Next Article in Journal
Cancer Immunology: From Molecular Mechanisms to Therapeutic Opportunities
Next Article in Special Issue
Illuminating Host-Parasite Interaction at the Cellular and Subcellular Levels with Infrared Microspectroscopy
Previous Article in Journal
Effect of Withanolide A on 7-Ketocholesterol Induced Cytotoxicity in hCMEC/D3 Brain Endothelial Cells
Previous Article in Special Issue
Nano-Infrared Imaging of Primary Neurons
Article

Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Discriminates the Elderly with a Low and High Percentage of Pathogenic CD4+ T Cells

1
Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand
2
The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
3
Department of Clinical Microbiology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
4
Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
5
Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen 40002, Thailand
6
Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
*
Author to whom correspondence should be addressed.
Academic Editors: Lisa Vaccari, Hugh J. Byrne and Tomasz P. Wrobel
Cells 2022, 11(3), 458; https://doi.org/10.3390/cells11030458
Received: 24 December 2021 / Revised: 21 January 2022 / Accepted: 27 January 2022 / Published: 28 January 2022
(This article belongs to the Special Issue Cellular and Subcellular Analysis Using Vibrational Spectroscopy)
In the aging process, the presence of interleukin (IL)-17-producing CD4+CD28-NKG2D+T cells (called pathogenic CD4+ T cells) is strongly associated with inflammation and the development of various diseases. Thus, their presence needs to be monitored. The emergence of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy empowered with machine learning is a breakthrough in the field of medical diagnostics. This study aimed to discriminate between the elderly with a low percentage (LP; ≤3%) and a high percentage (HP; ≥6%) of pathogenic CD4+CD28-NKG2D+IL17+ T cells by utilizing ATR-FTIR coupled with machine learning algorithms. ATR spectra of serum, exosome, and HDL from both groups were explored in this study. Only exosome spectra in the 1700–1500 cm−1 region exhibited possible discrimination for the LP and HP groups based on principal component analysis (PCA). Furthermore, partial least square-discriminant analysis (PLS-DA) could differentiate both groups using the 1700–1500 cm−1 region of exosome ATR spectra with 64% accuracy, 69% sensitivity, and 61% specificity. To obtain better classification performance, several spectral models were then established using advanced machine learning algorithms, including J48 decision tree, support vector machine (SVM), random forest (RF), and neural network (NN). Herein, NN was considered to be the best model with an accuracy of 100%, sensitivity of 100%, and specificity of 100% using serum spectra in the region of 1800–900 cm−1. Exosome spectra in the 1700–1500 and combined 3000–2800 and 1800–900 cm−1 regions using the NN algorithm gave the same accuracy performance of 95% with a variation in sensitivity and specificity. HDL spectra with the NN algorithm also showed excellent test performance in the 1800–900 cm−1 region with 97% accuracy, 100% sensitivity, and 95% specificity. This study demonstrates that ATR-FTIR coupled with machine learning algorithms can be used to study immunosenescence. Furthermore, this approach can possibly be applied to monitor the presence of pathogenic CD4+ T cells in the elderly. Due to the limited number of samples used in this study, it is necessary to conduct a large-scale study to obtain more robust classification models and to assess the true clinical diagnostic performance. View Full-Text
Keywords: aging; attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy; interleukin (IL)-17; immunosenescence; sub-population CD4+ T cells aging; attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy; interleukin (IL)-17; immunosenescence; sub-population CD4+ T cells
Show Figures

Figure 1

MDPI and ACS Style

Praja, R.K.; Wongwattanakul, M.; Tippayawat, P.; Phoksawat, W.; Jumnainsong, A.; Sornkayasit, K.; Leelayuwat, C. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Discriminates the Elderly with a Low and High Percentage of Pathogenic CD4+ T Cells. Cells 2022, 11, 458. https://doi.org/10.3390/cells11030458

AMA Style

Praja RK, Wongwattanakul M, Tippayawat P, Phoksawat W, Jumnainsong A, Sornkayasit K, Leelayuwat C. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Discriminates the Elderly with a Low and High Percentage of Pathogenic CD4+ T Cells. Cells. 2022; 11(3):458. https://doi.org/10.3390/cells11030458

Chicago/Turabian Style

Praja, Rian K., Molin Wongwattanakul, Patcharaporn Tippayawat, Wisitsak Phoksawat, Amonrat Jumnainsong, Kanda Sornkayasit, and Chanvit Leelayuwat. 2022. "Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Discriminates the Elderly with a Low and High Percentage of Pathogenic CD4+ T Cells" Cells 11, no. 3: 458. https://doi.org/10.3390/cells11030458

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop