Programmed Cell Death in Cystinosis
Abstract
:1. Introduction
2. The Role of Apoptosis in Cystinosis and Response to Cysteamine
3. Autophagy in Cystinosis
4. Gene Expression Profiling and Signal Cascades
5. Oxidative Stress
6. Thyroid Effects of Apoptosis
7. Pancreatic Effects of Apoptosis
8. Summary and Future Directions
Funding
Conflicts of Interest
Abbreviations
GSH | reduced glutathione |
GSSG | oxidized glutathione |
PKC∂ | protein kinase C delta |
ROS | reactive oxygen species |
ciPTEC | conditionally immortalized proximal tubule epithelial cell |
References
- Gahl, W.A.; Thoene, J.G.; Schneider, J.A. A Disorder of Lysosomal Memebrane Transport. In The Metabolic and Molecular Basis of Inherited Diseases, 8th ed.; Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D., Eds.; McGraw Hill: New York, NY, USA, 2001; pp. 5085–5108. [Google Scholar]
- Schulman, J.D.; Bradley, K.H.; Seegmiller, J.E. Cystine: Compartmentalization within Lysosomes in Cystinotic Leukocytes. Science 1969, 166, 1152–1154. [Google Scholar] [CrossRef] [PubMed]
- Gahl, W.A.; Bashan, N.; Tietze, F.; Bernardini, I.; Schulman, J.D. Cystine Transport is Defective in Isolated Leukocyte Lysosomes from Patients with Cystinosis. Science 1982, 217, 1263–1265. [Google Scholar] [CrossRef]
- Thoene, J.G.; Oshima, R.G.; Crawhall, J.C. Intracellular Cystine Depletion by Aminothiols In Vitro and In Vivo. J. Clin. Investig. 1976, 58, 180–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisoni, R.L.; Thoene, J.G.; Christensen, H.N. Detection and Characterization of Carrier-Mediated Cationic Amino Acid Transport in Lysosomes of Normal and Cystinotic Human Fibroblasts. Role in Therapeutic Cystine Removal? J. Biol. Chem. 1985, 260, 4791–4798. [Google Scholar] [CrossRef]
- Jeźégou, A.; Llinares, E.; Anne, C.; Kieffer-Jaquinod, S.; O’Regan, S.; Aupetit, J.; Chabli, A.; Sagné, C.; Debacker, C.; Chadefaux-Vekemans, B.; et al. Heptahelical Protein PQLC2 Is a Lysosomal Cationic Amino Acid Exporter Underlying the Action of Cysteamine in Cystinosis Therapy. Proc. Natl. Acad. Sci. USA 2012, 109, E3434–E3443. [Google Scholar] [CrossRef] [Green Version]
- Elmonem, M.; Khalil, R.; Khodaparast, L.; Khodaparast, L.; Arcolino, F.; Morgan, J.; Pastore, A.; Tylzanowski, P.; Ny, A.; Lowe, M.; et al. Cystinosis (ctns) Zebrafish Mutant Shows Pronephric Glomerular and Tubular Dysfunction. Sci. Rep. 2017, 7, 42583. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Helip-Wooley, A.; Thoene, J. Lysosomal Cystine Storage Augments Apoptosis in Cultured Human Fibroblasts and Renal Tubular Epithelial Cells. J. Am. Soc. Nephrol. 2002, 13, 2878–2887. [Google Scholar] [CrossRef]
- Wilmer, M.J.; Willems, P.H.; Verkaart, S.; Visch, H.J.; De Graaf-Hess, A.; Blom, H.J.; Monnens, L.A.; van den Heuvel, L.P.; Levtchenko, E.N. Cystine Dimethylester Model of Cystinosis: Still Reliable? Pediatr. Res. 2007, 62, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Chu, F.; Ward, N.E.; O’Brian, C.A. PKC Isozyme S-Cysteinylation by Cystine Stimulates the Pro-Apoptotic Isozyme PKCδ and Inactivates the Oncogenic Isozyme PKCε. Carcinogenesis 2003, 24, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Park, M.A.; Pejovic, V.; Kerisit, K.G.; Junius, S.; Thoene, J.G. Increased Apoptosis in Cystinotic Fibroblasts and Renal Proximal Tubule Epithelial Cells Results from Cysteinylation of Protein Kinase Cδ. J. Am. Soc. Nephrol. 2006, 17, 3167–3175. [Google Scholar] [CrossRef]
- Park, M.A.; Thoene, J.G. Potential role of apoptosis in development of the cystinotic phenotype. Pediatr. Nephrol. 2005, 20, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Laube, G.; Shah, V.; Stewart, V.; Hargreaves, I.; Haq, M.; Heales, S.; van’t Hoff, W.G. Glutathione Depletion and Increased Apoptosis Rate in Human Cystinotic Proximal Tubular Cells. Pediatr. Nephrol. 2006, 21, 503–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollywood, J.A.; Przepiorski, A.; D’Souza, R.F.; Sreebhavan, S.; Wolvetang, E.J.; Harrison, P.T.; Davidson, A.J.; Holm, T.M. Use of Human Induced Pluripotent Stem Cells and Kidney Organoids to Develop a Cysteamine/Mtor Inhibition Combination Therapy for Cystinosis. J. Am. Soc. Nephrol. 2020, 31, 962–982. [Google Scholar] [CrossRef] [PubMed]
- Sano, K. Uber die Loselichkeit der Aminosauren bei variierter Wasserstoffzahl. Biochem. Zeit. 1926, 168, 14. [Google Scholar]
- Helip-Wooley, A.; Thoene, J.G. Sucrose-Induced Vacuolation Results in Increased Expression of Cholesterol Biosynthesis and Lysosomal Genes. Exp. Cell. Res. 2004, 292, 89–100. [Google Scholar] [CrossRef]
- Galarreta, C.; Forbes, M.; Thornhill, B.; Antignac, C.; Gubler, M.; Nevo, N.; Murphy, M.P.; Chevalier, R.L. The Swan-Neck Lesion: Proximal Tubular Adaptation to Oxidative Stress in Nephropathic Cystinosis. Am. J. Physiol. Ren. Physiol. 2015, 308, F1155–F1166. [Google Scholar] [CrossRef] [Green Version]
- Larsen, C.P.; Walker, P.D.; Thoene, J.G. The Incidence of Atubular Glomeruli in Nephropathic Cystinosis Renal Biopsies. Mol. Genet. Metab. 2010, 101, 417–420. [Google Scholar] [CrossRef]
- Edwards, M.J. Apoptosis, the heat shock response, hyperthermia, with defects, disease and cancer. Where are the common links? Cell Stress Chaperones 1998, 3, 213–220. [Google Scholar] [CrossRef]
- Eisenberg-Lerner, A.; Bialik, S.; Simon, H.U.; Kimchi, A. Life and Death Partners: Apoptosis, Autophagy and the Cross-Talk between Them. Cell Death Differ. 2009, 16, 966–975. [Google Scholar] [CrossRef]
- Sansanwal, P.; Yen, B.; Gahl, W.; Ma, Y.; Ying, L.; Wong, L.; Sarwal, M.M. Mitochondrial Autophagy Promotes Cellular Injury in Nephropathic Cystinosis. J. Am. Soc. Nephrol. 2010, 21, 272–283. [Google Scholar] [CrossRef] [Green Version]
- De Leo, E.; Elmonem, M.; Berlingerio, S.; Berquez, M.; Festa, B.; Raso, R.; Bellomo, F.; Starborg, T.; Janssen, M.J.; Abbaszadeh, Z.; et al. Cell-Based Phenotypic Drug Screening Identifies Luteolin as Candidate Therapeutic for Nephropathic Cystinosis. J. Am. Soc. Nephrol. 2020, 31, 1522–1537. [Google Scholar] [CrossRef] [PubMed]
- Sansanwal, P.; Li, L.; Hsieh, S.; Sarwal, M. Insights into Novel Cellular Injury Mechanisms by Gene Expression Profiling in Nephropathic Cystinosis. J. Inherit. Metab. Dis. 2010, 33, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Pascarella, A.; Licursi, V.; Caiello, I.; Taranta, A.; Rega, L.; Levtchenko, E.; Emma, F.; De Benedetti, F.; Prencipe, G. NLRP2 Regulates Proinflammatory and Antiapoptotic Responses in Proximal Tubular Epithelial Cells. Front. Cell Dev. Biol. 2019, 7, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oshima, R.G.; Rhead, W.J.; Thoene, J.G.; Schneider, J.A. Cystine Metabolism in Human Fibroblasts. Comparison of Normal, Cystinotic, and γ Glutamylcysteine Synthetase Deficient cells. J. Biol. Chem. 1976, 251, 4287–4293. [Google Scholar] [CrossRef]
- Chol, M.; Nevo, N.; Cherqui, S.; Antignac, C.; Rustin, P. Glutathione precursors replenish decreased glutathione pool in cystinotic cell lines. Biochem. Biophys. Res. Commun. 2004, 324, 231–235. [Google Scholar] [CrossRef]
- Vitvitsky, V.; Witcher, M.; Banerjee, R.; Thoene, J. The Redox Status of Cystinotic Fibroblasts. Mol. Genet. Metab. 2010, 99, 384–388. [Google Scholar] [CrossRef] [Green Version]
- Oude Elferink, R.P.J.; Harms, E.; Strijland, A.; Tager, J.M. The Intralysosomal pH in Cultured Human Skin Fibroblasts in Relation to Cystine Accumulation in Patients with Cystinosis. Biochem. Biophys. Res. Commun. 1983, 116, 154–161. [Google Scholar] [CrossRef]
- Oestreicher, J.; Morgan, B. Glutathione: Subcellular Distribution and Membrane Transport. Biochem. Cell Biol. 2019, 97, 270–289. [Google Scholar] [CrossRef] [Green Version]
- Wilmer, M.J.; Kluijtmans, L.A.J.; van der Velden, T.J.; Willems, P.H.; Scheffer, P.G.; Masereeuw, R.; Monnens, L.A.; van den Heuvel, L.P.; Levtchenko, E.N. Cysteamine restores glutathione redox status in cultured cystinotic proximal tubular epithelial cells. Biochim. Biophys. Acta 2011, 1812, 643–651. [Google Scholar] [CrossRef] [Green Version]
- Bellomo, F.; Corallini, S.; Pastore, A.; Palma, A.; Laurenzi, C.; Emma, F.; Monnens, L.A.; Heuvel, L.P.V.D.; Levtchenko, E.N. Modulation of CTNS Gene Expression by Intracellular Thiols. Free Radic. Biol. Med. 2010, 48, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Sumayao, R.; McEvoy, B.; Newsholme, P.; McMorrow, T. Lysosomal Cystine Accumulation Promotes Mitochondrial Depolarization and Induction of Redox-Sensitive Genes in Human Kidney Proximal Tubular Cells. J. Physiol. 2016, 594, 3353–3370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumayao, R.; Mcevoy, B.; Martin-Martin, N.; Mcmorrow, T.; Newsholme, P. Cystine Dimethylester Loading Promotes Oxidative Stress and a Reduction in ATP Independent of Lysosomal Cystine Accumulation in a Human Proximal Tubular Epithelial Cell Line. Exp. Physiol. 2013, 98, 1505–1517. [Google Scholar] [CrossRef] [PubMed]
- Sueishi, Y.; Nii, R. Monoterpene’s Multiple Free Radical Scavenging Capacity as Compared with the Radioprotective Agent Cysteamine and Amifostine. Bioorg. Med. Chem. Lett. 2018, 28, 3031–3033. [Google Scholar] [CrossRef] [PubMed]
- Taranta, A.; Elmonem, M.A.; Bellomo, F.; De Leo, E.; Boenzi, S.; Janssen, M.J.; Jamalpoor, A.; Cairoli, S.; Pastore, A.; De Stefanis, C.; et al. Benefits and Toxicity of Disulfiram in Preclinical Models of Nephropathic Cystinosis. Cells 2021, 10, 3294. [Google Scholar] [CrossRef] [PubMed]
- Sansanwal, P.; Li, L.; Sarwal, M.M. Inhibition of Intracellular Clusterin Attenuates Cell Death in Nephropathic Cystinosis. J. Am. Soc. Nephrol. 2015, 26, 612–625. [Google Scholar] [CrossRef]
- Riederer, P.; Sofic, E.; Rausch, W.-D.; Schmidt, B.; Reynolds, G.P.; Jellinger, K.; Youdim, M.B. Transition Metals, Ferritin, Glutathione, and Ascorbic Acid in Parkinsonian Brains. J. Neurochem. 1989, 52, 515–520. [Google Scholar] [CrossRef]
- Jamalpoor, A.; Gelder, C.A.; Yousef Yengej, F.A.; Zaal, E.A.; Berlingerio, S.P.; Veys, K.R.; Casellas, C.P.; Voskuil, K.; Essa, K.; Ammerlaan, C.M.; et al. Cysteamine-Bicalutamide Combination Therapy Corrects Proximal Tubule Phenotype in Cystinosis. EMBO Mol. Med. 2021, 13, e13067. [Google Scholar] [CrossRef]
- Lucky, A.W.; Howley, P.M.; Megyesi, K.; Spielberg, S.P.; Schulman, J.D. Endocrine Studies in Cystinosis: Compensated Primary Hypothyroidism. J. Pediatr. 1977, 91, 204–210. [Google Scholar] [CrossRef]
- Chan, A.M.; Lynch, M.J.G.; Bailey, J.D.; Ezrin, C.; Fraser, D. Hypothyroidism in Cystinosis. A Clinical, Endocrinologic and Histologic Study Involving Sixteen Patients with Cystinosis. Am. J. Med. 1970, 48, 678–692. [Google Scholar] [CrossRef]
- Gaide Chevronnay, H.; Janssens, V.; Van Der Smissen, P.; Liao, X.; Abid, Y.; Nevo, N.; Antignac, C.; Refetoff, S.; Cherqui, S.; Pierreux, C.E.; et al. A Mouse Model Suggests Two Mechanisms for Thyroid Alterations in Infantile Cystinosis: Decreased Thyroglobulin Synthesis Due to Endoplasmic Reticulum Stress/Unfolded Protein Response and Impaired Lysosomal Processing. Endocrinology 2015, 156, 2349–2364. [Google Scholar] [CrossRef] [Green Version]
