma in the era of molecular diagnostics. Acta Neuropathol. Commun. 2020, 8, 30. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Nobusawa, S.; Nakata, S.; Nakada, M.; Arakawa, Y.; Mineharu, Y.; Sugita, Y.; Yoshioka, T.; Araki, A.; Sato, Y.; et al. CNS high-grade neuroepithelial tumor with BCOR internal tandem duplication: A comparison with its counterparts in the kidney and soft tissue. Brain Pathol. 2018, 28, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Gareton, A.; Tauziède-Espariat, A.; Dangouloff-Ros, V.; Roux, A.; Saffroy, R.; Castel, D.; Kergrohen, T.; Fina, F.; Figarella-Branger, D.; Pagès, M.; et al. The histomolecular criteria established for adult anaplastic pilocytic astrocytoma are not applicable to the pediatric population. Acta Neuropathol. 2020, 139, 287–303. [Google Scholar] [CrossRef] [Green Version]
- Louis, D.N.; Giannini, C.; Capper, D.; Paulus, W.; Figarella-Branger, D.; Lopes, M.B.; Batchelor, T.T.; Cairncross, J.G.; van den Bent, M.; Wick, W.; et al. cIMPACT-NOW update 2: Diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol. 2018, 135, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Wesseling, P.; Aldape, K.; Brat, D.J.; Capper, D.; Cree, I.A.; Eberhart, C.; Figarella-Branger, D.; Fouladi, M.; Fuller, G.N.; et al. cIMPACT-NOW update 6: New entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020, 30, 844–856. [Google Scholar] [CrossRef] [PubMed]
- Ellison, D.W.; Aldape, K.D.; Capper, D.; Fouladi, M.; Gilbert, M.R.; Gilbertson, R.J.; Hawkins, C.; Merchant, T.E.; Pajtler, K.; Venneti, S.; et al. cIMPACT-NOW update 7: Advancing the molecular classification of ependymal tumors. Brain Pathol. 2020, 30, 863–866. [Google Scholar] [CrossRef]
- Jünger, S.T.; Andreiuolo, F.; Mynarek, M.; Dörner, E.; Zur Mühlen, A.; Rutkowski, S.; von Bueren, A.O.; Pietsch, T. Ependymomas in infancy: Underlying genetic alterations, histological features, and clinical outcome. Childs Nerv. Syst. 2020, 36, 2693–2700. [Google Scholar] [CrossRef]
- Lucas, C.G.; Villanueva-Meyer, J.E.; Whipple, N.; Oberheim Bush, N.A.; Cooney, T.; Chang, S.; McDermott, M.; Berger, M.; Cham, E.; Sun, P.P.; et al. Myxoid glioneuronal tumor, PDGFRA p.K385-mutant: Clinical, radiologic, and histopathologic features. Brain Pathol. 2020, 30, 479–494. [Google Scholar] [CrossRef]
- Johnson, D.R.; Giannini, C.; Jenkins, R.B.; Kim, D.K.; Kaufmann, T.J. Plenty of calcification: Imaging characterization of polymorphous low-grade neuroepithelial tumor of the young. Neuroradiology 2019, 61, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro Stucklin, A.S.; Ryall, S.; Fukuoka, K.; Zapotocky, M.; Lassaletta, A.; Li, C.; Bridge, T.; Kim, B.; Arnoldo, A.; Kowalski, P.E.; et al. Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat. Commun. 2019, 10, 4343. [Google Scholar] [CrossRef] [Green Version]
- Mondal, G.; Lee, J.C.; Ravindranathan, A.; Villanueva-Meyer, J.E.; Tran, Q.T.; Allen, S.J.; Barreto, J.; Gupta, R.; Doo, P.; Van Ziffle, J.; et al. Pediatric bithalamic gliomas have a distinct epigenetic signature and frequent EGFR exon 20 insertions resulting in potential sensitivity to targeted kinase inhibition. Acta Neuropathol. 2020, 139, 1071–1088. [Google Scholar] [CrossRef]
- Kleinschmidt-DeMasters, B.K.; Mulcahy Levy, J.M. H3 K27M-mutant gliomas in adults vs. children share similar histological features and adverse prognosis. Clin. Neuropathol. 2018, 37, 53–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komori, T. The molecular framework of pediatric-type diffuse gliomas: Shifting toward the revision of the WHO classification of tumors of the central nervous system. Brain Tumor Pathol. 2021, 38, 1–3. [Google Scholar] [CrossRef]
- Park, J.R.; Eggert, A.; Caron, H. Neuroblastoma: Biology, prognosis, and treatment. Hematol. Oncol. Clin. N. Am. 2010, 24, 65–86. [Google Scholar] [CrossRef] [PubMed]
- London, W.; Castleberry, R.; Matthay, K.; Look, A.; Seeger, R.; Shimada, H.; Thorner, P.; Brodeur, G.; Maris, J.; Reynolds, C. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J. Clin. Oncol. 2005, 23, 6459–6465. [Google Scholar] [CrossRef] [PubMed]
- European Low and Intermediate Risk Neuroblastoma Protocol: A SIOPEN Study, Version 3.0; High Risk Neuroblastoma Study 1.5 of SIOPEN: 1 June 2011. Available online: https://clinicaltrials.gov/ct2/show/NCT01704716 (accessed on 27 February 2022).
- Ambros, P.F.; Ambros, I.M.; SIOP Europe Neuroblastoma Pathology, B.O.; Bone Marrow Group. Pathology and biology guidelines for resectable and unresectable neuroblastic tumors and bone marrow examination guidelines. Med. Pediatr. Oncol. 2001, 37, 492–504. [Google Scholar] [CrossRef]
- Ambros, P.F.; Ambros, I.M.; Brodeur, G.M.; Haber, M.; Khan, J.; Nakagawara, A.; Schleiermacher, G.; Speleman, F.; Spitz, R.; London, W.B.; et al. International consensus for neuroblastoma molecular diagnostics: Report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br. J. Cancer 2009, 100, 1471–1482. [Google Scholar] [CrossRef] [Green Version]
- Trigg, R.M.; Turner, S.D. ALK in Neuroblastoma: Biological and Therapeutic Implications. Cancers 2018, 10, 113. [Google Scholar] [CrossRef] [Green Version]
- Bresler, S.C.; Weiser, D.A.; Huwe, P.J.; Park, J.H.; Krytska, K.; Ryles, H.; Laudenslager, M.; Rappaport, E.F.; Wood, A.C.; McGrady, P.W.; et al. ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer Cell 2014, 26, 682–694. [Google Scholar] [CrossRef] [Green Version]
- Wegert, J.; Wittmann, S.; Leuschner, I.; Geissinger, E.; Graf, N.; Gessler, M. WTX inactivation is a frequent, but late event in Wilms tumors without apparent clinical impact. Genes Chromosomes Cancer 2009, 48, 1102–1111. [Google Scholar] [CrossRef]
- Ruteshouser, E.C.; Robinson, S.M.; Huff, V. Wilms tumor genetics: Mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer 2008, 47, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Walz, A.L.; Ooms, A.; Gadd, S.; Gerhard, D.S.; Smith, M.A.; Guidry Auvil, J.M.; Meerzaman, D.; Chen, Q.R.; Hsu, C.H.; Yan, C.; et al. Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell 2015, 27, 286–297. [Google Scholar] [CrossRef] [Green Version]
- Wegert, J.; Ishaque, N.; Vardapour, R.; Geörg, C.; Gu, Z.; Bieg, M.; Ziegler, B.; Bausenwein, S.; Nourkami, N.; Ludwig, N.; et al. Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors. Cancer Cell 2015, 27, 298–311. [Google Scholar] [CrossRef] [Green Version]
- Rakheja, D.; Chen, K.S.; Liu, Y.; Shukla, A.A.; Schmid, V.; Chang, T.C.; Khokhar, S.; Wickiser, J.E.; Karandikar, N.J.; Malter, J.S.; et al. Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nat. Commun. 2014, 2, 4802. [Google Scholar] [CrossRef]
- Torrezan, G.T.; Ferreira, E.N.; Nakahata, A.M.; Barros, B.D.; Castro, M.T.; Correa, B.R.; Krepischi, A.C.; Olivieri, E.H.; Cunha, I.W.; Tabori, U.; et al. Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat. Commun. 2014, 5, 4039. [Google Scholar] [CrossRef] [Green Version]
- Ooms, A.H.A.G.; Vujanić, G.M.; D’Hooghe, E.; Collini, P.; L’Herminé-Coulomb, A.; Vokuhl, C.; Graf, N.; Heuvel-Eibrink, M.M.V.D.; de Krijger, R.R. Renal Tumors of Childhood-A Histopathologic Pattern-Based Diagnostic Approach. Cancers 2020, 12, 729. [Google Scholar] [CrossRef] [Green Version]
- Klamt, B.; Schulze, M.; Thäte, C.; Mares, J.; Goetz, P.; Kodet, R.; Scheulen, W.; Weirich, A.; Graf, N.; Gessler, M. Allele loss in Wilms tumors of chromosome arms 11q, 16q, and 22q correlate with clinicopathological parameters. Genes Chromosomes Cancer 1998, 22, 287–294. [Google Scholar] [CrossRef]
- Grundy, P.E.; Breslow, N.E.; Li, S.; Perlman, E.; Beckwith, J.B.; Ritchey, M.L.; Shamberger, R.C.; Haase, G.M.; D’Angio, G.J.; Donaldson, M.; et al. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: A report from the National Wilms Tumor Study Group. J. Clin. Oncol. 2005, 23, 7312–7321. [Google Scholar] [CrossRef]
- Bown, N.; Cotterill, S.J.; Roberts, P.; Griffiths, M.; Larkins, S.; Hibbert, S.; Middleton, H.; Kelsey, A.; Tritton, D.; Mitchell, C. Cytogenetic abnormalities and clinical outcome in Wilms tumor: A study by the U.K. cancer cytogenetics group and the U.K. Children’s Cancer Study Group. Med. Pediatr. Oncol. 2002, 38, 11–21. [Google Scholar] [CrossRef] [PubMed]
- De Kraker, J.; Graf, N.; Pritchard-Jones, K.; Pein, F. Nephroblastoma Clinical Trial and Study SIOP 2001, Protocol. SIOP RTSG. 2001. Available online: https://www.skion.nl/workspace/uploads/Protocol-SIOP-2001.pdf (accessed on 26 February 2022).
- Pietras, W. Advances and changes in the treatment of children with nephroblastoma. Adv. Clin. Exp. Med. 2012, 21, 809–820. [Google Scholar] [PubMed]
- Godzinski, J. The current status of treatment of Wilms’ tumor as per the SIOP trials. J. Indian Assoc. Pediatr. Surg. 2015, 20, 16–20. [Google Scholar] [CrossRef] [Green Version]
- van den Heuvel-Eibrink, M.M.; Hol, J.A.; Pritchard-Jones, K.; van Tinteren, H.; Furtwängler, R.; Verschuur, A.C.; Vujanic, G.M.; Leuschner, I.; Brok, J.; Rübe, C.; et al. Position paper: Rationale for the treatment of Wilms tumour in the UMBRELLA SIOP-RTSG 2016 protocol. Nat. Rev. Urol. 2017, 14, 743–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huff, V.; Miwa, H.; Haber, D.A.; Call, K.M.; Housman, D.; Strong, L.C.; Saunders, G.F. Evidence for WT1 as a Wilms tumor (WT) gene: Intragenic germinal deletion in bilateral WT. Am. J. Hum. Genet 1991, 48, 997–1003. [Google Scholar]
- Bardeesy, N.; Falkoff, D.; Petruzzi, M.J.; Nowak, N.; Zabel, B.; Adam, M.; Aguiar, M.C.; Grundy, P.; Shows, T.; Pelletier, J. Anaplastic Wilms’ tumour, a subtype displaying poor prognosis, harbours p53 gene mutations. Nat. Genet 1994, 7, 91–97. [Google Scholar] [CrossRef]
- Ooms, A.H.; Gadd, S.; Gerhard, D.S.; Smith, M.A.; Guidry Auvil, J.M.; Meerzaman, D.; Chen, Q.R.; Hsu, C.H.; Yan, C.; Nguyen, C.; et al. Significance of TP53 Mutation in Wilms Tumors with Diffuse Anaplasia: A Report from the Children’s Oncology Group. Clin. Cancer Res. 2016, 22, 5582–5591. [Google Scholar] [CrossRef] [Green Version]
- Wegert, J.; Vokuhl, C.; Collord, G.; Del Castillo Velasco-Herrera, M.; Farndon, S.J.; Guzzo, C.; Jorgensen, M.; Anderson, J.; Slater, O.; Duncan, C.; et al. Recurrent intragenic rearrangements of EGFR and BRAF in soft tissue tumors of infants. Nat. Commun. 2018, 9, 2378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vokuhl, C.; Nourkami-Tutdibi, N.; Furtwängler, R.; Gessler, M.; Graf, N.; Leuschner, I. ETV6-NTRK3 in congenital mesoblastic nephroma: A report of the SIOP/GPOH nephroblastoma study. Pediatr. Blood Cancer 2018, 65, e26925. [Google Scholar] [CrossRef] [PubMed]
- Scotlandi, K.; Hattinger, C.M.; Pellegrini, E.; Gambarotti, M.; Serra, M. Genomics and Therapeutic Vulnerabilities of Primary Bone Tumors. Cells 2020, 9, 968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behjati, S.; Tarpey, P.S.; Presneau, N.; Scheipl, S.; Pillay, N.; Van Loo, P.; Wedge, D.C.; Cooke, S.L.; Gundem, G.; Davies, H.; et al. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat. Genet. 2013, 45, 1479–1482. [Google Scholar] [CrossRef] [PubMed]
- Mejia-Guerrero, S.; Quejada, M.; Gokgoz, N.; Gill, M.; Parkes, R.K.; Wunder, J.S.; Andrulis, I.L. Characterization of the 12q15 MDM2 and 12q13-14 CDK4 amplicons and clinical correlations in osteosarcoma. Genes Chromosomes Cancer 2010, 49, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Casali, P.G.; Bielack, S.; Abecassis, N.; Aro, H.T.; Bauer, S.; Biagini, R.; Bonvalot, S.; Boukovinas, I.; Bovee, J.V.M.G.; Brennan, B.; et al. Bone sarcomas: ESMO-PaedCan-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv79–iv95. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Bahrami, A.; Pappo, A.; Easton, J.; Dalton, J.; Hedlund, E.; Ellison, D.; Shurtleff, S.; Wu, G.; Wei, L.; et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 2014, 7, 104–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ognjanovic, S.; Olivier, M.; Bergemann, T.L.; Hainaut, P. Sarcomas in TP53 germline mutation carriers: A review of the IARC TP53 database. Cancer 2012, 118, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Heinsohn, S.; Evermann, U.; Zur Stadt, U.; Bielack, S.; Kabisch, H. Determination of the prognostic value of loss of heterozygosity at the retinoblastoma gene in osteosarcoma. Int. J. Oncol. 2007, 30, 1205–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrage, Y.M.; Lam, S.; Jochemsen, A.G.; Cleton-Jansen, A.M.; Taminiau, A.H.; Hogendoorn, P.C.; Bovée, J.V. Central chondrosarcoma progression is associated with pRb pathway alterations: CDK4 down-regulation and p16 overexpression inhibit cell growth in vitro. J. Cell Mol. Med. 2009, 13, 2843–2852. [Google Scholar] [CrossRef] [PubMed]
- El Beaino, M.; Roszik, J.; Livingston, J.A.; Wang, W.L.; Lazar, A.J.; Amini, B.; Subbiah, V.; Lewis, V.; Conley, A.P. Mesenchymal Chondrosarcoma: A Review with Emphasis on its Fusion-Driven Biology. Curr. Oncol. Rep. 2018, 20, 37. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.A.; Kiezun, A.; Tonzi, P.; Van Allen, E.M.; Carter, S.L.; Baca, S.C.; Cowley, G.S.; Bhatt, A.S.; Rheinbay, E.; Pedamallu, C.S.; et al. Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc. Natl. Acad. Sci. USA 2014, 111, E5564–E5573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiedorowicz, M.; Bartnik, E.; Sobczuk, P.; Teterycz, P.; Czarnecka, A.M. Molecular biology of sarcoma. Oncol. Clin. Pract. 2018, 14, 307–330. [Google Scholar] [CrossRef]
- Schaefer, I.M.; Hong, K.; Kalbasi, A. How Technology Is Improving the Multidisciplinary Care of Sarcoma. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, 445–462. [Google Scholar] [CrossRef] [PubMed]
- Agaram, N.P.; LaQuaglia, M.P.; Alaggio, R.; Zhang, L.; Fujisawa, Y.; Ladanyi, M.; Wexler, L.H.; Antonescu, C.R. MYOD1-mutant spindle cell and sclerosing rhabdomyosarcoma: An aggressive subtype irrespective of age. A reappraisal for molecular classification and risk stratification. Mod. Pathol. 2019, 32, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.pathologyoutlines.com/topic/softtissuemolecular.html (accessed on 27 February 2022).
- Olson, T.A.; Murray, M.J.; Rodriguez-Galindo, C.; Nicholson, J.C.; Billmire, D.F.; Krailo, M.D.; Dang, H.M.; Amatruda, J.F.; Thornton, C.M.; Arul, G.S.; et al. Pediatric and Adolescent Extracranial Germ Cell Tumors: The Road to Collaboration. J. Clin. Oncol. 2015, 33, 3018–3028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czauderna, P.; Lopez-Terrada, D.; Hiyama, E.; Häberle, B.; Malogolowkin, M.H.; Meyers, R.L. Hepatoblastoma state of the art: Pathology, genetics, risk stratification, and chemotherapy. Curr. Opin. Pediatr. 2014, 26, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Eichenmüller, M.; Trippel, F.; Kreuder, M.; Beck, A.; Schwarzmayr, T.; Häberle, B.; Cairo, S.; Leuschner, I.; von Schweinitz, D.; Strom, T.M.; et al. The genomic landscape of hepatoblastoma and their progenies with HCC-like features. J. Hepatol. 2014, 61, 1312–1320. [Google Scholar] [CrossRef]
- Simon, M.M.; Azkargorta, L.G.; Nonell, M.L.; López-Santamaria, M.; Garrido, M.E.; Mateos, C.B.; Plaza, F.D.; Hernandez, M.; Mendiola, I.; Ojanguren, M.; et al. Armengol. Comphrehensive proteomic study of hepatoblastoma: Identification of a prognostic signature and deregulated pathway. J. Hepatol. 2016, 64, S302. [Google Scholar] [CrossRef]
- Aguiar, T.F.M.; Rivas, M.P.; Costa, S.; Maschietto, M.; Rodrigues, T.; Sobral de Barros, J.; Barbosa, A.C.; Valieris, R.; Fernandes, G.R.; Bertola, D.R. Insights into the somatic mutation burden of hepatoblastomas from Brazilian patients. Front. Oncol. 2020, 10, 556. [Google Scholar] [CrossRef] [PubMed]
- Sumazin, P.; Chen, Y.; Treviño, L.R.; Sarabia, S.F.; Hampton, O.A.; Patel, K.; Mistretta, T.A.; Zorman, B.; Thompson, P.; Heczey, A.; et al. Genomic analysis of hepatoblastoma identifies distinct molecular and prognostic subgroups. Hepatology 2017, 65, 104–121. [Google Scholar] [CrossRef] [Green Version]
- Bell, D.; Ranganathan, S.; Tao, J.; Monga, S.P. Novel Advances in Understanding of Molecular Pathogenesis of Hepatoblastoma: A Wnt/β-Catenin Perspective. Gene Expr. 2017, 17, 141–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czauderna, P.; Haeberle, B.; Hiyama, E.; Rangaswami, A.; Krailo, M.; Maibach, R.; Rinaldi, E.; Feng, Y.; Aronson, D.; Malogolowkin, M.; et al. The Children’s Hepatic tumors International Collaboration (CHIC): Novel global rare tumor database yields new prognostic factors in hepatoblastoma and becomes a research model. Eur. J. Cancer 2016, 52, 92–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cairo, S.; Armengol, C.; De Reyniès, A.; Wei, Y.; Thomas, E.; Renard, C.A.; Goga, A.; Balakrishnan, A.; Semeraro, M.; Gresh, L.; et al. Hepatic stem-like phenotype and interplay of Wnt/beta-catenin and Myc signaling in aggressive childhood liver cancer. Cancer Cell 2008, 14, 471–484. [Google Scholar] [CrossRef]
- Available online: https://clinicaltrials.gov/ct2/history/NCT03017326?V_4=View (accessed on 27 February 2022).
- Kelly, D.; Sharif, K.; Brown, R.M.; Morland, B. Hepatocellular Carcinoma in Children. Clin. Liver Dis. 2015, 19, 433–447. [Google Scholar] [CrossRef]
- Available online: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=en&Expert=33402 (accessed on 27 February 2022).
- Forment, J.V.; Kaidi, A.; Jackson, S.P. Chromothripsis and cancer: Causes and consequences of chromosome shattering. Nat. Rev. Cancer 2012, 12, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Lepreux, S.; Rebouissou, S.; Le Bail, B.; Saric, J.; Balabaud, C.; Bloch, B.; Martin-Négrier, M.L.; Zucman-Rossi, J.; Bioulac-Sage, P. Mutation of TP53 gene is involved in carcinogenesis of hepatic undifferentiated (embryonal) sarcoma of the adult, in contrast with Wnt or telomerase pathways: An immunohistochemical study of three cases with genomic relation in two cases. J. Hepatol. 2005, 42, 424–429. [Google Scholar] [CrossRef]
- Hu, X.; Chen, H.; Jin, M.; Wang, X.; Lee, J.; Xu, W.; Zhang, R.; Li, S.; Niu, J. Molecular cytogenetic characterization of undifferentiated embryonal sarcoma of the liver: A case report and literature review. Mol. Cytogenet. 2012, 5, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangkhathat, S.; Kusafuka, T.; Nara, K.; Yoneda, A.; Fukuzawa, M. Non-random p53 mutations in pediatric undifferentiated (embryonal) sarcoma of the liver. Hepatol. Res. 2006, 35, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lei, L.; Zuppan, C.W.; Raza, A.S. Undifferentiated embryonal sarcoma of the liver with an unusual presentation: Case report and review of the literature. J. Gastrointest. Oncol. 2016, 7, S100–S106. [Google Scholar] [CrossRef]
- Sekiguchi, M.; Seki, M.; Kawai, T.; Yoshida, K.; Yoshida, M.; Isobe, T.; Hoshino, N.; Shirai, R.; Tanaka, M.; Souzaki, R.; et al. Integrated multiomics analysis of hepatoblastoma unravels its heterogeneity and provides novel druggable targets. NPJ Precis. Oncol. 2020, 4, 20. [Google Scholar] [CrossRef]
- Setty, B.A.; Jinesh, G.G.; Arnold, M.; Pettersson, F.; Cheng, C.H.; Cen, L.; Yoder, S.J.; Teer, J.K.; Flores, E.R.; Reed, D.R.; et al. The genomic landscape of undifferentiated embryonal sarcoma of the liver is typified by C19MC structural rearrangement and overexpression combined with TP53 mutation or loss. PLoS Genet. 2020, 16, e1008642. [Google Scholar] [CrossRef]
- Rodriguez-Galindo, C.; Buchsbaum, J.C. Chapter 69-Retinoblastoma. In Clinical Radiation Oncology, 3rd ed.; Gunderson, L.L., Tepper, J.E., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2012; pp. 1455–1469. [Google Scholar]
- Knudson, A.G. Mutation and cancer: Statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 1971, 68, 820–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Benavente, C.A.; McEvoy, J.; Flores-Otero, J.; Ding, L.; Chen, X.; Ulyanov, A.; Wu, G.; Wilson, M.; Wang, J.; et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 2012, 481, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Francis, J.H.; Richards, A.L.; Mandelker, D.L.; Berger, M.F.; Walsh, M.F.; Dunkel, I.J.; Donoghue, M.T.A.; Abramson, D.H. Molecular Changes in Retinoblastoma beyond. Cancers 2021, 13, 149. [Google Scholar] [CrossRef]
- Zugbi, S.; Ganiewich, D.; Bhattacharyya, A.; Aschero, R.; Ottaviani, D.; Sampor, C.; Cafferata, E.G.; Mena, M.; Sgroi, M.; Winter, U.; et al. Clinical, Genomic, and Pharmacological Study of. Cancers 2020, 12, 2714. [Google Scholar] [CrossRef] [PubMed]
- Wiesner, T.; He, J.; Yelensky, R.; Esteve-Puig, R.; Botton, T.; Yeh, I.; Lipson, D.; Otto, G.; Brennan, K.; Murali, R.; et al. Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nat. Commun. 2014, 5, 3116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quan, V.L.; Zhang, B.; Mohan, L.S.; Shi, K.; Isales, M.C.; Panah, E.; Taxter, T.J.; Beaubier, N.; White, K.; Gerami, P. Activating Structural Alterations in MAPK Genes Are Distinct Genetic Drivers in a Unique Subgroup Of Spitzoid Neoplasms. Am. J. Surg. Pathol. 2019, 43, 538–548. [Google Scholar] [CrossRef] [PubMed]
- VandenBoom, T.; Quan, V.L.; Zhang, B.; Garfield, E.M.; Kong, B.Y.; Isales, M.C.; Panah, E.; Igartua, C.; Taxter, T.; Beaubier, N.; et al. Genomic Fusions in Pigmented Spindle Cell Nevus of Reed. Am. J. Surg. Pathol. 2018, 42, 1042–1051. [Google Scholar] [CrossRef] [PubMed]
- Gerami, P.; Scolyer, R.A.; Xu, X.; Elder, D.E.; Abraham, R.M.; Fullen, D.; Prieto, V.G.; Leboit, P.E.; Barnhill, R.L.; Cooper, C.; et al. Risk assessment for atypical spitzoid melanocytic neoplasms using FISH to identify chromosomal copy number aberrations. Am. J. Surg. Pathol. 2013, 37, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Gru, A.A.; Dehner, L.P. Common and not so Common Melanocytic Lesions in Children and Adolescents. Pediatr. Dev. Pathol. 2018, 21, 252–270. [Google Scholar] [CrossRef] [PubMed]
- Gerami, P.; Jewell, S.S.; Morrison, L.E.; Blondin, B.; Schulz, J.; Ruffalo, T.; Matushek, P.; Legator, M.; Jacobson, K.; Dalton, S.R.; et al. Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma. Am. J. Surg. Pathol. 2009, 33, 1146–1156. [Google Scholar] [CrossRef]
- Lala, S.V.; Strubel, N. Ovarian neoplasms of childhood. Pediatr. Radiol. 2019, 49, 1463–1475. [Google Scholar] [CrossRef]
- Sweet-Cordero, E.A.; Biegel, J.A. The genomic landscape of pediatric cancers: Implications for diagnosis and treatment. Science 2019, 363, 1170–1175. [Google Scholar] [CrossRef]
- Kamihara, J.; Bourdeaut, F.; Foulkes, W.D.; Molenaar, J.J.; Mossé, Y.P.; Nakagawara, A.; Parareda, A.; Scollon, S.R.; Schneider, K.W.; Skalet, A.H.; et al. Retinoblastoma and Neuroblastoma Predisposition and Surveillance. Clin. Cancer Res. 2017, 23, e98–e106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helfferich, J.; Nijmeijer, R.; Brouwer, O.F.; Boon, M.; Fock, A.; Hoving, E.W.; Meijer, L.; den Dunnen, W.F.; de Bont, E.S. Neurofibromatosis type 1 associated low grade gliomas: A comparison with sporadic low grade gliomas. Crit. Rev. Oncol. Hematol. 2016, 104, 30–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouffet, E.; Larouche, V.; Campbell, B.B.; Merico, D.; de Borja, R.; Aronson, M.; Durno, C.; Krueger, J.; Cabric, V.; Ramaswamy, V.; et al. Immune Checkpoint Inhibition for Hypermutant Glioblastoma Multiforme Resulting from Germline Biallelic Mismatch Repair Deficiency. J. Clin. Oncol. 2016, 34, 2206–2211. [Google Scholar] [CrossRef] [Green Version]
- Eaton, K.W.; Tooke, L.S.; Wainwright, L.M.; Judkins, A.R.; Biegel, J.A. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr. Blood Cancer 2011, 56, 7–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourdeaut, F.; Lequin, D.; Brugières, L.; Reynaud, S.; Dufour, C.; Doz, F.; André, N.; Stephan, J.L.; Pérel, Y.; Oberlin, O.; et al. Frequent hSNF5/INI1 germline mutations in patients with rhabdoid tumor. Clin. Cancer Res. 2011, 17, 31–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capper, D.; Jones, D.T.W.; Sill, M.; Hovestadt, V.; Schrimpf, D.; Sturm, D.; Koelsche, C.; Sahm, F.; Chavez, L.; Reuss, D.E.; et al. DNA methylation-based classification of central nervous system tumours. Nature 2018, 555, 469–474. [Google Scholar] [CrossRef]
- Available online: https://www.molecularneuropathology.org/mnp/ (accessed on 27 February 2022).
- Weiser, D.A.; West-Szymanski, D.C.; Fraint, E.; Weiner, S.; Rivas, M.A.; Zhao, C.W.T.; He, C.; Applebaum, M.A. Progress toward liquid biopsies in pediatric solid tumors. Cancer Metastasis Rev. 2019, 38, 553–571. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Gupta, S.; Singla, R.; Hu, Y.-C. A Systematic Review of Artificial Intelligence Techniques in Cancer Prediction and Diagnosis. Arch. Comput. Methods Eng. 2021, 1–28. [Google Scholar] [CrossRef] [PubMed]
Tumor Type | Genes/Molecular Profiles Characteristically Altered | Diagnostic Marker | Prognostic, Predictive Marker, Target for Therapy | |
---|---|---|---|---|
Gliomas, glioneuronal tumors, and neuronal tumors | ||||
Pediatric-type diffuse low-grade gliomas | Diffuse astrocytoma, MYB- or MYBL1-altered | MYB MYBL1 IDH-wild type (IDH1, IDH2) H3-wild type (H3-3A, HIST1H3B, HIST1H3BC) | + | Alterations involving MYB and MYBL1 genes: favorable prognostic factor |
Angiocentric glioma | MYB (usually MYB:QKI) | + | Favorable prognostic factor | |
Polymorphous low-grade neuroepithelial tumor of the young | BRAF FGFR family | + | Potential targets for tyrosine kinase inhibitors (depending on the alteration detected) | |
Diffuse low-grade glioma, MAPK pathway-altered | FGFR1 BRAF | + | Potential targets for tyrosine kinase inhibitors (depending on the alteration detected) | |
Pediatric-type diffuse high-grade gliomas | Diffuse midline glioma, H3 K27-altered | H3-3A, HIST1H3B, HIST1H3BC: p.K28M TP53 ACVR1 PDGFRA EGFR EZHIP | + | Pathogenic variants in genes encoding histone H3.3 - an unfavorable prognostic factor. Potential targets for targeted therapy (depending on the alteration detected) |
Diffuse hemispheric glioma, H3 G34-mutant | H3-3A: p.G35R/V TP53 ATRX MGMT | + | MGMT - a favorable prognostic factor associated with increased sensitivity to temozolomide | |
Diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype (subgroups: pedRTK1, pedRTK2, pedMYCN) | IDH-wild type (IDH1, IDH2) H3-wild type (H3-3A, HIST1H3B HIST1H3BC) PDGFRA MYCN EGFR (methylome) | + | Potential therapeutic targets (depending on the alteration detected) | |
Infant-type hemispheric glioma | NTRK1/2/3 ALK ROS1 MET | + | Potential target for tyrosine kinase inhibitors (depending on the alteration engraved) | |
Circumscribed astrocytic gliomas | Pilocytic astrocytoma | KIAA1549-BRAF BRAF NF1 fusions involving NTRK1 and NTRK2 genes | + | Potential targets for tyrosine kinase inhibitors (depending on the alteration detected) KIAA1549-BRAF, BRAF alteration- a favorable prognostic factor |
High-grade astrocytoma with piloid features | IDH1/IDH2 - wild type EGFR amplification wild type MAPK signaling pathway primarily: BRAF (mainly fusions), NF1 ATRX CDKN2A/B, (methylome) | + | Potential targets for tyrosine kinase inhibitors (depending on the alteration detected) | |
Pleomorphic xanthoastrocytoma | BRAF CDKN2A/B | + | Potential targets for tyrosine kinase inhibitors (depending on the alteration detected) | |
Subependymal giant cell astrocytoma | TSC1 TSC2 | + | Potential targets for mTOR inhibitors | |
Astroblastoma, MN1-altered | MN1 (primarily a fusion with BEND2) | + | Favorable prognostic factor | |
Other | Ganglioglioma | MAPK signaling pathway: BRAF RAS FGFR1/2 RAF1 NTRK2 NF1 | + | Potential targets for tyrosine kinase inhibitors (depending on the alteration detected) |
Desmoplastic infantile ganglioglioma/desmoplastic infantile astrocytoma | MAPK signaling pathway: primarily BRAF alterations | + | Potential targets for tyrosine kinase inhibitors (depending on the alteration detected) | |
Dysembryoplastic neuroepithelial tumor | FGFR1 | + | Potential targets for tyrosine kinase inhibitors | |
Rosette-forming glioneuronal tumor | FGFR1 PIK3CA NF1 | + | Potential therapeutic targets (depending on the alteration detected) | |
Myxoid glioneuronal tumor | PDFGRA | + | - | |
Diffuse leptomeningeal glioneuronal tumor | MAPK signaling pathway, primarily a fusion KIAA1549-BRAF, 1p structural rearrangements, (methylome) | + | Potential targets for tyrosine kinase inhibitors (depending on the alteration detected) | |
Dysplastic cerebellar gangliocytoma (Lhermitte-Duclos disease) | PTEN | + | - | |
Extraventricular neurocytoma | IDH-wildtype (IDH1, IDH2) FGFR (FGFR1-TACC1 fusion) | + | - | |
Ependymal tumors | ||||
Supratentorial ependymoma | Supratentorial ependymoma, ZFTA fusion-positive | ZFTA -RELA | + | Fusion involving the YAP1 gene - a favorable prognostic factor |
Supratentorial ependymoma, YAP1 fusion-positive | YAP1- MAMLD1 | + | Fusion involving the ZFTA gene - an unfavorable prognostic factor | |
Posterior fossa ependymoma | Posterior fossa ependymoma, group PFA | global reduction of H3 K27me3 (methylome) | + | Unfavorable prognostic factor |
Posterior fossa ependymoma, group PFB | H3 K27me3 (maintaining methylation levels) (methylome) | + | Favorable prognostic factors | |
Spinal ependymoma | Spinal ependymoma, MYCN-amplified | NF2 MYCN | + | MYCN - an unfavorable prognostic factor |
Choroid plexus tumors | ||||
Choroid plexus carcinoma | TP53 | - | Unfavorable prognostic factor associated with reduced indications for radiotherapy | |
Embryonal tumors | ||||
Medulloblastomas, molecularly defined | Medulloblastoma, WNT-activated | CTNNB1 APC | + | Favorable prognostic factors |
Medulloblastoma, SHH-activated and TP53-wildtype | TP53- wild type PTCH1 SUFU SMO MYCN GLI2 (methylome) | + | Potential targets for SHH pathway inhibitors. Unfavorable prognostic factors (MYCN) | |
Medulloblastoma, SHH-activated and TP53-mutant | TP53 PTCH1 SUFU SMO MYCN GLI2 (methylome) | + | Potential targets for SHH pathway inhibitors. Unfavorable prognostic factors (TP53, MYCN) | |
Medulloblastoma, non-WNT/non-SHH | MYC MYCN PRDM6 (methylome) | + | ||
Other CNS embryonal tumors | Atypical teratoid/rhabdoid tumor | SMARCB1 SMARCA4 rearrangements of chromosome 22 | + | SMARCB1 - unfavorable prognostic factor, SMARCA4 - a standard prognostic factor |
Embryonal tumor with multilayered rosettes | C19MC- DICER1 | + | - | |
CNS neuroblastoma, FOXR2-activated | FOXR2 | + | - | |
CNS tumor with BCOR internal tandem duplication | BCOR | + | unfavorable prognostic factor | |
Pineal tumors | ||||
Pineoblastoma | RB1 DICER1 | + | - | |
Desmoplastic myxoid tumor of the pineal region, SMARCB1-mutant | SMARCB1 | + | - |
Tumor Type | Genes/Molecular Profiles Characteristically Altered | Diagnostic Marker | Prognostic, Predictive Markers, Target for Therapy |
---|---|---|---|
Neuroblastoma | MYCN (amplification) | - | Unfavorable prognostic factor in patients older than 18 months at diagnosis. The presence of MYCN gene amplification is associated with a significantly higher risk of recurrence and death from progression. |
(NCA)—numerical changes in the number of chromosomes in the genetic material of cancer cells | - | Diploidy as observed in the genetic material of the tumor tissue is associated with an unfavorable course of the disease. In infants, hyperploidy is a favorable prognostic factor (it is associated with good response to chemotherapy). | |
(SCA)—segmental chromosomal changes most commonly involving chromosome regions 1p, 1q, 2p, 3p, 4p, 11q and 17q | - | Most frequently observed in advanced stages of the disease in older children, unfavorable prognostic factors. | |
ALK:
| - | A potential target for ALK kinase inhibitors, unfavorable prognostic factor. |
Tumor Type | Genes/Molecular Profiles Characteristically Altered | Diagnostic Marker | Prognostic, Predictive Markers |
---|---|---|---|
Wilms tumor (nephroblastoma) |
| + | No clear data |
| - | Unfavorable prognostic factor | |
Congenital mesoblastic nephroma (CMN) |
ETV6-NTRK3
| + | - |
Clear cell sarcoma of kidney (CCSK) |
YWHAE-NUTM2B
EWSR1-AFT1
| + | - |
Renal carcinoma associated with MiTF/TFE translocations |
TFE3-PRCC
TFE3-ASPL (ASPSCR1)
TFE3-SFPQ (PSF) and others | + | - |
Malignant rhabdoid tumor of kidney (MRTK) |
| + | Unfavorable prognostic factor |
Metanephric tumors |
| + | - |
Tumor Type | Genes/Molecular Profiles Characteristically Altered | Diagnostic Marker |
---|---|---|
Osteosarcoma | TP53 RB1 8q21-24 (amplification) MDM2 (amplification) extensive and comprehensive chromosomal rearrangements | + |
Ewing sarcoma | t(11;22)(q24;q12) EWSR1-FLI1 t(21;22)(q12;q12) EWSR1-ERG t(2;22)(q33;q12) EWSR1-CREB1 t(7;22)(p22;q12) EWSR1-ETV1 t(17;22)(q12;q12) EWSR1-E1AF inv(22)(q12;q12) EWSR1-ZSG t(16;21)(p11;q22) FUS-ERG and others | + |
Chondrosarcoma | HEY1-NCOA2 t(1;5)(q42;q32) RF2BP2-CDX1 IDH1 IDH2 TP53 | + |
Giant cell tumor of soft tissue | H3F3A HRAS TP53 | + |
Tumor Type | Genes/Molecular Profiles Characteristically Altered | Diagnostic Marker |
---|---|---|
Rhabdomyosarcoma Alveolar | t(2;13)(q35;q14) PAX3-FOXO1 t(1;13)(p36;q14) PAX7-FOXO1 t(2;2)(q35;p23) PAX3-NCOA1 t(X;2)(q35;q13) PAX3-AFX | + |
Rhabdomyosarcoma Embryonal | loss of heterozygosity 11p15, trisomy 2, 8, 11, 12, 13 and 20 pathogenic variants in RAS pathway genes (NRAS, KRAS, HRAS, NF1, FGFR4) | + |
Rhabdomyosarcoma Sclerosing and spindle cell | VGLL2, TEAD1, SRF fusion MYOD1 (p.L122R) | + |
Synovial sarcoma | t(X;18)(p11,q11) SS18-SSX1, SS18-SSX2, SS18-SSX4 | + |
Malignant peripheral nerve sheath tumor | complex chromosomal aberrations, pathogenic alterations in SUZ12 and EED genes, NF1 inactivation | + |
Alveolar soft-part sarcoma | t(X;17)(p11;q25) ASPL(ASPSCR1)-TFE3 | + |
Angiomatoid fibrous histiocytoma | t(12;16)(q13:p11) FUS-ATF1 t(2;22)(q33;q12) EWSR1-CREB1 t(12;22)(q13;q12) EWSR1-ATF1 | + |
BCOR—rearranged sarcoma | inv(X)(p11.4p11.22) BCOR-CCNB3 t(X;4)(p11;q31) BCOR-MAML3 t(X;22)(p11;q13) ZC3H7B-BCOR | + |
CIC—rearranged sarcoma | t(4;19)(q35;q13) t(10; 19)(q26;q13) CIC-DUX4 t(X;19)(q13;q13.3) CIC-FOXO4 | + |
Clear cell sarcoma | t(12;22)(q13;q12) EWSR1-ATF1 t(2;22)(q33;q12) EWSR1-CREB1 | + |
Dermatofibrosarcoma protuberans | t(17;22)(q21;q13) COL1A1-PDGFB, ring chromosome r(17;22) | + |
Desmoid-type fibromatosis | 5q21 loss, trisomy 8, 20, pathogenic alterations in CTNNB1 gene | + |
Desmoplastic small round cell tumor | t(11;22)(p13;q12) EWSR1-WT1 | + |
Dedifferentiated Liposarcoma | ring and marker chromosome, 12q13-15: MDM2, CDK4 region amplification | + |
Epithelioid sarcoma | deletion 22q SMARCB1 t(8;22)(q22;q11) t(10;22) | + |
Epithelioid hemangioendothelioma | t(1;3)(p36;q25), WWTR1-CAMTA1, t(X;11)(p11;q22) YAP1-TFE3 | + |
Extraskeletal myxoid chondrosarcoma | t(9;22)(q22;q12) EWSR1-NR4A3 t(9;17)(q22;q11) TAF15 (TAF2N)-NR4A3 t(9;15)(q22;q21) TCF12-NR4A3 t(3;9)(q11;q22) TFG-NR4A3 fusion t(9;17)(q22;q11) RBP56-NR4A3 fusion | + |
Giant cell fibroblastoma | t(17;22)(q22;q13) COL1A1-PDGFB | + |
Infantile fibrosarcoma | t(12;15)(p13;q25) ETV6-NTRK3, t(2;15)(p21;q25) EML4-NTRK3, LMNA-NTRK1, 1q deletion, trisomy 8, 11, 17, 20 | + |
Inflammatory myofibroblastic tumor | Translocations involving the 2p23 region; fusions involving the ALK gene (with multiple partner genes) t(3;6)(q12;q22) TFG-ROS1 | + |
Leiomyosarcoma | Complex aberrations, frequently with 1p deletion | + |
Lipoblastoma | t(7;8) (q21q12) COL1A2-PLAG1 del(8) (q12q24) HAS2-PLAG1 t(8;14) (q12;q24) PLAG1-RAD51L1 t(2;8) (q31;q12.1) COL3A1-PLAG1 | + |
Low-grade fibromyxoid sarcoma | t(7;16)(q33;p11) FUS-CREB3L2 t(11;16)(p11;p11) FUS-CREB3L1 | + |
Mesenchymal chondrosarcoma | t(8;8)(q13;q21) HEY1-NCOA2 | + |
Myoepithelioma | t(6;22)(p21;q12) EWSR1-POU5F1 t(1;22)(q23;q12) EWSR1-PBX1 (19;22)(q13;q12) EWSR1-ZNF444 | + |
Myxoid round cell liposarcoma | t(12;16)(q13;p11) FUS-DDIT3 t(12;22)(q13;q12) EWSR1-DDIT3 (CHOP) | + |
Myxoinflammatory fibroblastic sarcoma | t(1;10)(p22;q24) TGFBR3/MGEA5 | + |
Myxofibrosarcoma | ring chromosome | + |
Solitary fibrous tumor | inv(12)(q13q13) NAB2-STAT6 | + |
Undifferentiated embryonal sarcoma of the liver | t(11;19)(q13,q13) MALAT1-MHLB1 | + |
Tumor Type | Genes/Molecular Profiles Characteristically Altered | Diagnostic Marker | Prognostic, Predictive Markers |
---|---|---|---|
Hepatoblastoma | CTNNB1 | + | - |
APC | +/- | - | |
NFE2L2 | - | unfavorable prognostic factor | |
Undifferentiated embryonal sarcoma of the liver (UES) | t(11;19)(q13;q13.4) | + | - |
the C19MC region amplification | + | - | |
Malignant rhabdoid tumor of the liver | SMARCB1 | + | - |
Tumor Type | Genes/Molecular Profiles Characteristically Altered | Diagnostic Marker | Prognostic, Predictive Markers |
---|---|---|---|
Retinoblastoma | RB1:
| + | - |
BCOR:
| - | unfavorable prognostic factor | |
MYCN (amplification) | - | unfavorable prognostic factor |
Tumor Type | Genes/Molecular Profiles Characteristically Altered | Diagnostic Marker | Prognostic, Predictive Markers |
---|---|---|---|
Spitzoid melanoma (SM) | fusions involving ROS1, NTRK3, NTRK3, ALK, BRAF, MAPK, MET, RET genes | + | potential therapeutic targets |
segmental rearrangements within chromosomes | - | - | |
homozygous deletion of the 9p21 region | + | unfavorable prognostic factor | |
TERT (promoter changes-rare) | - | unfavorable prognostic factor | |
Melanoma arising from a congenital melanocytic nevus (CMN) | NRAS (most commonly p.Q61K/R) | + | potential therapeutic targets (depending on the alteration detected) |
BRAF (most commonly p.V600E) | - | ||
TERT (promoter hypermethylation) | + | ||
segmental rearrangements within chromosomes | - | ||
Classic melanoma (“adult-type melanoma”) | BRAF (most commonly p.V600E) | + | potential therapeutic targets (depending on the alteration detected) |
TERT (promoter changes) | + | ||
segmental rearrangements within chromosomes | - |
Tumor Type | Genes/Molecular Profiles Characteristically Altered | Diagnostic Marker | Prognostic, Predictive Markers |
---|---|---|---|
Sertoli–Leydig cell tumors | DICER1 | + | - |
Primary small cell carcinoma of the ovary, hypercalcemic type, SCCOHT | SMARCA4 | + | - |
Specific Gene Mutation/Alteration | Targeted Treatment | Development Phase | Clinical Trial Identifier | Target Population |
---|---|---|---|---|
ALK alterations:
| AKL- inhibitors: | Phase I/II | NCT00939770 | Anaplastic lymphoma kinase (ALK) positive tumors, relapsed or refractory solid tumors or anaplastic large cell lymphoma, |
Crizotinib | Phase II/III | NCT03874273 | inflamatory myofibroblastic tumor | |
Phase III | NCT03126916 | neuroblastoma | ||
Phase II | NCT02034981 | patients harboring an alteration on ALK, MET or ROS1 | ||
Ensartinib | Phase II | NCT03213652 | Relapsed or refractory advanced solid tumors, Non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 alterations | |
Anti-CD 20 antibody | Rituximab | Authorized | - | Mature B cell Lymphoma |
Anti-GD 2 antibody | Dinutuximab | Authorized | - | Neuroblastoma |
Anti-CD-30 antibody | Brentuximab Vedotin | Phase III | NCT02166463 NCT01979536 | Hodgkin Lymphoma ALCL |
BRAF alterations:
(including p.V600E)
(KIAA1549:BRAF) | Dabrafenib | Phase I/II | NCT01677741 | Advanced BRAF V600 mutation-positive solid tumors |
Dabrafenib + Trametinib | Phase II | NCT02684058 | BRAF V600 mutation positive low grade glioma or relapsed or refractory high grade glioma | |
Vemurafenib | Phase II | NCT03220035 | Relapsed or refractory advanced solid tumors, Non-Hodgkin Lymphoma, or histiocytic disorders with BRAF V600 mutations, Langerhans cell histiocytosis (LCH), and other histiocytic disorders. | |
Cobimetinib | Phase II | NCT04079179 | Refractory langerhans cell histiocytosis (LCH), and other histiocytic disorders. | |
Trametinib | Phase II | NCT03363217 | Pediatric neuro-oncology patients with refractory tumor and activation of the MAPK/ERK pathway | |
Selumetinib | Phase III | NCT04576117 | Recurrent or progressive low-grade glioma | |
CDKN2A/B deletion | Palbociclib | Phase II | NCT03526250 | Rb positive advanced solid tumors, Non-Hodgkin Lymphoma, or histiocytic disorders with activating alterations in cell cycle genes |
Ribociclib with Everolimus | Phase I | NCT03387020 | Recurrent or refractory malignant brain tumors | |
EZH2 alterations | Tazemetostat | Authorized | - | Epithelioid sarcoma ≥16 years |
FGRF alterations | Erdafitinib | Phase II | NCT03210714 | Patients with relapsed or refractory advanced solid tumors, Non-Hodgkin lymphoma, or histiocytic disorders with FGFR alterations |
H3-3A, HIST1H3B, HIST1H3BC point mutation | Panobinostat | Phase I | NCT02717455 | DIPG (H3K27M) |
Vorinostat | Phase II | NCT02035137 | Neuroblastoma | |
GD2 CART-cell | Phase I | NCT03635632 | Relapsed or refractory neuroblastoma and other GD2 positive cancers | |
LSD1 | Seclidemstat | Phase I | NCT03600649 | Ewing or Ewing-related sarcomas |
MEK alterations | Cobimetinib | Phase I/II | NCT02639546 | Gliomas, sarcomas, neuroblastoma, melanoma, MPNST, rhabdoid tumors, including atypical teratoid/rhabdoid tumor (AT/RT), NF1-associated tumors or RASopathy-associated tumors |
Selumetinib | Phase III | NCT04576117 | Recurrent or progressive low-grade glioma | |
Authorized | - | Plexiform neurofibroma | ||
MET:
| Volitinib | Phase I | NCT03598244 | Recurrent or refractory primary CNS tumors |
mTOR pathway genes alterations, including TSC1, TSC2 | Everolimus | Authorized | - | Subependymal giant cell astrocytoma (SEGA) |
Temsirolimus | Phase III | NCT02567435 | Rhabdomyosarcoma | |
NTRK gene fusions | Vitrakvi/Larotrectinib Entrectinib | Authorized | - | Treatment of adult and paediatric patients with solid tumours that display a neurotrophic tyrosine receptor kinase (NTRK) gene fusion |
PARP alterations | Olaparib | Phase I | NCT04236414 | Pediatric solid tumours |
PD-1/PD-L1 | Pembrolizumab | Authorized | - | R/R classic Hodgkin Lymphoma, melanoma ≥12 years |
Ipilimumab | Authorized | - | ||
Pembrolizumab | Phase I | NCT02359565 | Recurrent, progressive, or refractory high-grade gliomas, diffuse intrinsic pontine gliomas, hypermutated brain tumors, ependymoma or medulloblastoma | |
Nivolumab | Phase II | NCT03173950 | Medulloblastoma, ependymoma, choroid plexus tumors, atypical/malignant meningioma | |
