You are currently on the new version of our website. Access the old version .
CellsCells
  • Feature Paper
  • Review
  • Open Access

13 February 2022

Epithelial Mesenchymal Transition (EMT) and Associated Invasive Adhesions in Solid and Haematological Tumours

and
School of Life Sciences and Health, University of Roehampton, London SW15 4JD, UK
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Molecular Mechanisms of Tumor Development and Progression - A Themed Honorary Issue to Prof. Miguel Quintanilla

Abstract

In solid tumours, cancer cells that undergo epithelial mesenchymal transition (EMT) express characteristic gene expression signatures that promote invasive migration as well as the development of stemness, immunosuppression and drug/radiotherapy resistance, contributing to the formation of currently untreatable metastatic tumours. The cancer traits associated with EMT can be controlled by the signalling nodes at characteristic adhesion sites (focal contacts, invadopodia and microtentacles) where the regulation of cell migration, cell cycle progression and pro-survival signalling converge. In haematological tumours, ample evidence accumulated during the last decade indicates that the development of an EMT-like phenotype is indicative of poor disease prognosis. However, this EMT phenotype has not been directly linked to the assembly of specific forms of adhesions. In the current review we discuss the role of EMT in haematological malignancies and examine its possible link with the progression towards more invasive and aggressive forms of these tumours. We also review the known types of adhesions formed by haematological malignancies and speculate on their possible connection with the EMT phenotype. We postulate that understanding the architecture and regulation of EMT-related adhesions will lead to the discovery of new therapeutic interventions to overcome disease progression and resistance to therapies.

1. Introduction

Epithelium integrity is maintained by the apical-basal polarity of epithelial cells generated by adhesions at cell-cell junctions and with the basal lamina. However, under specific physiological conditions, epithelial cells lose the contacts with neighbouring cells and the subjacent matrix, adopting a highly motile mesenchymal phenotype. This cell behaviour is called epithelial-mesenchymal transition (EMT) and it is critical for tissue morphogenesis during embryonic development and in adulthood for wound healing [1,2]. At the molecular level, EMT is characterised by the downregulation of the cell adhesion protein E-cadherin, leading to the disassembly of intercellular junctions and the initial dissociation of epithelia. In parallel, cells undergo major cytoskeletal rearrangements involving the downregulation of keratins and the upregulation of vimentin, which facilitates the highly migratory behaviour in the dissociated cells [2]. Several well characterised transcription factors (TFs) are upregulated during EMT such as SNAIL/SNAI1, SLUG/SNAI2, TWIST and the ZEB family of TFs, which orchestrate the downregulation of E-cadherin [3] and the upregulation and activation of N-cadherin and the intermediate filament vimentin [4]. Reciprocally, upregulated vimentin can promote the expression or the activity of EMT TFs and other signalling pathways favouring an invasive phenotype [5,6].
EMT is also thought to play a central role in cancer progression by facilitating the invasive behaviour of tumour cells, enabling tissue infiltration and the formation of metastatic foci [7,8]. Consequently, expression of EMT markers is associated with an aggressive malignant phenotype and correlates with the poor prognosis of cancer patients [8,9,10]. Over the last decade, development of an EMT phenotype in tumour cells in cancers of epithelial origin (carcinomas) has also been associated with acquisition of further malignant traits including cancer stem cell properties [11,12], immunosuppression [13,14], as well as resistance to therapeutic agents [15,16,17,18,19] and to radiotherapy [20,21].
The induction and maintenance of EMT is highly regulated by extracellular signals during embryonic development, tissue repair and tumour progression. These include chemical cues such as cytokines, chemokines, the presence of reactive oxygen species (ROS) [22] and hypoxia [23,24], as well as mechanochemical signals provided by changes in the rigidity of the surrounding extracellular matrix [25,26]. Specifically in tumours, autocrine and paracrine stimulation of cancer cells by cytokines such as TGFβ1 induce EMT while promoting an immunosuppressive microenvironment [27,28]. Additionally, macrophages and cancer associated fibroblasts present in the tumour microenvironment can secrete classical EMT-inducing cytokines/chemokines including HGF, SDF1α, EGF, PDGF as well as TGFβ1 [24,28]. Cytokines also secreted by the tumour stroma and firstly identified as pro-survival, immunosuppressive or as chemotactic signals to recruit immune cells to the tumour microenvironment are now known to also induce EMT in cancer cells. Some examples are IL-6, IL-8, IL-10 and TNFα [27,29]. The hypoxic microenvironment generated in growing tumours prior to vascularisation is another extensively studied factor that promotes EMT in cancer cells [23,30,31]. Hypoxia drives EMT by triggering various signalling pathways [32], the most commonly known being the stabilisation of Hypoxia Inducible Factor-1 α (HIF-1α) [33], that results in increased activity of the EMT TFs SLUG [33], SNAIL [32] and TWIST [34].
EMT can be reversed by a process known as mesenchymal-epithelial transition (MET). The coordination of EMT and MET is critical in both physiological and pathological conditions [2]. During the formation of metastatic foci, EMT facilitates the dissemination of cancer cells from the primary tumour to the blood and lymph circulation systems. After extravasation of circulating tumour cells to a secondary organ, they undergo MET to convert from a non- or low proliferative, migratory phenotype to a proliferative type that will generate a secondary tumour. However, the current scientific consensus in the field establishes that only under some very specific circumstances during development do epithelial cells switch completely from an epithelial to a fully mesenchymal phenotype [2]. It is currently agreed that there is a spectrum of possible intermediate stages characteristic of specific EMT programmes that encompass the loss of characteristic features of epithelial cells while acquiring the traits of mesenchymal cells, resulting in a more invasive/motile phenotype [2]. It remains undetermined whether the molecular and cellular EMT features in these programs comprise discrete stages of a linear spectrum of EMT- MET conversion or whether, instead, they represent a continuum of possible non-epithelial states expressed depending on the biological context [2].
In cancer cells, gene mutations and/or the influence of the tumour stroma may induce patterns of expression of epithelial and mesenchymal markers resulting in particular EMT phenotypes [2,10,35]. This epithelial/mesenchymal plasticity spectrum provides tumours with a landscape of possible phenotypes with multiple associated functions [36] and capacity for adaptation to various microenvironments [37,38]. For example, circulating tumour cells express characteristic intermediate epithelial-mesenchymal traits [37,38] whereas once the cells colonise a secondary site, they undergo a further MET conversion [39,40]. Additionally, certain EMT profiles have been associated with the subsequent expression of gene signatures of tumour subpopulations in skin and breast carcinomas that may allow these cells to colonise specific organs [36]. This possible control of gene expression by distinct EMT profiles may infer cancer-stem cell [41,42] and/or drug resistant traits to subpopulations of tumour cells [13,15,16,17,18,19], leading to refractory disease and relapse in cancer patients.
A substantial body of evidence supports the central role of EMT in the invasive behaviour and the metastatic disease of carcinomas such as lung, prostate, colon, liver, pancreatic and breast cancers [24]. However, in the last decade it has become evident that an EMT behaviour is also present in non-epithelial solid tumours of mesenchymal origin and in haematological malignancies [9,10,23,43]. This EMT-like behaviour in mesenchymal tumours may echo the loss of polarity and increased migratory capacity of endothelial cells during tissue repair and angiogenesis in an EMT-related process named endothelial-mesenchymal transition [1,44].
This review will emphasize the development of EMT-phenotypes during tumour progression of haematological malignancies. We will discuss the current understanding of the specific molecular EMT features described in haematological cancers and propose possible associated adhesomes formed by haematological tumour cells that may facilitate this invasive and aggressive phenotype.

