Mast Cells in Immune-Mediated Cholangitis and Cholangiocarcinoma
Abstract
:1. Immunobiology of Mast Cells
2. Mast Cells in the Hepatopancreaticobiliary (HPB) System
3. Mast Cells in Immune-Mediated Cholangitis
4. Immune Cholangitis Treatment Targets Mast Cells
5. Mast Cells in Cholangiocarcinoma
6. Conclusions
Funding
Conflicts of Interest
References
- Ribatti, D.; Crivellato, E. Mast cell ontogeny: An historical overview. Immunol. Lett. 2014, 159, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Ihle, J.N.; Keller, J.; Oroszlan, S.; Henderson, L.E.; Copeland, T.D.; Fitch, F.; Prystowsky, M.B.; Goldwasser, E.; Schrader, J.W.; Palaszynski, E.; et al. Biologic properties of homogeneous interleukin 3. I. Demonstration of WEHI-3 growth factor activity, mast cell growth factor activity, p cell-stimulating factor activity, colony-stimulating factor activity, and histamine-producing cell-stimulating factor activity. J. Immunol. 1983, 131, 282–287. [Google Scholar] [PubMed]
- Matsuda, H.; Kannan, Y.; Ushio, H.; Kiso, Y.; Kanemoto, T.; Suzuki, H.; Kitamura, Y. Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells. J. Exp. Med. 1991, 174, 7–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamur, M.C.; Grodzki, A.C.; Berenstein, E.H.; Hamawy, M.M.; Siraganian, R.P.; Oliver, C. Identification and characterization of undifferentiated mast cells in mouse bone marrow. Blood 2005, 105, 4282–4289. [Google Scholar] [CrossRef] [Green Version]
- Friend, D.S.; Ghildyal, N.; Austen, K.F.; Gurish, M.F.; Matsumoto, R.; Stevens, R.L. Mast cells that reside at different locations in the jejunum of mice infected with Trichinella spiralis exhibit sequential changes in their granule ultrastructure and chymase phenotype. J. Cell Biol. 1996, 135, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Shimokawa, C.; Kanaya, T.; Hachisuka, M.; Ishiwata, K.; Hisaeda, H.; Kurashima, Y.; Kiyono, H.; Yoshimoto, T.; Kaisho, T.; Ohno, H. Mast Cells Are Crucial for Induction of Group 2 Innate Lymphoid Cells and Clearance of Helminth Infections. Immunity 2017, 46, 863–874.e864. [Google Scholar] [CrossRef] [Green Version]
- Lappalainen, H.; Laine, P.; Pentikäinen, M.O.; Sajantila, A.; Kovanen, P.T. Mast cells in neovascularized human coronary plaques store and secrete basic fibroblast growth factor, a potent angiogenic mediator. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1880–1885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komi, D.E.A.; Khomtchouk, K.; Santa Maria, P.L. A Review of the Contribution of Mast Cells in Wound Healing: Involved Molecular and Cellular Mechanisms. Clin. Rev. Allergy Immunol. 2020, 58, 298–312. [Google Scholar] [CrossRef]
- Gruber, B.L.; Kew, R.R.; Jelaska, A.; Marchese, M.J.; Garlick, J.; Ren, S.; Schwartz, L.B.; Korn, J.H. Human mast cells activate fibroblasts: Tryptase is a fibrogenic factor stimulating collagen messenger ribonucleic acid synthesis and fibroblast chemotaxis. J. Immunol. 1997, 158, 2310–2317. [Google Scholar] [PubMed]
- Akers, I.A.; Parsons, M.; Hill, M.R.; Hollenberg, M.D.; Sanjar, S.; Laurent, G.J.; McAnulty, R.J. Mast cell tryptase stimulates human lung fibroblast proliferation via protease-activated receptor-2. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000, 278, L193–L201. [Google Scholar] [CrossRef]
- Murata, K.; Okudaira, M.; Akashio, K. Mast cells in human liver tissue. Increased mast cell number in relation to the components of connective tissue in the cirrhotic process. Acta Derm.-Venereol. Suppl. 1973, 73, 157–165. [Google Scholar]
