Limited Metabolic Effect of the CREBRFR457Q Obesity Variant in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Body Composition and Energy Expenditure
2.3. Glucose and Insulin Tolerance
2.4. Determination of Glycogen Content
2.5. Tissue and Plasma Lipids Analyses
2.6. Statistical Analysis
3. Results
3.1. Body Composition
3.2. Glucose and Insulin Tolerance
3.3. Indirect Calorimetry
3.4. Biochemical Analyses
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Minster, R.L.; Hawley, N.L.; Su, C.T.; Sun, G.; Kershaw, E.E.; Cheng, H.; Buhule, O.D.; Lin, J.; Reupena, M.S.; Viali, S.; et al. A thrifty variant in CREBRF strongly influences body mass index in Samoans. Nat. Genet. 2016, 48, 1049–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naka, I.; Furusawa, T.; Kimura, R.; Natsuhara, K.; Yamauchi, T.; Nakazawa, M.; Ataka, Y.; Ishida, T.; Inaoka, T.; Matsumura, Y.; et al. A missense variant, rs373863828-A (p.Arg457Gln), of CREBRF and body mass index in Oceanic populations. J. Hum. Genet. 2017, 62, 847–849. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, M.; Major, T.J.; Topless, R.K.; Dewes, O.; Yu, L.; Thompson, J.M.; McCowan, L.; de Zoysa, J.; Stamp, L.K.; Dalbeth, N.; et al. Discordant association of the CREBRF rs373863828 minor allele with increased BMI and protection from type 2 diabetes in Māori and Pacific (Polynesian) people living in Aotearoa/New Zealand. Diabetologia 2018, 61, 1603–1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.; Caberto, C.; Wan, P.; Li, Y.; Lum-Jones, A.; Tiirikainen, M.; Pooler, L.; Nakamura, B.; Sheng, X.; Porcel, J.; et al. Population-specific reference panels are crucial for genetic analyses: An example of the CREBRF locus in Native Hawaiians. Hum. Mol. Genet. 2020, 29, 2275–2284. [Google Scholar] [CrossRef]
- Hanson, R.L.; Safabakhsh, S.; Curtis, J.M.; Hsueh, W.C.; Jones, L.I.; Aflague, T.F.; Duenas Sarmiento, J.; Kumar, S.; Blackburn, N.B.; Curran, J.E.; et al. Association of CREBRF variants with obesity and diabetes in Pacific Islanders from Guam and Saipan. Diabetologia 2019, 62, 1647–1652. [Google Scholar] [CrossRef]
- Berry, S.D.; Walker, C.G.; Ly, K.; Snell, R.G.; Atatoa Carr, P.E.; Bandara, D.; Mohal, J.; Castro, T.G.; Marks, E.J.; Morton, S.M.; et al. Widespread prevalence of a CREBRF variant amongst Māori and Pacific children is associated with weight and height in early childhood. Int. J. Obes. 2018, 42, 603–607. [Google Scholar] [CrossRef]
- Metcalfe, L.K.; Krishnan, M.; Turner, N.; Yaghootkar, H.; Merry, T.L.; Dewes, O.; Hindmarsh, J.H.; de Zoysa, J.; Dalbeth, N.; Stamp, L.K.; et al. The Māori and Pacific specific CREBRF variant and adult height. Int. J. Obes. 2020, 44, 748–752. [Google Scholar] [CrossRef]
- Carlson, J.C.; Rosenthal, S.L.; Russell, E.M.; Hawley, N.L.; Sun, G.; Cheng, H.; Naseri, T.; Reupena, M.S.; Tuitele, J.; Deka, R.; et al. A missense variant in CREBRF is associated with taller stature in Samoans. Am. J. Hum. Biol. 2020, 32, e23414. [Google Scholar] [CrossRef]
- Oyama, S.; Duckham, R.L.; Arslanian, K.J.; Kershaw, E.E.; Strayer, J.A.; Fidow, U.T.; Naseri, T.; Hawley, N.L. Body size and composition of Samoan toddlers aged 18–25 months in 2019. Ann. Hum. Biol. 2021, 48, 346–349. [Google Scholar] [CrossRef]