2. EMT in Haematological Malignancies

Haematopoietic cells derive from the mesoderm and, therefore, have a mesenchymal developmental origin, however, the expression of EMT-like signatures with upregulation of canonical mesenchymal markers has been described in all types of haematological malignancies (lymphomas, multiple myeloma and lymphoid and myeloid leukaemia) [10]. The current literature strongly indicates a clear correlation between the expression of these EMT signatures, or genetic abnormalities in EMT TFs, and poor prognosis of patients [9,45,46,47,48,49,50,51]. One of the most common characteristics is the expression of high levels of vimentin in various forms of aggressive haematological tumours [9,52,53]. However, the exact biological role of the EMT markers in haematopoietic cancers remains largely unstudied.
In particular, the actual correlation between the higher levels of EMT markers with a more motile phenotype, which is a key EMT feature, has not yet been studied in great depth in haematological malignancies in comparison to solid tumours. The majority of the studies have concentrated on various other tumour traits that may explain the correlation between expression of EMT signatures and the poor prognosis of patients. For example, the expression of EMT TFs has been associated with the repression of differentiation markers, correlating with more aggressive forms of haematological malignancies. Increased expression of ZEB1 promotes the methylation and downregulation of B-Cell Lymphoma protein 6 (BCL6), a key transcription factor that promotes differentiation of B cells and whose expression is associated with a benign profile [45]. A correlation has also been established between EMT and resistance to therapies. ZEB1 has been shown to promote drug resistance in mantle cell lymphoma by activating proliferation-associated genes while repressing pro-apoptotic ones and regulating the expression levels of membrane transporters involved in drug influx and efflux [46]. The upregulation of TWIST1 levels in chronic myeloid leukaemia (CML) promotes resistance to the therapeutic drug imatinib [50]. However, the cellular and molecular TWIST1-dependent mechanisms that may explain the lack of response to this drug have not yet been elucidated. Similarly, expression of EMT TFs in multiple myeloma cells in response to cues from the tumour microenvironment correlates with resistance to the clinical drugs dexamethasone and Velcade (bortezomib) [54].
Only a few of these studies have addressed the connection between the expression of EMT markers and increased cell migration. In paediatric anaplastic large cell lymphoma cells, expression of the oncogenic protein anaplastic lymphoma kinase (ALK) correlated with expression of higher levels of TWIST1. Downregulation of TWIST1 in these cells inhibited invasive migration and reinstated the efficacy of therapeutic drugs [49]. In MLL-AF9 driven acute myeloid leukaemia (AML), poor prognosis in patients correlated with expression of EMT markers and experimental downregulation of ZEB1 in AML cells inhibited the invasive capacity of this aggressive cancer [9].
Multiple myeloma is the haematological tumour where the EMT phenotype has been studied in more depth, and there is substantial evidence of the acquisition of a migratory phenotype orchestrated by the EMT program [23,43,51,54]. Multiple myeloma results from the accumulation of malignant plasma cells in disseminated tumour foci within the bone marrow. In 2012, the Ghobrial lab demonstrated that during tumour progression, hypoxia induced an EMT program in multiple myeloma cells that resulted in increased mobilisation and formation of further bone marrow foci [23]. This program was the result of the upregulation of HIF-1α leading to expression of SNAIL and downregulation of E-cadherin [23]. It was then proposed that multiple myeloma may be envisaged as a metastatic disease where progression results from continuing trafficking of myeloma cells from initial proliferating tumours in the bone marrow that acquire a hypoxic-driven EMT phenotype as they expand, leading to mobilisation of myeloma cells undergoing EMT [43]. Mobilised myeloma cells into the circulation express cell adhesion molecules such as β7 integrins [55] that would facilitate the interaction of circulating cells with the bone marrow endothelium and the extravasation into a new site. The re-entry into the bone marrow in this vascularised normoxic environment would repress the expression of HIF-1 α, silencing the EMT program and promoting a transition similar to MET in epithelial tumours, leading to the proliferation of myeloma cells and development of a new tumour [23]. Additional factors that may lead to the mobilisation of myeloma cells through the acquisition of an EMT-phenotype include the increased concentration of cytokines such as IL-6, TNFα, VEGF, HGF and IGF-1 in the tumour microenvironment during the symptomatic phase of the disease [43]. More recently, further evidence shows that cytogenetic abnormalities associated with a poor prognosis in multiple myeloma [51] as well as the composition of the extracellular matrix of the myeloma bone marrow microenvironment [54] promote an EMT invasive phenotype in these cancer cells.
Taken together, the studies in haematological malignancies indicate a compelling connection between expression of EMT markers and poor prognosis (Table 1). In addition, the acquisition of an invasive migratory phenotype has been corroborated in the limited number of in depth studies so far available (Table 1). However, the exact coordination between the levels of expression of EMT TFs and markers, and the migratory features of haematological cancer cells is practically unknown with exception of a few studies in multiple myeloma. More significantly, the exact adhesions and cytoskeletal configurations that may be assembled by haematological cancer cells undergoing EMT, have not been yet elucidated. In the next section, we review the structure, regulation and known roles of EMT-related adhesions in solid tumours and discuss the invasive adhesions so far described in haematological malignancies and their possible, although not yet proved, association with EMT.
Table 1. Upregulation of canonical EMT markers in haematological malignancies correlates with poor prognosis and/or the enhanced migration of cancer cells.

4. Final Remarks

In epithelial tumours, the upregulation of the core EMT TFs (ZEB family, SNAI1/2 and TWIST) and the intermediate filament vimentin are related to the development of different types of invasive adhesions such as degradative focal contacts, invadopodia and microtentacles. In haematological tumours, it remains largely unknown whether the expression of EMT TFs and the development of cytoskeletal and adhesive structures are coordinated similarly to epithelial tumours; or whether the expression changes are constrained in distinctive combinations according to the microenvironment and/or the type of haematological cancer. Notably, the formation of particular invasive adhesions associated with EMT remain largely unstudied in haematological cancers. Given the substantial evidence indicating that the development of EMT signatures correlates with poor prognosis in leukaemia, lymphoma and multiple myeloma, it will be critical in the coming years to determine the adhesions and cytoskeletal organisation associated with this phenotype. Several drugs that may interfere with the signalosomes at adhesion sites and/or cytoskeletal -remodelling are already available and could be used as migrastatics: compounds interfering with the migration of invasive cancers [141,142,143] to improve therapeutic interventions and avoid metastasis and relapse.
Determining the composition and regulation of EMT-associated adhesions in haematological malignancies will improve our understanding of the development not only of invasive migration but also the mechanisms leading to drug resistance and immunosuppression. It is anticipated that this research will result in the identification of new therapeutic targets that alone or in combination with cytotoxic therapies will allow for the treatment of patients refractory to current therapies.

Author Contributions

Both authors contributed in the literature review, discussion and manuscript writing. All authors have read and agreed to the published version of the manuscript.

Funding

This research received funding from Cancer Research UK (Project numbers C34579/A14248 and C34579/A20784) and from the funds for research-led teaching activities from the University of Roehampton.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors thank Ines M. Anton, Gareth E. Jones and Claire M. Wells for their very valuable critical revision of the manuscript.

Conflicts of Interest

The authors declare that they have no conflict of interest.