- Farrell, D.J.; Hines, J.E.; Walls, A.F.; Kelly, P.J.; Bennett, M.K.; Burt, A.D. Intrahepatic mast cells in chronic liver diseases. Hepatology 1995, 22, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Koda, W.; Harada, K.; Tsuneyama, K.; Kono, N.; Sasaki, M.; Matsui, O.; Nakanuma, Y. Evidence of the participation of peribiliary mast cells in regulation of the peribiliary vascular plexus along the intrahepatic biliary tree. Lab. Investig. 2000, 80, 1007–1017. [Google Scholar] [CrossRef] [Green Version]
- Benyon, R.C. Mast cells in the liver. Clin. Exp. Allergy: J. Br. Soc. Allergy Clin. Immunol. 1999, 29, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Omori, M.; Omori, N.; Evarts, R.P.; Teramoto, T.; Thorgeirsson, S.S. Coexpression of flt-3 ligand/flt-3 and SCF/c-kit signal transduction system in bile-duct-ligated SI and W mice. Am. J. Pathol. 1997, 150, 1179–1187. [Google Scholar]
- Akiyoshi, H.; Terada, T. Mast cell, myofibroblast and nerve terminal complexes in carbon tetrachloride-induced cirrhotic rat livers. J. Hepatol. 1998, 29, 112–119. [Google Scholar] [CrossRef]
- Francis, H.; Meininger, C.J. A review of mast cells and liver disease: What have we learned? Dig. Liver Dis. 2010, 42, 529–536. [Google Scholar] [CrossRef]
- Tu, J.F.; Pan, H.Y.; Ying, X.H.; Lou, J.; Ji, J.S.; Zou, H. Mast Cells Comprise the Major of Interleukin 17-Producing Cells and Predict a Poor Prognosis in Hepatocellular Carcinoma. Medicine 2016, 95, e3220. [Google Scholar] [CrossRef]
- Hu, G.; Wang, S.; Cheng, P. Tumor-infiltrating tryptase(+) mast cells predict unfavorable clinical outcome in solid tumors. Int. J. Cancer 2018, 142, 813–821. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Zhang, B.; Li, D.; Lv, M.; Huang, C.; Shen, G.X.; Huang, B. Mast cells mobilize myeloid-derived suppressor cells and Treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model. PLoS ONE 2010, 5, e8922. [Google Scholar] [CrossRef]
- Rau, B.; Friesen, C.A.; Daniel, J.F.; Qadeer, A.; You-Li, D.; Roberts, C.C.; Holcomb, G.W., III. Gallbladder wall inflammatory cells in pediatric patients with biliary dyskinesia and cholelithiasis: A pilot study. J. Pediatric Surg. 2006, 41, 1545–1548. [Google Scholar] [CrossRef]
- Arshi, J.; Layfield, L.J.; Esebua, M. Mast cell infiltration and activation in the gallbladder wall: Implications for the pathogenesis of functional gallbladder disorder in adult patients. Ann. Diagn. Pathol. 2021, 54, 151798. [Google Scholar] [CrossRef]
- Friesen, C.A.; Neilan, N.; Daniel, J.F.; Radford, K.; Schurman, J.V.; Li, D.Y.; Andre, L.; St Peter, S.D.; Holcomb, G.W., III. Mast cell activation and clinical outcome in pediatric cholelithiasis and biliary dyskinesia. BMC Res. Notes 2011, 4, 322. [Google Scholar] [CrossRef] [Green Version]
- Mack, A.J.; Todd, J.K. A study of human gall bladder muscle in vitro. Gut 1968, 9, 546–549. [Google Scholar] [CrossRef] [Green Version]
- Esposito, I.; Friess, H.; Kappeler, A.; Shrikhande, S.; Kleeff, J.; Ramesh, H.; Zimmermann, A.; Büchler, M.W. Mast cell distribution and activation in chronic pancreatitis. Hum. Pathol. 2001, 32, 1174–1183. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.W.; Yang, S.Z.; Gao, J.; Pan, K.; Chen, J.Y.; Wang, Y.L.; Wei, L.X.; Dong, J.H. Prognostic significance of mast cell count following curative resection for pancreatic ductal adenocarcinoma. Surgery 2011, 149, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Soucek, L.; Lawlor, E.R.; Soto, D.; Shchors, K.; Swigart, L.B.; Evan, G.I. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat. Med. 2007, 13, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Esposito, I.; Menicagli, M.; Funel, N.; Bergmann, F.; Boggi, U.; Mosca, F.; Bevilacqua, G.; Campani, D. Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J. Clin. Pathol. 2004, 57, 630–636. [Google Scholar] [CrossRef] [Green Version]
- Jeffrey, G.P.; Reed, W.D.; Carrello, S.; Shilkin, K.B. Histological and immunohistochemical study of the gall bladder lesion in primary sclerosing cholangitis. Gut 1991, 32, 424–429. [Google Scholar] [CrossRef] [Green Version]
- Pfleger, L.; Halilbasic, E.; Gajdošík, M.; Benčíková, D.; Chmelík, M.; Scherer, T.; Trattnig, S.; Krebs, M.; Trauner, M.; Krššák, M. Concentration of Gallbladder Phosphatidylcholine in Cholangiopathies: A Phosphorus-31 Magnetic Resonance Spectroscopy Pilot Study. J. Magn. Reson. Imaging JMRI. [CrossRef] [PubMed]
- Lleo, A.; Leung, P.S.C.; Hirschfield, G.M.; Gershwin, E.M. The Pathogenesis of Primary Biliary Cholangitis: A Comprehensive Review. Semin. Liver Dis. 2020, 40, 34–48. [Google Scholar] [CrossRef]
- Marzorati, S.; Invernizzi, P.; Lleo, A. Making Sense of Autoantibodies in Cholestatic Liver Diseases. Clin. Liver Dis. 2016, 20, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Larson, L.; James, M.; Gossard, A. Cholestatic Liver Injury: Care of Patients With Primary Biliary Cholangitis or Primary Sclerosing Cholangitis. AACN Adv. Crit. Care 2016, 27, 441–452. [Google Scholar] [CrossRef]
- Tanaka, A.; Leung, P.S.C.; Gershwin, M.E. The genetics of primary biliary cholangitis. Curr. Opin. Gastroenterol. 2019, 35, 93–98. [Google Scholar] [CrossRef]
- Eksteen, B. The Gut-Liver Axis in Primary Sclerosing Cholangitis. Clin. Liver Dis. 2016, 20, 1–14. [Google Scholar] [CrossRef]
- Gittlen, S.D.; Schulman, E.S.; Maddrey, W.C. Raised histamine concentrations in chronic cholestatic liver disease. Gut 1990, 31, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Abe, M.; Yokoyama, Y.; Amano, H.; Matsushima, Y.; Kan, C.; Ishikawa, O. Effect of activated human mast cells and mast cell-derived mediators on proliferation, type I collagen production and glycosaminoglycans synthesis by human dermal fibroblasts. Eur. J. Dermatol. EJD 2002, 12, 340–346. [Google Scholar]
- Yamashiro, M.; Kouda, W.; Kono, N.; Tsuneyama, K.; Matsui, O.; Nakanuma, Y. Distribution of intrahepatic mast cells in various hepatobiliary disorders. An immunohistochemical study. Virchows Arch. Int. J. Pathol. 1998, 433, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, A.; Yamazaki, K.; Suzuki, K.; Sato, S. Increased portal tract infiltration of mast cells and eosinophils in primary biliary cirrhosis. Am. J. Gastroenterol. 1997, 92, 2245–2249. [Google Scholar] [PubMed]
- Satomura, K.; Yin, M.; Shimizu, S.; Kato, Y.; Nagano, T.; Komeichi, H.; Ohsuga, M.; Katsuta, Y.; Aramaki, T.; Omoto, Y. Increased chymase in livers with autoimmune disease: Colocalization with fibrosis. J. Nippon Med. Sch.=Nippon Ika Daigaku Zasshi 2003, 70, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Ishii, M.; Iwai, M.; Harada, Y.; Morikawa, T.; Okanoue, T.; Kishikawa, T.; Tsuchihashi, Y.; Hanai, K.; Arizono, N. A role of mast cells for hepatic fibrosis in primary sclerosing cholangitis. Hepatol. Res. 2005, 31, 127–131. [Google Scholar] [CrossRef]
- Tsuneyama, K.; Kono, N.; Yamashiro, M.; Kouda, W.; Sabit, A.; Sasaki, M.; Nakanuma, Y. Aberrant expression of stem cell factor on biliary epithelial cells and peribiliary infiltration of c-kit-expressing mast cells in hepatolithiasis and primary sclerosing cholangitis: A possible contribution to bile duct fibrosis. J. Pathol. 1999, 189, 609–614. [Google Scholar] [CrossRef]