- Arslanian, K.J.; Fidow, U.T.; Atanoa, T.; Unasa-Apelu, F.; Naseri, T.; Wetzel, A.I.; Pomer, A.; Duckham, R.L.; McGarvey, S.T.; Strayer, J.A.; et al. A missense variant in CREBRF, rs373863828, is associated with fat-free mass, not fat mass in Samoan infants. Int. J. Obes. 2021, 45, 45–55. [Google Scholar] [CrossRef]
- Krishnan, M.; Murphy, R.; Okesene-Gafa, K.A.; Ji, M.; Thompson, J.M.; Taylor, R.S.; Merriman, T.R.; McCowan, L.M.; McKinlay, C.J. The Pacific-specific CREBRF rs373863828 allele protects against gestational diabetes mellitus in Māori and Pacific women with obesity. Diabetologia 2020, 63, 2169–2176. [Google Scholar] [CrossRef]
- Penney, J.; Mendell, A.; Zeng, M.; Tran, K.; Lymer, J.; Turner, P.V.; Choleris, E.; MacLusky, N.; Lu, R. LUMAN/CREB3 is a key regulator of glucocorticoid-mediated stress responses. Mol. Cell. Endocrinol. 2017, 439, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Penney, J.; Taylor, T.; MacLusky, N.; Lu, R. LUMAN/CREB3 plays a dual role in stress responses as a cofactor of the glucocorticoid receptor and a regulator of secretion. Front. Mol. Neurosci. 2018, 11, 352. [Google Scholar] [CrossRef] [Green Version]
- Martyn, A.C.; Choleris, E.; Gillis, D.J.; Armstrong, J.N.; Amor, T.R.; McCluggage, A.R.; Turner, P.V.; Liang, G.; Cai, K.; Lu, R. Luman/CREB3 recruitment factor regulates glucocorticoid receptor activity and is essential for prolactin-mediated maternal instinct. Mol. Cell. Biol. 2012, 32, 5140–5150. [Google Scholar] [CrossRef] [Green Version]
- Frahm, K.A.; Williams, A.A.; Wood, A.N.; Ewing, M.C.; Mattila, P.E.; Chuan, B.W.; Guo, L.; Shah, F.A.; O’Donnell, C.P.; Lu, R.; et al. Loss of CREBRF reduces anxiety-like behaviours and circulating glucocorticoids in male and female mice. Endocrinology 2020, 161, bqaa163. [Google Scholar] [CrossRef]
- Audas, T.E.; Li, Y.; Liang, G.; Lu, R. A novel protein, Luman/CREB3 recruitment factor, inhibits luman activation of the unfolded protein response. Mol. Cell. Biol. 2008, 28, 3952–3966. [Google Scholar] [CrossRef] [Green Version]
- Audas, T.E.; Hardy-Smith, P.W.; Penney, J.; Taylor, T.; Lu, R. Characterisation of nuclear foci-targeting of Luman/CREB3 recruitment factor (LRF/CREBRF) and its potential role in inhibition of herpes simplex virus-1 replication. Eur. J. Cell Biol. 2015, 95, 611–622. [Google Scholar] [CrossRef]
- Turner, N.; Bruce, C.R.; Beale, S.M.; Hoehn, K.L.; So, T.; Rolph, M.S.; Cooney, G.J. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: Evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 2007, 56, 2085–2092. [Google Scholar] [CrossRef] [Green Version]
- Folch, J.; Lees, M.; Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Reed, D.R.; Bachmanov, A.A.; Tordoff, M.G. Forty mouse strain survey of body composition. Physiol. Behav. 2007, 91, 593–600. [Google Scholar] [CrossRef] [Green Version]
- Rudnicki, M.; Abdifarkosh, G.; Rezvan, O.; Nwadozi, E.; Roudier, E.; Haas, T.L. Female mice have higher angiogenesis in perigonadal adipose tissue than males in response to high-fat diet. Front. Physiol. 2018, 9, 1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiebe, M.; Lutz, M.; Tiebe, D.S.; Teleman, A.A. Crebl2 regulates cell metabolism in muscle and liver cells. Sci. Rep. 2019, 9, 19869. [Google Scholar] [CrossRef] [PubMed]
- Goossens, G.H. The metabolic phenotype in obesity: Fat mass, body fat distribution, and adipose tissue function. Obes. Facts 2017, 10, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Swinburn, B.A.; Ley, S.J.; Carmichael, H.E.; Plank, L.D. Body size and composition in Polynesians. Int. J. Obes. 1999, 23, 1178–1183. [Google Scholar] [CrossRef] [Green Version]
- Rush, E.C.; Freitas, I.; Plank, L.D. Body size, body composition and fat distribution: Comparative analysis of European, Maori, Pacific Island and Asian Indian adults. Br. J. Nutr. 2009, 102, 632–641. [Google Scholar] [CrossRef]
- McAuley, K.A.; Williams, S.M.; Mann, J.I.; Goulding, A.; Murphy, E. Increased risk of type 2 diabetes despite same degree of adiposity in different racial groups. Diabetes Care 2002, 25, 2360–2361. [Google Scholar] [CrossRef] [Green Version]
- Tiebe, M.; Lutz, M.; De La Garza, A.; Buechling, T.; Boutros, M.; Teleman, A.A. REPTOR and REPTOR-BP regulate organismal metabolism and transcription downstream of TORC1. Dev. Cell 2015, 33, 272–284. [Google Scholar] [CrossRef] [Green Version]
- Burden, H.J.; Adams, S.; Kulatea, B.; Wright-McNaughton, M.; Sword, D.; Ormsbee, J.J.; Watene-O’Sullivan, C.; Merriman, T.R.; Knopp, J.L.; Chase, J.G.; et al. The CREBRF diabetes-protective rs373863828-A allele is associated with enhanced early insulin release in men of Māori and Pacific ancestry. Diabetologia 2021, 64, 2779–2789. [Google Scholar] [CrossRef]
- Neel, J.V. Diabetes Mellitus: A “thrifty” genotype rendered detrimental by “progress”? Am. J. Hum. Genet. 1962, 14, 353–362. [Google Scholar]
- Kanshana, J.S.; Mattila, P.E.; Ewing, M.C.; Wood, A.N.; Schoiswohl, G.; Meyer, A.C.; Kowalski, A.; Rosenthal, S.L.; Gingras, S.; Kaufman, B.A.; et al. A murine model of the human CREBRFR457Q obesity-risk variant does not influence energy or glucose homeostasis in response to nutritional stress. PLoS ONE 2021, 16, e0251895. [Google Scholar] [CrossRef]
- Reitman, M.L. Of mice and men—Environmental temperature, body temperature, and treatment of obesity. FEBS Lett. 2018, 592, 2098–2107. [Google Scholar] [CrossRef] [Green Version]
- Rossmeisl, M.; Rim, J.S.; Koza, R.A.; Kozak, L.P. Variation in type 2 diabetes—Related traits in mouse strains susceptible to diet-induced obesity. Diabetes 2003, 52, 1958–1966. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, M.K.; Hallahan, N.L.; Brown, S.H.; Liu, M.; Mitchell, T.W.; Cooney, G.J.; Turner, N. Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 2013, 56, 1129–1139. [Google Scholar] [CrossRef]
Sex | Tissue | CHOW | HFD | p-Values | ||||||
---|---|---|---|---|---|---|---|---|---|---|
WT | HET | HOM | WT | HET | HOM | G | D | G × D | ||
Male | BW (g) | 30.1 ± 0.83 | 31.0 ± 0.70 | 31.3 ± 1.04 | 34.3 ± 0.91 | 33.8 ± 0.60 | 34.7 ± 1.13 | ns | <0.0001 | ns |
eWAT (% BW) | 1.64 ± 0.23 | 1.66 ± 0.13 | 1.86 ± 0.26 | 3.78 ± 0.11 | 3.67 ± 0.14 | 3.54 ± 0.17 | ns | <0.0001 | ns | |
iWAT (% BW) | 0.61 ± 0.06 | 0.66 ± 0.04 | 0.77 ± 0.08 | 1.33 ± 0.08 | 1.11 ± 0.05 | 1.39 ± 0.16 | ns | <0.0001 | ns | |
Liver (% BW) | 4.65 ± 0.13 | 4.75 ± 0.14 | 4.70 ± 0.15 | 4.21 ± 0.09 | 4.16 ± 0.16 | 4.08 ± 0.11 | ns | <0.0001 | ns | |
Heart (% BW) | 0.46 ± 0.01 | 0.46 ± 0.01 | 0.45 ± 0.02 | 0.41 ± 0.02 | 0.41 ± 0.01 | 0.41 ± 0.02 | ns | <0.001 | ns | |
Kidneys (% BW) | 1.54 ± 0.05 | 1.53 ± 0.02 | 1.45 ± 0.03 | 1.25 ± 0.04 | 1.28 ± 0.03 | 1.26 ± 0.04 | ns | <0.0001 | ns | |
Female | BW (g) | 24.6 ± 0.94 | 23.8 ± 0.60 | 24.8 ± 0.83 | 27.3 ± 0.88 | 26.3 ± 1.10 | 25.9 ± 0.83 | ns | <0.01 | ns |
pWAT (% BW) | 1.27 ± 0.25 | 0.98 ± 0.18 | 1.57 ± 0.21 | 3.31 ± 0.30 | 3.02 ± 0.36 | 2.71 ± 0.48 | ns | <0.0001 | ns | |
iWAT (% BW) | 0.83 ± 0.08 | 0.67 ± 0.06 | 0.78 ± 0.06 | 1.31 ± 0.05 | 1.22 ± 0.07 | 1.25 ± 0.09 | ns | <0.0001 | ns | |
Liver (% BW) | 4.99 ± 0.11 | 5.03 ± 0.11 | 4.95 ± 0.13 | 4.33 ± 0.04 | 3.99 ± 0.08 | 4.13 ± 0.17 | ns | <0.0001 | ns | |
Heart (% BW) | 0.50 ± 0.02 | 0.48 ± 0.01 | 0.46 ± 0.01 | 0.41 ± 0.01 | 0.47 ± 0.03 | 0.44 ± 0.03 | ns | <0.01 | ns | |
Kidneys (% BW) | 1.25 ± 0.03 | 1.25 ± 0.04 | 1.23 ± 0.02 | 1.05 ± 0.02 | 1.06 ± 0.01 | 1.09 ± 0.05 | ns | <0.0001 | ns |
Sex | Circulating Factor | Chow | HFD | p-Values | |||||
---|---|---|---|---|---|---|---|---|---|
WT | HOM | WT | HOM | G | F | D | G × F | ||
Male | Fed BG (mM) | 8.52 ± 0.22 | 8.63 ± 0.13 | 8.47 ± 0.23 | 8.70 ± 0.28 | ns | <0.0001 | ns | ns |
Fasted BG (mM) | 5.53 ± 0.27 §§§§ | 5.99 ± 0.63 §§§§ | 6.11 ± 0.23 §§§§ | 6.44 ± 0.31 §§§§ | |||||
Fed Insulin (μg/L) | 1.40 ± 0.17 | 1.68 ± 0.41 | 2.67 ± 0.50 | 2.44 ± 0.55 | ns | <0.0001 | <0.05 | ns | |
Fasted Insulin (μg/L) | 0.51 ± 0.06 | 0.46 ± 0.04 | 0.58 ± 0.07 §§§ | 0.59 ± 0.05 §§ | |||||
Fed TAGs (mM) | 2.03 ± 0.20 | 2.08 ± 0.19 | 1.39 ± 0.14 | 1.44 ± 0.15 | ns | ns | <0.01 | ns | |
Fasted TAGs (mM) | 2.21 ± 0.29 | 1.66 ± 0.13 | 1.83 ± 0.18 | 1.80 ± 0.12 | |||||
Fed NEFAs (mM) | 0.40 ± 0.07 | 0.40 ± 0.08 | 0.38 ± 0.07 | 0.49 ± 0.05 | <0.05 | <0.0001 | ns | ns | |
Fasted NEFAs (mM) | 0.77 ± 0.07 | 1.19 ± 0.14 *,§§§§ | 0.80 ± 0.09 § | 0.92 ± 0.13 § | |||||
Female | Fed BG (mM) | 7.95 ± 0.18 | 8.54 ± 0.18 | 7.88 ± 0.23 | 8.18 ± 0.14 | ns | <0.0001 | ns | ns |
Fasted BG (mM) | 5.30 ± 0.20 §§§§ | 5.61 ± 0.38 §§§§ | 5.55 ± 0.34 §§§§ | 5.16 ± 0.27 §§§§ | |||||
Fed Insulin (μg/L) | 0.63 ± 0.11 ## | 0.76 ± 0.10 | 2.07 ± 0.53 | 1.04 ± 0.24 | ns | <0.001 | <0.01 | ns | |
Fasted Insulin (μg/L) | 0.48 ± 0.13 | 0.51 ± 0.05 | 0.53 ± 0.06 §§§ | 0.48 ± 0.04 | |||||
Fed TAGs (mM) | 2.55 ± 0.13 | 2.89 ± 0.25 # | 2.44 ± 0.26 | 1.90 ± 0.11 | <0.05 | ns | <0.0001 | ns | |
Fasted TAGs (mM) | 3.52 ± 0.36 ## | 2.70 ± 0.23 # | 2.19 ± 0.16 | 1.73 ± 0.15 | |||||
Fed NEFAs (mM) | 0.45 ± 0.09 | 0.42 ± 0.04 | 0.32 ± 0.10 | 0.48 ± 0.03 | ns | <0.0001 | ns | <0.05 | |
Fasted NEFAs (mM) | 1.21 ± 0.12 §§§§ | 1.00 ± 0.08 §§§ | 1.13 ± 0.06 §§§§ | 0.99 ± 0.09 §§ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metcalfe, L.K.; Shepherd, P.R.; Smith, G.C.; Turner, N. Limited Metabolic Effect of the CREBRFR457Q Obesity Variant in Mice. Cells 2022, 11, 497. https://doi.org/10.3390/cells11030497
Metcalfe LK, Shepherd PR, Smith GC, Turner N. Limited Metabolic Effect of the CREBRFR457Q Obesity Variant in Mice. Cells. 2022; 11(3):497. https://doi.org/10.3390/cells11030497
Chicago/Turabian StyleMetcalfe, Louise K., Peter R. Shepherd, Greg C. Smith, and Nigel Turner. 2022. "Limited Metabolic Effect of the CREBRFR457Q Obesity Variant in Mice" Cells 11, no. 3: 497. https://doi.org/10.3390/cells11030497
APA StyleMetcalfe, L. K., Shepherd, P. R., Smith, G. C., & Turner, N. (2022). Limited Metabolic Effect of the CREBRFR457Q Obesity Variant in Mice. Cells, 11(3), 497. https://doi.org/10.3390/cells11030497