References

  1. Kovacic, J.C.; Mercader, N.; Torres, M.; Boehm, M.; Fuster, V. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: From cardiovascular development to disease. Circulation 2012, 125, 1795–1808. [Google Scholar] [CrossRef] [PubMed]
  2. Yang, J.; Antin, P.; Berx, G.; Blanpain, C.; Brabletz, T.; Bronner, M.; Campbell, K.; Cano, A.; Casanova, J.; Christofori, G.; et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2020, 21, 341–352. [Google Scholar] [CrossRef] [PubMed]
  3. Thiery, J.P.; Sleeman, J.P. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 2006, 7, 131–142. [Google Scholar] [CrossRef] [PubMed]
  4. Meng, J.; Chen, S.; Han, J.X.; Qian, B.; Wang, X.R.; Zhong, W.L.; Qin, Y.; Zhang, H.; Gao, W.F.; Lei, Y.Y.; et al. Twist1 Regulates Vimentin through Cul2 Circular RNA to Promote EMT in Hepatocellular Carcinoma. Cancer Res. 2018, 78, 4150–4162. [Google Scholar] [CrossRef] [PubMed]
  5. Virtakoivu, R.; Mai, A.; Mattila, E.; De Franceschi, N.; Imanishi, S.Y.; Corthals, G.; Kaukonen, R.; Saari, M.; Cheng, F.; Torvaldson, E.; et al. Vimentin-ERK Signaling Uncouples Slug Gene Regulatory Function. Cancer Res. 2015, 75, 2349–2362. [Google Scholar] [CrossRef] [PubMed]
  6. Satelli, A.; Li, S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell. Mol. Life Sci. CMLS 2011, 68, 3033–3046. [Google Scholar] [CrossRef] [PubMed]
  7. Thiery, J.P. EMT: An Update. Methods Mol. Biol. 2021, 2179, 35–39. [Google Scholar] [CrossRef] [PubMed]
  8. Sato, M.; Shames, D.S.; Hasegawa, Y. Emerging evidence of epithelial-to-mesenchymal transition in lung carcinogenesis. Respirology 2012, 17, 1048–1059. [Google Scholar] [CrossRef]
  9. Stavropoulou, V.; Kaspar, S.; Brault, L.; Sanders, M.A.; Juge, S.; Morettini, S.; Tzankov, A.; Iacovino, M.; Lau, I.J.; Milne, T.A.; et al. MLL-AF9 Expression in Hematopoietic Stem Cells Drives a Highly Invasive AML Expressing EMT-Related Genes Linked to Poor Outcome. Cancer Cell 2016, 30, 43–58. [Google Scholar] [CrossRef] [PubMed]
  10. Kahlert, U.D.; Joseph, J.V.; Kruyt, F.A.E. EMT- and MET-related processes in nonepithelial tumors: Importance for disease progression, prognosis, and therapeutic opportunities. Mol. Oncol. 2017, 11, 860–877. [Google Scholar] [CrossRef]
  11. Guo, W.; Keckesova, Z.; Donaher, J.L.; Shibue, T.; Tischler, V.; Reinhardt, F.; Itzkovitz, S.; Noske, A.; Zurrer-Hardi, U.; Bell, G.; et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 2012, 148, 1015–1028. [Google Scholar] [CrossRef]
  12. Scheel, C.; Weinberg, R.A. Phenotypic plasticity and epithelial-mesenchymal transitions in cancer and normal stem cells? Int. J. Cancer 2011, 129, 2310–2314. [Google Scholar] [CrossRef]
  13. Terry, S.; Savagner, P.; Ortiz-Cuaran, S.; Mahjoubi, L.; Saintigny, P.; Thiery, J.P.; Chouaib, S. New insights into the role of EMT in tumor immune escape. Mol. Oncol. 2017, 11, 824–846. [Google Scholar] [CrossRef] [PubMed]
  14. Noman, M.Z.; Janji, B.; Abdou, A.; Hasmim, M.; Terry, S.; Tan, T.Z.; Mami-Chouaib, F.; Thiery, J.P.; Chouaib, S. The immune checkpoint ligand PD-L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200. Oncoimmunology 2017, 6, e1263412. [Google Scholar] [CrossRef] [PubMed]
  15. Recondo, G.; Mezquita, L.; Facchinetti, F.; Planchard, D.; Gazzah, A.; Bigot, L.; Rizvi, A.Z.; Frias, R.L.; Thiery, J.P.; Scoazec, J.Y.; et al. Diverse Resistance Mechanisms to the Third-Generation ALK Inhibitor Lorlatinib in ALK-Rearranged Lung Cancer. Clin. Cancer Res. 2020, 26, 242–255. [Google Scholar] [CrossRef] [PubMed]
  16. Sha, J.; Bai, Y.; Ngo, H.X.; Okui, T.; Kanno, T. Overview of Evidence-Based Chemotherapy for Oral Cancer: Focus on Drug Resistance Related to the Epithelial-Mesenchymal Transition. Biomolecules 2021, 11, 893. [Google Scholar] [CrossRef]
  17. Mirzaei, S.; Abadi, A.J.; Gholami, M.H.; Hashemi, F.; Zabolian, A.; Hushmandi, K.; Zarrabi, A.; Entezari, M.; Aref, A.R.; Khan, H.; et al. The involvement of epithelial-to-mesenchymal transition in doxorubicin resistance: Possible molecular targets. Eur. J. Pharm. 2021, 908, 174344. [Google Scholar] [CrossRef]
  18. Zhang, N.; Ng, A.S.; Cai, S.; Li, Q.; Yang, L.; Kerr, D. Novel therapeutic strategies: Targeting epithelial-mesenchymal transition in colorectal cancer. Lancet. Oncol. 2021, 22, e358–e368. [Google Scholar] [CrossRef]
  19. Zhang, B.; Li, Y.; Wu, Q.; Xie, L.; Barwick, B.; Fu, C.; Li, X.; Wu, D.; Xia, S.; Chen, J.; et al. Acetylation of KLF5 maintains EMT and tumorigenicity to cause chemoresistant bone metastasis in prostate cancer. Nat. Commun. 2021, 12, 1714. [Google Scholar] [CrossRef]
  20. Yu, X.; Wang, Q.; Liu, B.; Zhang, N.; Cheng, G. Vitamin D Enhances Radiosensitivity of Colorectal Cancer by Reversing Epithelial-Mesenchymal Transition. Front. Cell Dev. Biol. 2021, 9, 684855. [Google Scholar] [CrossRef]
  21. Galeaz, C.; Totis, C.; Bisio, A. Radiation Resistance: A Matter of Transcription Factors. Front. Oncol. 2021, 11, 662840. [Google Scholar] [CrossRef] [PubMed]
  22. Ramundo, V.; Giribaldi, G.; Aldieri, E. Transforming Growth Factor-beta and Oxidative Stress in Cancer: A Crosstalk in Driving Tumor Transformation. Cancers 2021, 13, 3093. [Google Scholar] [CrossRef] [PubMed]
  23. Azab, A.K.; Hu, J.; Quang, P.; Azab, F.; Pitsillides, C.; Awwad, R.; Thompson, B.; Maiso, P.; Sun, J.D.; Hart, C.P.; et al. Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Blood 2012, 119, 5782–5794. [Google Scholar] [CrossRef] [PubMed]
  24. Ribatti, D.; Tamma, R.; Annese, T. Epithelial-Mesenchymal Transition in Cancer: A Historical Overview. Transl. Oncol. 2020, 13, 100773. [Google Scholar] [CrossRef] [PubMed]
  25. Dai, J.; Qin, L.; Chen, Y.; Wang, H.; Lin, G.; Li, X.; Liao, H.; Fang, H. Matrix stiffness regulates epithelial-mesenchymal transition via cytoskeletal remodeling and MRTF-A translocation in osteosarcoma cells. J. Mech. Behav. Biomed. Mater. 2019, 90, 226–238. [Google Scholar] [CrossRef] [PubMed]
  26. Fattet, L.; Jung, H.Y.; Matsumoto, M.W.; Aubol, B.E.; Kumar, A.; Adams, J.A.; Chen, A.C.; Sah, R.L.; Engler, A.J.; Pasquale, E.B.; et al. Matrix Rigidity Controls Epithelial-Mesenchymal Plasticity and Tumor Metastasis via a Mechanoresponsive EPHA2/LYN Complex. Dev. Cell 2020, 54, 302–316. [Google Scholar] [CrossRef]
  27. Chattopadhyay, I.; Ambati, R.; Gundamaraju, R. Exploring the Crosstalk between Inflammation and Epithelial-Mesenchymal Transition in Cancer. Mediat. Inflamm. 2021, 2021, 9918379. [Google Scholar] [CrossRef]
  28. Scheel, C.; Eaton, E.N.; Li, S.H.; Chaffer, C.L.; Reinhardt, F.; Kah, K.J.; Bell, G.; Guo, W.; Rubin, J.; Richardson, A.L.; et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 2011, 145, 926–940. [Google Scholar] [CrossRef]
  29. Baram, T.; Rubinstein-Achiasaf, L.; Ben-Yaakov, H.; Ben-Baruch, A. Inflammation-Driven Breast Tumor Cell Plasticity: Stemness/EMT, Therapy Resistance and Dormancy. Front. Oncol. 2020, 10, 614468. [Google Scholar] [CrossRef]
  30. Tao, J.; Yang, G.; Zhou, W.; Qiu, J.; Chen, G.; Luo, W.; Zhao, F.; You, L.; Zheng, L.; Zhang, T.; et al. Targeting hypoxic tumor microenvironment in pancreatic cancer. J. Hematol. Oncol. 2021, 14, 14. [Google Scholar] [CrossRef]
  31. Gonzalez-Gonzalez, R.; Ortiz-Sarabia, G.; Molina-Frechero, N.; Salas-Pacheco, J.M.; Salas-Pacheco, S.M.; Lavalle-Carrasco, J.; Lopez-Verdin, S.; Tremillo-Maldonado, O.; Bologna-Molina, R. Epithelial-Mesenchymal Transition Associated with Head and Neck Squamous Cell Carcinomas: A Review. Cancers 2021, 13, 3027. [Google Scholar] [CrossRef]
  32. Choi, B.J.; Park, S.A.; Lee, S.Y.; Cha, Y.N.; Surh, Y.J. Hypoxia induces epithelial-mesenchymal transition in colorectal cancer cells through ubiquitin-specific protease 47-mediated stabilization of Snail: A potential role of Sox9. Sci. Rep. 2017, 7, 15918. [Google Scholar] [CrossRef] [PubMed]
  33. Lin, C.W.; Wang, L.K.; Wang, S.P.; Chang, Y.L.; Wu, Y.Y.; Chen, H.Y.; Hsiao, T.H.; Lai, W.Y.; Lu, H.H.; Chang, Y.H.; et al. Daxx inhibits hypoxia-induced lung cancer cell metastasis by suppressing the HIF-1alpha/HDAC1/Slug axis. Nat. Commun. 2016, 7, 13867. [Google Scholar] [CrossRef] [PubMed]
  34. Yang, M.H.; Wu, M.Z.; Chiou, S.H.; Chen, P.M.; Chang, S.Y.; Liu, C.J.; Teng, S.C.; Wu, K.J. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat. Cell Biol. 2008, 10, 295–305. [Google Scholar] [CrossRef] [PubMed]
  35. Chaffer, C.L.; San Juan, B.P.; Lim, E.; Weinberg, R.A. EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 2016, 35, 645–654. [Google Scholar] [CrossRef] [PubMed]
  36. Pastushenko, I.; Brisebarre, A.; Sifrim, A.; Fioramonti, M.; Revenco, T.; Boumahdi, S.; Van Keymeulen, A.; Brown, D.; Moers, V.; Lemaire, S.; et al. Identification of the tumour transition states occurring during EMT. Nature 2018, 556, 463–468. [Google Scholar] [CrossRef] [PubMed]
  37. Yu, M.; Bardia, A.; Wittner, B.S.; Stott, S.L.; Smas, M.E.; Ting, D.T.; Isakoff, S.J.; Ciciliano, J.C.; Wells, M.N.; Shah, A.M.; et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 2013, 339, 580–584. [Google Scholar] [CrossRef] [PubMed]
  38. Schliekelman, M.J.; Taguchi, A.; Zhu, J.; Dai, X.; Rodriguez, J.; Celiktas, M.; Zhang, Q.; Chin, A.; Wong, C.H.; Wang, H.; et al. Molecular portraits of epithelial, mesenchymal, and hybrid States in lung adenocarcinoma and their relevance to survival. Cancer Res. 2015, 75, 1789–1800. [Google Scholar] [CrossRef]
  39. Ocana, O.H.; Corcoles, R.; Fabra, A.; Moreno-Bueno, G.; Acloque, H.; Vega, S.; Barrallo-Gimeno, A.; Cano, A.; Nieto, M.A. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 2012, 22, 709–724. [Google Scholar] [CrossRef]
  40. Tsai, J.H.; Donaher, J.L.; Murphy, D.A.; Chau, S.; Yang, J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 2012, 22, 725–736. [Google Scholar] [CrossRef]
  41. Ye, X.; Tam, W.L.; Shibue, T.; Kaygusuz, Y.; Reinhardt, F.; Ng Eaton, E.; Weinberg, R.A. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 2015, 525, 256–260. [Google Scholar] [CrossRef] [PubMed]
  42. May, C.D.; Sphyris, N.; Evans, K.W.; Werden, S.J.; Guo, W.; Mani, S.A. Epithelial-mesenchymal transition and cancer stem cells: A dangerously dynamic duo in breast cancer progression. Breast Cancer Res. 2011, 13, 202. [Google Scholar] [CrossRef] [PubMed]
  43. Ghobrial, I.M. Myeloma as a model for the process of metastasis: Implications for therapy. Blood 2012, 120, 20–30. [Google Scholar] [CrossRef] [PubMed]
  44. Alvandi, Z.; Bischoff, J. Endothelial-Mesenchymal Transition in Cardiovascular Disease. Arter. Thromb. Vasc. Biol. 2021, 41, 2357–2369. [Google Scholar] [CrossRef]
  45. Lemma, S.; Karihtala, P.; Haapasaari, K.M.; Jantunen, E.; Soini, Y.; Bloigu, R.; Pasanen, A.K.; Turpeenniemi-Hujanen, T.; Kuittinen, O. Biological roles and prognostic values of the epithelial-mesenchymal transition-mediating transcription factors Twist, ZEB1 and Slug in diffuse large B-cell lymphoma. Histopathology 2013, 62, 326–333. [Google Scholar] [CrossRef] [PubMed]
  46. Sanchez-Tillo, E.; Fanlo, L.; Siles, L.; Montes-Moreno, S.; Moros, A.; Chiva-Blanch, G.; Estruch, R.; Martinez, A.; Colomer, D.; Gyorffy, B.; et al. The EMT activator ZEB1 promotes tumor growth and determines differential response to chemotherapy in mantle cell lymphoma. Cell Death Differ. 2014, 21, 247–257. [Google Scholar] [CrossRef] [PubMed]
  47. Wong, H.K.; Gibson, H.; Hake, T.; Geyer, S.; Frederickson, J.; Marcucci, G.; Caligiuri, M.A.; Porcu, P.; Mishra, A. Promoter-Specific Hypomethylation Is Associated with Overexpression of PLS3, GATA6, and TWIST1 in the Sezary Syndrome. J. Investig. Derm. 2015, 135, 2084–2092. [Google Scholar] [CrossRef]
  48. Mishra, A.; La Perle, K.; Kwiatkowski, S.; Sullivan, L.A.; Sams, G.H.; Johns, J.; Curphey, D.P.; Wen, J.; McConnell, K.; Qi, J.; et al. Mechanism, Consequences, and Therapeutic Targeting of Abnormal IL15 Signaling in Cutaneous T-cell Lymphoma. Cancer Discov. 2016, 6, 986–1005. [Google Scholar] [CrossRef]
  49. Zhang, J.; Wang, P.; Wu, F.; Li, M.; Sharon, D.; Ingham, R.J.; Hitt, M.; McMullen, T.P.; Lai, R. Aberrant expression of the transcriptional factor Twist1 promotes invasiveness in ALK-positive anaplastic large cell lymphoma. Cell Signal. 2012, 24, 852–858. [Google Scholar] [CrossRef]
  50. Cosset, E.; Hamdan, G.; Jeanpierre, S.; Voeltzel, T.; Sagorny, K.; Hayette, S.; Mahon, F.X.; Dumontet, C.; Puisieux, A.; Nicolini, F.E.; et al. Deregulation of TWIST-1 in the CD34+ compartment represents a novel prognostic factor in chronic myeloid leukemia. Blood 2011, 117, 1673–1676. [Google Scholar] [CrossRef]
  51. Cheong, C.M.; Mrozik, K.M.; Hewett, D.R.; Bell, E.; Panagopoulos, V.; Noll, J.E.; Licht, J.D.; Gronthos, S.; Zannettino, A.C.W.; Vandyke, K. Twist-1 is upregulated by NSD2 and contributes to tumour dissemination and an epithelial-mesenchymal transition-like gene expression signature in t(4;14)-positive multiple myeloma. Cancer Lett. 2020, 475, 99–108. [Google Scholar] [CrossRef] [PubMed]
  52. Peng, Y.; Li, F.; Zhang, P.; Wang, X.; Shen, Y.; Feng, Y.; Jia, Y.; Zhang, R.; Hu, J.; He, A. IGF-1 promotes multiple myeloma progression through PI3K/Akt-mediated epithelial-mesenchymal transition. Life Sci. 2020, 249, 117503. [Google Scholar] [CrossRef] [PubMed]
  53. Wu, S.; Du, Y.; Beckford, J.; Alachkar, H. Upregulation of the EMT marker vimentin is associated with poor clinical outcome in acute myeloid leukemia. J. Transl. Med. 2018, 16, 170. [Google Scholar] [CrossRef] [PubMed]
  54. Ibraheem, A.; Attar-Schneider, O.; Dabbah, M.; Dolberg Jarchowsky, O.; Tartakover Matalon, S.; Lishner, M.; Drucker, L. BM-MSCs-derived ECM modifies multiple myeloma phenotype and drug response in a source-dependent manner. Transl. Res. 2019, 207, 83–95. [Google Scholar] [CrossRef] [PubMed]
  55. Neri, P.; Ren, L.; Azab, A.K.; Brentnall, M.; Gratton, K.; Klimowicz, A.C.; Lin, C.; Duggan, P.; Tassone, P.; Mansoor, A.; et al. Integrin beta7-mediated regulation of multiple myeloma cell adhesion, migration, and invasion. Blood 2011, 117, 6202–6213. [Google Scholar] [CrossRef] [PubMed]
  56. Klein, E.A.; Yin, L.; Kothapalli, D.; Castagnino, P.; Byfield, F.J.; Xu, T.; Levental, I.; Hawthorne, E.; Janmey, P.A.; Assoian, R.K. Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening. Curr. Biol. CB 2009, 19, 1511–1518. [Google Scholar] [CrossRef] [PubMed]
  57. Assoian, R.K.; Schwartz, M.A. Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression. Curr. Opin. Genet. Dev. 2001, 11, 48–53. [Google Scholar] [CrossRef]
  58. Schwartz, M.A.; Assoian, R.K. Integrins and cell proliferation: Regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J. Cell Sci. 2001, 114, 2553–2560. [Google Scholar] [CrossRef]
  59. Welsh, C.F.; Roovers, K.; Villanueva, J.; Liu, Y.; Schwartz, M.A.; Assoian, R.K. Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nat. Cell Biol. 2001, 3, 950–957. [Google Scholar] [CrossRef]
  60. Assoian, R.K. Anchorage-dependent cell cycle progression. J. Cell Biol. 1997, 136, 1–4. [Google Scholar] [CrossRef]
  61. Jones, M.C.; Askari, J.A.; Humphries, J.D.; Humphries, M.J. Cell adhesion is regulated by CDK1 during the cell cycle. J. Cell Biol. 2018, 217, 3203–3218. [Google Scholar] [CrossRef] [PubMed]
  62. Marchesi, S.; Montani, F.; Deflorian, G.; D'Antuono, R.; Cuomo, A.; Bologna, S.; Mazzoccoli, C.; Bonaldi, T.; Di Fiore, P.P.; Nicassio, F. DEPDC1B coordinates de-adhesion events and cell-cycle progression at mitosis. Dev. Cell 2014, 31, 420–433. [Google Scholar] [CrossRef] [PubMed]
  63. Gough, R.E.; Jones, M.C.; Zacharchenko, T.; Le, S.; Yu, M.; Jacquemet, G.; Muench, S.P.; Yan, J.; Humphries, J.D.; Jorgensen, C.; et al. Talin mechanosensitivity is modulated by a direct interaction with cyclin-dependent kinase-1. J. Biol. Chem. 2021, 297, 100837. [Google Scholar] [CrossRef] [PubMed]
  64. Yilmaz, M.; Christofori, G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009, 28, 15–33. [Google Scholar] [CrossRef] [PubMed]
  65. Adebowale, K.; Gong, Z.; Hou, J.C.; Wisdom, K.M.; Garbett, D.; Lee, H.P.; Nam, S.; Meyer, T.; Odde, D.J.; Shenoy, V.B.; et al. Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. Nat. Mater. 2021, 20, 1290–1299. [Google Scholar] [CrossRef] [PubMed]
  66. Li, X.; Zhang, Q.; Yan, S.; Li, M.; You, R. Topographic cues reveal filopodia-mediated cell locomotion in 3D microenvironment. Biointerphases 2020, 15, 031001. [Google Scholar] [CrossRef] [PubMed]
  67. Mongiu, A.K.; Weitzke, E.L.; Chaga, O.Y.; Borisy, G.G. Kinetic-structural analysis of neuronal growth cone veil motility. J. Cell Sci. 2007, 120, 1113–1125. [Google Scholar] [CrossRef]
  68. Le Clainche, C.; Carlier, M.F. Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol. Rev. 2008, 88, 489–513. [Google Scholar] [CrossRef]
  69. Svitkina, T.M.; Bulanova, E.A.; Chaga, O.Y.; Vignjevic, D.M.; Kojima, S.; Vasiliev, J.M.; Borisy, G.G. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 2003, 160, 409–421. [Google Scholar] [CrossRef]
  70. Nonpanya, N.; Sanookpan, K.; Joyjamras, K.; Wichadakul, D.; Sritularak, B.; Chaotham, C.; Chanvorachote, P. Norcycloartocarpin targets Akt and suppresses Akt-dependent survival and epithelial-mesenchymal transition in lung cancer cells. PLoS ONE 2021, 16, e0254929. [Google Scholar] [CrossRef]
  71. Sanookpan, K.; Nonpanya, N.; Sritularak, B.; Chanvorachote, P. Ovalitenone Inhibits the Migration of Lung Cancer Cells via the Suppression of AKT/mTOR and Epithelial-to-Mesenchymal Transition. Molecules 2021, 26, 638. [Google Scholar] [CrossRef] [PubMed]
  72. Sibony-Benyamini, H.; Gil-Henn, H. Invadopodia: The leading force. Eur. J. Cell Biol. 2012, 91, 896–901. [Google Scholar] [CrossRef] [PubMed]
  73. Li, Y.Y.; Jiang, G.T.; Chen, L.J.; Jiang, Y.H.; Jiao, J.D. Formin mDia1 contributes to migration and epithelial-mesenchymal transition of tubular epithelial cells exposed to TGF-beta1. J. Cell. Biochem. 2019, 3861–3870. [Google Scholar] [CrossRef]
  74. Rana, M.K.; Aloisio, F.M.; Choi, C.; Barber, D.L. Formin-dependent TGF-beta signaling for epithelial to mesenchymal transition. Mol. Biol. Cell 2018, 29, 1465–1475. [Google Scholar] [CrossRef] [PubMed]
  75. Yang, X.Y.; Liao, J.J.; Xue, W.R. FMNL1 down-regulation suppresses bone metastasis through reducing TGF-beta1 expression in non-small cell lung cancer (NSCLC). Biomed. Pharmacother. 2019, 117, 109126. [Google Scholar] [CrossRef] [PubMed]
  76. Rodrigues, P.C.; Sawazaki-Calone, I.; Ervolino de Oliveira, C.; Soares Macedo, C.C.; Dourado, M.R.; Cervigne, N.K.; Miguel, M.C.; Ferreira do Carmo, A.; Lambert, D.W.; Graner, E.; et al. Fascin promotes migration and invasion and is a prognostic marker for oral squamous cell carcinoma. Oncotarget 2017, 8, 74736–74754. [Google Scholar] [CrossRef]
  77. Ristic, B.; Kopel, J.; Sherazi, S.A.A.; Gupta, S.; Sachdeva, S.; Bansal, P.; Ali, A.; Perisetti, A.; Goyal, H. Emerging Role of Fascin-1 in the Pathogenesis, Diagnosis, and Treatment of the Gastrointestinal Cancers. Cancers 2021, 13, 2536. [Google Scholar] [CrossRef]
  78. Zhang, Y.; Lu, Y.; Zhang, C.; Huang, D.; Wu, W.; Zhang, Y.; Shen, J.; Cai, Y.; Chen, W.; Yao, W. FSCN1 increases doxorubicin resistance in hepatocellular carcinoma through promotion of epithelial-mesenchymal transition. Int. J. Oncol. 2018, 52, 1455–1464. [Google Scholar] [CrossRef]
  79. Ibarra, N.; Pollitt, A.; Insall, R.H. Regulation of actin assembly by SCAR/WAVE proteins. Biochem. Soc. Trans. 2005, 33, 1243–1246. [Google Scholar] [CrossRef]
  80. Stradal, T.E.; Rottner, K.; Disanza, A.; Confalonieri, S.; Innocenti, M.; Scita, G. Regulation of actin dynamics by WASP and WAVE family proteins. Trends Cell Biol. 2004, 14, 303–311. [Google Scholar] [CrossRef]
  81. Khoury, H.; Dankort, D.L.; Sadekova, S.; Naujokas, M.A.; Muller, W.J.; Park, M. Distinct tyrosine autophosphorylation sites mediate induction of epithelial mesenchymal like transition by an activated ErbB-2/Neu receptor. Oncogene 2001, 20, 788–799. [Google Scholar] [CrossRef] [PubMed]
  82. Iwaya, K.; Norio, K.; Mukai, K. Coexpression of Arp2 and WAVE2 predicts poor outcome in invasive breast carcinoma. Mod. Pathol. 2007, 20, 339–343. [Google Scholar] [CrossRef] [PubMed]
  83. Iwaya, K.; Oikawa, K.; Semba, S.; Tsuchiya, B.; Mukai, Y.; Otsubo, T.; Nagao, T.; Izumi, M.; Kuroda, M.; Domoto, H.; et al. Correlation between liver metastasis of the colocalization of actin-related protein 2 and 3 complex and WAVE2 in colorectal carcinoma. Cancer Sci. 2007, 98, 992–999. [Google Scholar] [CrossRef] [PubMed]
  84. Datta, A.; Deng, S.; Gopal, V.; Yap, K.C.; Halim, C.E.; Lye, M.L.; Ong, M.S.; Tan, T.Z.; Sethi, G.; Hooi, S.C.; et al. Cytoskeletal Dynamics in Epithelial-Mesenchymal Transition: Insights into Therapeutic Targets for Cancer Metastasis. Cancers 2021, 13, 1882. [Google Scholar] [CrossRef]
  85. Mori, H.; Tomari, T.; Koshikawa, N.; Kajita, M.; Itoh, Y.; Sato, H.; Tojo, H.; Yana, I.; Seiki, M. CD44 directs membrane-type 1 matrix metalloproteinase to lamellipodia by associating with its hemopexin-like domain. Embo J. 2002, 21, 3949–3959. [Google Scholar] [CrossRef] [PubMed]
  86. Pastushenko, I.; Mauri, F.; Song, Y.; de Cock, F.; Meeusen, B.; Swedlund, B.; Impens, F.; Van Haver, D.; Opitz, M.; Thery, M.; et al. Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature 2021, 589, 448–455. [Google Scholar] [CrossRef]
  87. Tsirtsaki, K.; Gkretsi, V. The focal adhesion protein Integrin-Linked Kinase (ILK) as an important player in breast cancer pathogenesis. Cell Adh. Migr. 2020, 14, 204–213. [Google Scholar] [CrossRef]
  88. Jin, H.; He, Y.; Zhao, P.; Hu, Y.; Tao, J.; Chen, J.; Huang, Y. Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin beta3/FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery. Theranostics 2019, 9, 265–278. [Google Scholar] [CrossRef]
  89. van den Dries, K.; Linder, S.; Maridonneau-Parini, I.; Poincloux, R. Probing the mechanical landscape—New insights into podosome architecture and mechanics. J. Cell Sci. 2019, 132. [Google Scholar] [CrossRef]
  90. van den Dries, K.; Nahidiazar, L.; Slotman, J.A.; Meddens, M.B.M.; Pandzic, E.; Joosten, B.; Ansems, M.; Schouwstra, J.; Meijer, A.; Steen, R.; et al. Modular actin nano-architecture enables podosome protrusion and mechanosensing. Nat. Commun. 2019, 10, 5171. [Google Scholar] [CrossRef]
  91. Linder, S. Invadosomes at a glance. J.Cell Sci. 2009, 122, 3009–3013. [Google Scholar] [CrossRef] [PubMed]
  92. Alonso, F.; Spuul, P.; Genot, E. Podosomes in endothelial cell--microenvironment interactions. Curr. Opin. Hematol. 2020, 27, 197–205. [Google Scholar] [CrossRef] [PubMed]
  93. Chen, Y.W.; Lai, C.S.; Chen, Y.F.; Chiu, W.T.; Chen, H.C.; Shen, M.R. STIM1-dependent Ca(2+) signaling regulates podosome formation to facilitate cancer cell invasion. Sci. Rep. 2017, 7, 11523. [Google Scholar] [CrossRef]
  94. Lener, T.; Burgstaller, G.; Crimaldi, L.; Lach, S.; Gimona, M. Matrix-degrading podosomes in smooth muscle cells. Eur. J. Cell Biol. 2006, 85, 183–189. [Google Scholar] [CrossRef] [PubMed]
  95. Santiago-Medina, M.; Gregus, K.A.; Nichol, R.H.; O'Toole, S.M.; Gomez, T.M. Regulation of ECM degradation and axon guidance by growth cone invadosomes. Development 2015, 142, 486–496. [Google Scholar] [CrossRef]
  96. Murphy, D.A.; Courtneidge, S.A. The ‘ins’ and ‘outs’ of podosomes and invadopodia: Characteristics, formation and function. Nat. Rev. Mol. Cell Biol. 2011, 12, 413–426. [Google Scholar] [CrossRef]
  97. Branch, K.M.; Hoshino, D.; Weaver, A.M. Adhesion rings surround invadopodia and promote maturation. Biol. Open 2012, 1, 711–722. [Google Scholar] [CrossRef]
  98. Poincloux, R.; Lizarraga, F.; Chavrier, P. Matrix invasion by tumour cells: A focus on MT1-MMP trafficking to invadopodia. J. Cell Sci. 2009, 122, 3015–3024. [Google Scholar] [CrossRef]
  99. Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786–801. [Google Scholar] [CrossRef]
  100. Zhang, D.; Bi, J.; Liang, Q.; Wang, S.; Zhang, L.; Han, F.; Li, S.; Qiu, B.; Fan, X.; Chen, W.; et al. VCAM1 Promotes Tumor Cell Invasion and Metastasis by Inducing EMT and Transendothelial Migration in Colorectal Cancer. Front. Oncol. 2020, 10, 1066. [Google Scholar] [CrossRef]
  101. Borriello, L.; Karagiannis, G.S.; Duran, C.L.; Coste, A.; Oktay, M.H.; Entenberg, D.; Condeelis, J.S. The role of the tumor microenvironment in tumor cell intravasation and dissemination. Eur. J. Cell Biol. 2020, 99, 151098. [Google Scholar] [CrossRef]
  102. Schoumacher, M.; Goldman, R.D.; Louvard, D.; Vignjevic, D.M. Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J. Cell Biol. 2010, 189, 541–556. [Google Scholar] [CrossRef] [PubMed]
  103. Bayarmagnai, B.; Perrin, L.; Esmaeili Pourfarhangi, K.; Grana, X.; Tuzel, E.; Gligorijevic, B. Invadopodia-mediated ECM degradation is enhanced in the G1 phase of the cell cycle. J. Cell Sci. 2019, 132. [Google Scholar] [CrossRef]
  104. Nayak, D.; Kumar, A.; Chakraborty, S.; Rasool, R.U.; Amin, H.; Katoch, A.; Gopinath, V.; Mahajan, V.; Zilla, M.K.; Rah, B.; et al. Inhibition of Twist1-mediated invasion by Chk2 promotes premature senescence in p53-defective cancer cells. Cell Death Differ. 2017, 24, 1275–1287. [Google Scholar] [CrossRef]
  105. Tzivion, G.; Luo, Z.J.; Avruch, J. Calyculin A-induced vimentin phosphorylation sequesters 14-3-3 and displaces other 14-3-3 partners in vivo. J. Biol. Chem. 2000, 275, 29772–29778. [Google Scholar] [CrossRef]
  106. Kidd, M.E.; Shumaker, D.K.; Ridge, K.M. The role of vimentin intermediate filaments in the progression of lung cancer. Am. J. Respir. Cell Mol. Biol. 2014, 50, 1–6. [Google Scholar] [CrossRef] [PubMed]
  107. Hermeking, H.; Benzinger, A. 14-3-3 proteins in cell cycle regulation. Semin. Cancer Biol. 2006, 16, 183–192. [Google Scholar] [CrossRef]
  108. Franchi, M.; Piperigkou, Z.; Riti, E.; Masola, V.; Onisto, M.; Karamanos, N.K. Long filopodia and tunneling nanotubes define new phenotypes of breast cancer cells in 3D cultures. Matrix Biol. Plus 2020, 6–7, 100026. [Google Scholar] [CrossRef]
  109. Li, P.; Chen, Y.; Peng, Y.; Zhang, Y.; Zhou, H.; Chen, X.; Li, T.; Li, S.; Yang, H.; Wu, C.; et al. Notch-1 signaling promotes reattachment of suspended cancer cells by cdc42-dependent microtentacles formation. Cancer Sci. 2021, 112, 4894. [Google Scholar] [CrossRef] [PubMed]
  110. Killilea, A.N.; Csencsits, R.; Le, E.; Patel, A.M.; Kenny, S.J.; Xu, K.; Downing, K.H. Cytoskeletal organization in microtentacles. Exp. Cell Res. 2017, 357, 291–298. [Google Scholar] [CrossRef]
  111. Wolf, K.J.; Shukla, P.; Springer, K.; Lee, S.; Coombes, J.D.; Choy, C.J.; Kenny, S.J.; Xu, K.; Kumar, S. A mode of cell adhesion and migration facilitated by CD44-dependent microtentacles. Proc. Natl. Acad. Sci. USA 2020, 117, 11432–11443. [Google Scholar] [CrossRef] [PubMed]
  112. Whipple, R.A.; Cheung, A.M.; Martin, S.S. Detyrosinated microtubule protrusions in suspended mammary epithelial cells promote reattachment. Exp. Cell Res. 2007, 313, 1326–1336. [Google Scholar] [CrossRef] [PubMed]
  113. Charpentier, M.; Martin, S. Interplay of Stem Cell Characteristics, EMT, and Microtentacles in Circulating Breast Tumor Cells. Cancers 2013, 5, 1545–1565. [Google Scholar] [CrossRef]
  114. Cepeda, M.A.; Pelling, J.J.; Evered, C.L.; Williams, K.C.; Freedman, Z.; Stan, I.; Willson, J.A.; Leong, H.S.; Damjanovski, S. Less is more: Low expression of MT1-MMP is optimal to promote migration and tumourigenesis of breast cancer cells. Mol. Cancer 2016, 15, 65. [Google Scholar] [CrossRef]
  115. Perentes, J.Y.; Kirkpatrick, N.D.; Nagano, S.; Smith, E.Y.; Shaver, C.M.; Sgroi, D.; Garkavtsev, I.; Munn, L.L.; Jain, R.K.; Boucher, Y. Cancer cell-associated MT1-MMP promotes blood vessel invasion and distant metastasis in triple-negative mammary tumors. Cancer Res. 2011, 71, 4527–4538. [Google Scholar] [CrossRef] [PubMed]
  116. Latario, C.J.; Schoenfeld, L.W.; Howarth, C.L.; Pickrell, L.E.; Begum, F.; Fischer, D.A.; Grbovic-Huezo, O.; Leach, S.D.; Sanchez, Y.; Smith, K.D.; et al. Tumor microtubes connect pancreatic cancer cells in an Arp2/3 complex-dependent manner. Mol. Biol. Cell 2020, 31, 1259–1272. [Google Scholar] [CrossRef] [PubMed]
  117. Whipple, R.A.; Matrone, M.A.; Cho, E.H.; Balzer, E.M.; Vitolo, M.I.; Yoon, J.R.; Ioffe, O.B.; Tuttle, K.C.; Yang, J.; Martin, S.S. Epithelial-to-mesenchymal transition promotes tubulin detyrosination and microtentacles that enhance endothelial engagement. Cancer Res. 2010, 70, 8127–8137. [Google Scholar] [CrossRef]
  118. Balzer, E.M.; Whipple, R.A.; Thompson, K.; Boggs, A.E.; Slovic, J.; Cho, E.H.; Matrone, M.A.; Yoneda, T.; Mueller, S.C.; Martin, S.S. c-Src differentially regulates the functions of microtentacles and invadopodia. Oncogene 2010, 29, 6402–6408. [Google Scholar] [CrossRef]
  119. Roselova, P.; Obr, A.; Holoubek, A.; Grebenova, D.; Kuzelova, K. Adhesion structures in leukemia cells and their regulation by Src family kinases. Cell Adh. Migr. 2018, 12, 286–298. [Google Scholar] [CrossRef]
  120. Maia, V.; Ortiz-Rivero, S.; Sanz, M.; Gutierrez-Berzal, J.; Alvarez-Fernandez, I.; Gutierrez-Herrero, S.; de Pereda, J.M.; Porras, A.; Guerrero, C. C3G forms complexes with Bcr-Abl and p38alpha MAPK at the focal adhesions in chronic myeloid leukemia cells: Implication in the regulation of leukemic cell adhesion. Cell Commun. Signal. 2013, 11, 9. [Google Scholar] [CrossRef]
  121. Vacca, A.; Ria, R.; Presta, M.; Ribatti, D.; Iurlaro, M.; Merchionne, F.; Tanghetti, E.; Dammacco, F. alpha(v)beta(3) integrin engagement modulates cell adhesion, proliferation, and protease secretion in human lymphoid tumor cells. Exp. Hematol. 2001, 29, 993–1003. [Google Scholar] [CrossRef]
  122. Chen, W.C.; Hu, G.; Hazlehurst, L.A. Contribution of the bone marrow stromal cells in mediating drug resistance in hematopoietic tumors. Curr. Opin. Pharm. 2020, 54, 36–43. [Google Scholar] [CrossRef] [PubMed]
  123. Krenn, P.W.; Hofbauer, S.W.; Pucher, S.; Hutterer, E.; Hinterseer, E.; Denk, U.; Asslaber, D.; Ganghammer, S.; Sternberg, C.; Neureiter, D.; et al. ILK Induction in Lymphoid Organs by a TNFalpha-NF-kappaB-Regulated Pathway Promotes the Development of Chronic Lymphocytic Leukemia. Cancer Res. 2016, 76, 2186–2196. [Google Scholar] [CrossRef] [PubMed]