RET alterations | Selpercatinib | Authorized | - | Treatment of adults and adolescents 12 years and older with advanced RET-mutant medullary thyroid cancer (MTC) |
ROS1 fusions | Repotrectinib | Phase I/II | NCT04094610 | Pediatric and young adult subjects harboring ALK, ROS1, or NTRK1/2/3 |
Entrectinib | Phase I/II | NCT02650401 | Locally advanced or metastatic solid or primary CNS tumors | |
Ensartinib | Phase II | NCT03213652 | Relapsed or refractory advanced solid tumors, non-hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 alterations | |
SMARCB1
| Tazemetostat | Phase I | NCT02601937 | Rhabdoid tumors, INI1-negative tumors |
SMO alterations | Vismodegib | Phase II | NCT01878617 | Medulloblastoma SHH subtype |
NCT01601184 | ||||
Sonidegib | Phase I/II | NCT01125800 | Medulloblastoma, advanced pediatric solid potentially dependent on the Hedgehog-signaling pathway | |
VEGFR, PDGFR alterations | Pazopanib | Phase II | NCT01956669 | Pediatric solid tumors |
Regorafenib | Phase II | NCT02048371 | Selected sarcoma subtypes: (Ewing sarcoma, rhabdomyosarcoma, osteosarcoma) | |
VEGFR1, VEGFR3, FGFR3, FGFR4, PDGFRA alterations | Lenvatinib | Phase I/II | NCT02432274 | Refractory or relapsed solid malignancies |
Syndrome | Cancers | Gene/Chromosome Region |
---|---|---|
Li-Fraumeni | sarcomas, leukemias, brain cancers, hepatoblastoma | TP53 |
Xeroderma pigmentosum | melanoma | XPA, XPC, DDB2, ERCC2 |
Neurofibromatosis type 1 | lymphomas, brain cancers, sarcomas, optic nerve gliomas, meningiomas, Wilms tumor, rhabdomyosarcoma | NF1, SPRED1 |
Ataxia-telangiectasia | CNS, GI tumors, leukemias | ATM |
Bloom syndrome | acute leukemia, GI cancers | BLM |
Fanconi anemia | acute leukemia, liver tumors | FANCA, FANCB, FANCC, PALB2 and others |
Nijmegen syndrome | leukemias, lymphomas, medulloblastoma, glioma, rhabdomyosarcoma | NBN |
Beckwith-Wiedemann syndrome | nephroblastoma, hepatoblastoma, rhabdomyosarcoma, gonadoblastoma | CDKN1C/11p15 |
Chromosomal syndromes (Down syndrome, Klinefelter syndrome) | leukemias, CNS tumors | trisomy 21, 47XXY |
Familial retinoblastoma | retinoblastoma | RB1 |
Familial Wilms tumor | nephroblastoma | WT1, WT2 and others |
Familial polyposis coli | hepatoblastoma | APC, MUTYH |
Cardiofaciocutaneous syndrome (CFC) | acute lymphoblastic leukemia, rhabdomyosarcoma, hepatoblastoma, lymphomas | BRAF, MAP2K1, MAP2K2, KRAS, |
Noonan syndrome | neuroblastoma, acute lymphatic leukemia, glioma, rhabdosarcoma | PTPN11, RAF1, BRAF, SOS1, NRAS, CBL |
Costello syndrome | rhabdosarcoma, neuroblastoma, fibrosarcoma | HRAS |
Sotos syndrome | Wilms tumor, neuroblastoma, hepatoblastoma | NSD1 |
Von Hippel–Lindau syndrome | renal tumors, CNS tumors-especially of the cerebellum, tumors of the adrenal glands, and tumors of the retina. | VHL |
Gorlin syndrome | medulloblastoma | PTCH1 |
Rubinstein–Taybi syndrome | medulloblastoma, meningiomas, acute lymphatic leukemia, pheochromocytoma, rhabdomyosarcoma | CREBBP |
Turcot syndrome | medulloblastoma, gliomas | APC |
DICER syndrome | pleuropulmonary blastoma, nephroblastoma, renal and brain sarcomas, thyroid adenomas and carcinomas, gonadal tumors | DICER1 |
Multiple endocrine neoplasia type 1 and 2 | adenomas/carcinomas of the endocrine system | MEN1 and RET |
Tuberous sclerosis | brain and kidney tumors | TSC1 i TSC2 |
Trisomy 18 | hepatoblastoma | trisomy 18 |
Simpson–Golabi–Behmel syndrome type 1 | hepatoblastoma | GPC3 |
Glycogen storage disorder type 1a, III, IV, VI | hepatoblastoma | G6PC, AGL, GBE1, PYGL |
Tyrosinemia type 1 | hepatocellular carcinoma | FAH |
Tumor Type | Gene (MIM Number) |
---|---|
AT/RT | SMARCB1 (MIM 601607) SMARCA4 (MIM 603254) |
Choroid plexus carcinoma | TP53 (MIM 191170) |
Congenital melanocytic nevi | MC1R (MIM 155555) |
Familial melanomas | CDKN2A (MIM 600160), CDK4 (MIM 123829) |
Glioma of the optic pathway | NF1 (MIM 613675) |
Hemangioblastoma | VHL (MIM 608537) |
Malignant nerve sheath tumor | NF1 (MIM 613675), TP53 (MIM 191170) |
Medulloblastoma | APC (MIM 611731) BRCA2 (MIM 600185) MLH1 (MIM 120436) MSH2 (MIM 609309) MSH6 (MIM 600678) PMS2 (MIM 600259) PALB2 (MIM 610355) PTCH1 (MIM 601309) SUFU (MIM 607035) SMOH (MIM 601500) TP53 (MIM 191170) CREBBP (MIM 600140) GLI3 (MIM 175700) |
Meningioma | NF2 (MIM 607379) PTCH1 (MIM 601309) PTEN (MIM 601728) SMARCB1 (MIM 601607 SMARCE1 (MIM 603111) SUFU (MIM 607035) WRN (MIM 604611) MEN1(MIM 613733) |
Pineoblastoma | DICER1 (MIM 606241) RB1 (MIM 614041) |
Schwannoma | NF2 (MIM 607379) PRKAR1A (MIM 188830) |
Schwannomatosis | LZTR1 (MIM 600574) SMARCB1 (MIM 601607) |
Spinal cord ependymoma | NF2 (MIM 607379) |
Subependymal giant cell astrocytoma | TSC1/TSC2 (MIM 605284/191092) |
Neuroblastoma | PHOX2B (MIM 603851) ALK (MIM 105590) |
Hepatoblastoma | APC (MIM 611731), uniparental disomy at 11p15.5 |
Retinoblastoma | RB1 (MIM 614041) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trubicka, J.; Grajkowska, W.; Dembowska-Bagińska, B. Molecular Markers of Pediatric Solid Tumors—Diagnosis, Optimizing Treatments, and Determining Susceptibility: Current State and Future Directions. Cells 2022, 11, 1238. https://doi.org/10.3390/cells11071238
Trubicka J, Grajkowska W, Dembowska-Bagińska B. Molecular Markers of Pediatric Solid Tumors—Diagnosis, Optimizing Treatments, and Determining Susceptibility: Current State and Future Directions. Cells. 2022; 11(7):1238. https://doi.org/10.3390/cells11071238
Chicago/Turabian StyleTrubicka, Joanna, Wiesława Grajkowska, and Bożenna Dembowska-Bagińska. 2022. "Molecular Markers of Pediatric Solid Tumors—Diagnosis, Optimizing Treatments, and Determining Susceptibility: Current State and Future Directions" Cells 11, no. 7: 1238. https://doi.org/10.3390/cells11071238
APA StyleTrubicka, J., Grajkowska, W., & Dembowska-Bagińska, B. (2022). Molecular Markers of Pediatric Solid Tumors—Diagnosis, Optimizing Treatments, and Determining Susceptibility: Current State and Future Directions. Cells, 11(7), 1238. https://doi.org/10.3390/cells11071238