- Fivush, B.; Green, O.C.; Porter, C.C.; Balfe, J.W.; O’regan, S.; Gahl, W.A. Pancreatic Endocrine Insufficiency in Posttransplant Cystinosis. Am. J. Dis. Child 1987, 141, 1087–1089. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, B.; Sumayao, R.; Slattery, C.; McMorrow, T.; Newsholme, P. Cystine Accumulation Attenuates Insulin Release from the Pancreatic β-Cell Due to Elevated Oxidative Stress and Decreased ATP Levels. J. Physiol. 2015, 593, 5167–5182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Rechter, S.; Decuypere, J.P.; Ivanova, E.; van den Heuvel, L.P.; De Smedt, H.; Levtchenko, E.; Mekahli, D. Autophagy in Renal Diseases. Pediatr. Nephrol. 2016, 31, 737–752. [Google Scholar] [CrossRef] [PubMed]
- Gaide Chevronnay, H.; Janssens, V.; Van Der Smissen, P.; N’Kuli, F.; Nevo, N.; Guiot, Y.; Levtchenko, E.; Marbaix, E.; Pierreux, C.E.; Cherqui, S.; et al. Time Course of Pathogenic and Adaptation Mechanisms in Cystinotic Mouse Kidneys. J. Am. Soc. Nephrol. 2014, 25, 1256–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Model System | Mediator | Target | Effect on Apoptosis or Necrosis | Effect of Cysteamine | References (Year) |
---|---|---|---|---|---|
Human cystinotic fibroblasts | Native lysosomal cystine | PKC δ | Increased apoptosis 3 fold | Lowered cystine and normalized apoptosis | [7,9] (2002, 2006) |
Human normal fibroblasts | CDME-induced increased lysosomal cystine | PKC δ | - | N/A | [7,9] (2002, 2006) |
Human normal RPTC | CDME | PKC δ | Increased apoptosis 8 fold | N/A | [7,9] (2002, 2006) |
Normalrat fibroblasts | CDME | N/A | Increase apopotosis 16 fold | N/A | [10] (2005) |
Normal mouse fibroblasts | CDME | N/A | Increase apoptosis 5 fold | N/A | [10] (2005) |
Cystinosis patient-derived induced pluripotent stem cells | Native lysosomal cystine | N/A | Increased apoptosis 1.4 fold | No effect | [12] (2020) |
Ctns−/− Zebrafish | Native lysosomal cystine | N/A | Increased apoptosis 7 fold | Decreased apoptosis | [6] (2017) |
Cystinotic RPTC | Native lysosomal cystine | N/A | Increased apoptosis 2 fold | N/A | [11] (2006) |
Cystinotic RPTC | Native lysosomal cystine | Caspase 4 | Increased apoptosis 3 fold | N/A | [19] (2010) |
Cystinotic RPTC | NLRP2 | NF-κB | Increased apoptosis | N/A | [22] (2019) |
Ctns(−/−) mice | N/A | Atubular glomeruli | Increased necrosis, apoptosis, and autophagy | N/A | [15] (2015) |
siRNA knockdown of CTNS in normal RPTC | ROS | GSH, Redox capacity | Increased early and late apoptosis, and necrosis | Decreased apoptosis and necrosis | [33] (2016) |
Cystinotic ciRPTC Ctns−/− Zebra-fish larva | ROS | p62/SQSTM1 | Increased apoptosis 3.5 fold Increased apoptosis 5 fold | Cysteamine not done Reversed by luteolin | [20] (2020) |
Cystinotic ciRPTC Ctns−/− mice Zebrafish | ROS | N/A | Increased apoptosis 7 fold | Reversed by cysteamine and disulfiram | [36] (2021) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ames, E.G.; Thoene, J.G. Programmed Cell Death in Cystinosis. Cells 2022, 11, 670. https://doi.org/10.3390/cells11040670
Ames EG, Thoene JG. Programmed Cell Death in Cystinosis. Cells. 2022; 11(4):670. https://doi.org/10.3390/cells11040670
Chicago/Turabian StyleAmes, Elizabeth G., and Jess G. Thoene. 2022. "Programmed Cell Death in Cystinosis" Cells 11, no. 4: 670. https://doi.org/10.3390/cells11040670
APA StyleAmes, E. G., & Thoene, J. G. (2022). Programmed Cell Death in Cystinosis. Cells, 11(4), 670. https://doi.org/10.3390/cells11040670