  124. Ouchani, F.; Devy, J.; Rusciani, A.; Helesbeux, J.J.; Salesse, S.; Letinois, I.; Gras-Billart, D.; Duca, L.; Duval, O.; Martiny, L.; et al. Targeting focal adhesion assembly by ethoxyfagaronine prevents lymphoblastic cell adhesion to fibronectin. Anal. Cell Pathol. (Amst.) 2012, 35, 267–284. [Google Scholar] [CrossRef] [PubMed][Green Version]
  125. Bosch, R.; Dieguez-Gonzalez, R.; Cespedes, M.V.; Parreno, M.; Pavon, M.A.; Granena, A.; Sierra, J.; Mangues, R.; Casanova, I. A novel inhibitor of focal adhesion signaling induces caspase-independent cell death in diffuse large B-cell lymphoma. Blood 2011, 118, 4411–4420. [Google Scholar] [CrossRef] [PubMed][Green Version]
  126. Rothe, K.; Babaian, A.; Nakamichi, N.; Chen, M.; Chafe, S.C.; Watanabe, A.; Forrest, D.L.; Mager, D.L.; Eaves, C.J.; Dedhar, S.; et al. Integrin-Linked Kinase Mediates Therapeutic Resistance of Quiescent CML Stem Cells to Tyrosine Kinase Inhibitors. Cell Stem Cell 2020, 27, 110–124. [Google Scholar] [CrossRef] [PubMed]
  127. Gaidano, G.; Bergui, L.; Schena, M.; Gaboli, M.; Cremona, O.; Marchisio, P.C.; Caligaris-Cappio, F. Integrin distribution and cytoskeleton organization in normal and malignant monocytes. Leukemia 1990, 4, 682–687. [Google Scholar]
  128. Redondo-Munoz, J.; Escobar-Diaz, E.; Samaniego, R.; Terol, M.J.; Garcia-Marco, J.A.; Garcia-Pardo, A. MMP-9 in B-cell chronic lymphocytic leukemia is up-regulated by alpha4beta1 integrin or CXCR4 engagement via distinct signaling pathways, localizes to podosomes, and is involved in cell invasion and migration. Blood 2006, 108, 3143–3151. [Google Scholar] [CrossRef]
  129. Caligaris-Cappio, F.; Bergui, L.; Tesio, L.; Corbascio, G.; Tousco, F.; Marchisio, P.C. Cytoskeleton organization is aberrantly rearranged in the cells of B chronic lymphocytic leukemia and hairy cell leukemia. Blood 1986, 67, 233–239. [Google Scholar] [CrossRef]
  130. Calvani, N.; Cafforio, P.; Silvestris, F.; Dammacco, F. Functional osteoclast-like transformation of cultured human myeloma cell lines. Br. J. Haematol. 2005, 130, 926–938. [Google Scholar] [CrossRef]
  131. Calvani, N.; Silvestris, F.; Cafforio, P.; Dammacco, F. Osteoclast-like cell formation by circulating myeloma B lymphocytes: Role of RANK-L. Leuk. Lymphoma 2004, 45, 377–380. [Google Scholar] [CrossRef] [PubMed]
  132. Taylor, M.D.; Sadhukhan, S.; Kottangada, P.; Ramgopal, A.; Sarkar, K.; D'Silva, S.; Selvakumar, A.; Candotti, F.; Vyas, Y.M. Nuclear role of WASp in the pathogenesis of dysregulated TH1 immunity in human Wiskott-Aldrich syndrome. Sci. Transl. Med. 2010, 2, 37ra44. [Google Scholar] [CrossRef] [PubMed]
  133. Yoo, Y.; Wu, X.; Guan, J.L. A novel role of the actin-nucleating Arp2/3 complex in the regulation of RNA polymerase II-dependent transcription. J.Biol. Chem. 2007, 282, 7616–7623. [Google Scholar] [CrossRef] [PubMed]
  134. Yoshida, T.; Shimada, K.; Oma, Y.; Kalck, V.; Akimura, K.; Taddei, A.; Iwahashi, H.; Kugou, K.; Ohta, K.; Gasser, S.M.; et al. Actin-related protein Arp6 influences H2A.Z-dependent and -independent gene expression and links ribosomal protein genes to nuclear pores. PLoS Genet. 2010, 6, e1000910. [Google Scholar] [CrossRef]
  135. Poincloux, R.; Cougoule, C.; Daubon, T.; Maridonneau-Parini, I.; Le Cabec, V. Tyrosine-phosphorylated STAT5 accumulates on podosomes in Hck-transformed fibroblasts and chronic myeloid leukemia cells. J. Cell Physiol. 2007, 213, 212–220. [Google Scholar] [CrossRef] [PubMed]
  136. Bessy, T.; Candelas, A.; Souquet, B.; Saadallah, K.; Schaeffer, A.; Vianay, B.; Cuvelier, D.; Gobaa, S.; Nakid-Cordero, C.; Lion, J.; et al. Hematopoietic progenitors polarize in contact with bone marrow stromal cells in response to SDF1. J. Cell Biol. 2021, 220, e202005085. [Google Scholar] [CrossRef]
  137. Holloway, W.; Martinez, A.R.; Oh, D.J.; Francis, K.; Ramakrishna, R.; Palsson, B.O. Key adhesion molecules are present on long podia extended by hematopoietic cells. Cytometry 1999, 37, 171–177. [Google Scholar] [CrossRef]
  138. Ramasamy, K.; Anwar, A.; Kazmi, M.A.; Y, C. Podia in Multiple Myeloma (MM) Cells Promote Adhesion with Bone Marrow (BM) Fibroblastic Stromal Cells. In Proceedings of the International Conference on The Tumour Microenvironment in the Haematological Malignancies and its Therapeutic Targeting, Lisbon, Portugal, 7–9 May 2015. [Google Scholar]
  139. Ramasamy, K.; Khatun, H.; Macpherson, L.; Caley, M.P.; Sturge, J.; Mufti, G.J.; Schey, S.A.; Calle, Y. Fluorescence-based experimental model to evaluate the concomitant effect of drugs on the tumour microenvironment and cancer cells. Br. J. Haematol. 2012, 157, 564–579. [Google Scholar] [CrossRef]
  140. Tavor, S.; Petit, I.; Porozov, S.; Goichberg, P.; Avigdor, A.; Sagiv, S.; Nagler, A.; Naparstek, E.; Lapidot, T. Motility, proliferation, and egress to the circulation of human AML cells are elastase dependent in NOD/SCID chimeric mice. Blood 2005, 106, 2120–2127. [Google Scholar] [CrossRef]
  141. Gandalovicova, A.; Rosel, D.; Fernandes, M.; Vesely, P.; Heneberg, P.; Cermak, V.; Petruzelka, L.; Kumar, S.; Sanz-Moreno, V.; Brabek, J. Migrastatics-Anti-metastatic and Anti-invasion Drugs: Promises and Challenges. Trends Cancer 2017, 3, 391–406. [Google Scholar] [CrossRef]
  142. Orgaz, J.L.; Crosas-Molist, E.; Sadok, A.; Perdrix-Rosell, A.; Maiques, O.; Rodriguez-Hernandez, I.; Monger, J.; Mele, S.; Georgouli, M.; Bridgeman, V.; et al. Myosin II Reactivation and Cytoskeletal Remodeling as a Hallmark and a Vulnerability in Melanoma Therapy Resistance. Cancer Cell 2020, 37, 85–103. [Google Scholar] [CrossRef] [PubMed]
  143. Hegde, S.; Gasilina, A.; Wunderlich, M.; Lin, Y.; Buchholzer, M.; Krumbach, O.H.F.; Akbarzadeh, M.; Ahmadian, M.R.; Seibel, W.; Zheng, Y.; et al. Inhibition of the RacGEF VAV3 by the small molecule IODVA1 impedes RAC signaling and overcomes resistance to tyrosine kinase inhibition in acute lymphoblastic leukemia. Leukemia 2021, 1–11. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.