- Meng, F.; Kennedy, L.; Hargrove, L.; Demieville, J.; Jones, H.; Madeka, T.; Karstens, A.; Chappell, K.; Alpini, G.; Sybenga, A.; et al. Ursodeoxycholate inhibits mast cell activation and reverses biliary injury and fibrosis in Mdr2−/− mice and human primary sclerosing cholangitis. Lab. Investig. A J. Tech. Methods Pathol. 2018, 98, 1465–1477. [Google Scholar] [CrossRef]
- Jones, H.; Hargrove, L.; Kennedy, L.; Meng, F.; Graf-Eaton, A.; Owens, J.; Alpini, G.; Johnson, C.; Bernuzzi, F.; Demieville, J.; et al. Inhibition of mast cell-secreted histamine decreases biliary proliferation and fibrosis in primary sclerosing cholangitis Mdr2−/− mice. Hepatology 2016, 64, 1202–1216. [Google Scholar] [CrossRef] [Green Version]
- Hargrove, L.; Kennedy, L.; Demieville, J.; Jones, H.; Meng, F.; DeMorrow, S.; Karstens, W.; Madeka, T.; Greene, J., Jr.; Francis, H. Bile duct ligation-induced biliary hyperplasia, hepatic injury, and fibrosis are reduced in mast cell-deficient Kit(W-sh) mice. Hepatology 2017, 65, 1991–2004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buxbaum, J.; Qian, P.; Khuu, C.; Shneider, B.L.; Daikh, D.I.; Gershwin, M.E.; Allen, P.M.; Peters, M.G. Novel model of antigen-specific induction of bile duct injury. Gastroenterology 2006, 131, 1899–1906. [Google Scholar] [CrossRef] [Green Version]
- Reyes, J.L.; Vannan, D.T.; Vo, T.; Gulamhusein, A.; Beck, P.L.; Reimer, R.A.; Eksteen, B. Neutralization of IL-15 abrogates experimental immune-mediated cholangitis in diet-induced obese mice. Sci. Rep. 2018, 8, 3127. [Google Scholar] [CrossRef] [PubMed]
- González, M.I.; Vannan, D.; Eksteen, B.; Reyes, J.L. NLRP3 receptor contributes to protection against experimental antigen-mediated cholangitis. Biosci. Rep. 2020, 40, BSR20200689. [Google Scholar] [CrossRef]
- Carotti, S.; Guarino, M.P.; Cicala, M.; Perrone, G.; Alloni, R.; Segreto, F.; Rabitti, C.; Morini, S. Effect of ursodeoxycholic acid on inflammatory infiltrate in gallbladder muscle of cholesterol gallstone patients. Neurogastroenterol. Motil. 2010, 22, 866–873, e232. [Google Scholar] [CrossRef] [PubMed]
- Işık, S.; Karaman, M.; Çilaker Micili, S.; Çağlayan-Sözmen, Ş.; Bağrıyanık, H.A.; Arıkan-Ayyıldız, Z.; Uzuner, N.; Karaman, Ö. Beneficial effects of ursodeoxycholic acid via inhibition of airway remodelling, apoptosis of airway epithelial cells, and Th2 immune response in murine model of chronic asthma. Allergol. Immunopathol. 2017, 45, 339–349. [Google Scholar] [CrossRef]
- Subramanian, S.; Iles, T.; Ikramuddin, S.; Steer, C.J. Merit of an Ursodeoxycholic Acid Clinical Trial in COVID-19 Patients. Vaccines 2020, 8, 320. [Google Scholar] [CrossRef]
- Abdulrab, S.; Al-Maweri, S.; Halboub, E. Ursodeoxycholic acid as a candidate therapeutic to alleviate and/or prevent COVID-19-associated cytokine storm. Med. Hypotheses 2020, 143, 109897. [Google Scholar] [CrossRef]
- Kendall, T.; Verheij, J.; Gaudio, E.; Evert, M.; Guido, M.; Goeppert, B.; Carpino, G. Anatomical, histomorphological and molecular classification of cholangiocarcinoma. Liver Int. 2019, 39, 7–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.A.; Tavolari, S.; Brandi, G. Cholangiocarcinoma: Epidemiology and risk factors. Liver Int. 2019, 39, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Prueksapanich, P.; Piyachaturawat, P.; Aumpansub, P.; Ridtitid, W.; Chaiteerakij, R.; Rerknimitr, R. Liver Fluke-Associated Biliary Tract Cancer. Gut Liver 2018, 12, 236–245. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.; Huynh, V.; Hargrove, L.; Kennedy, L.; Graf-Eaton, A.; Owens, J.; Trzeciakowski, J.P.; Hodges, K.; DeMorrow, S.; Han, Y.; et al. Inhibition of Mast Cell-Derived Histamine Decreases Human Cholangiocarcinoma Growth and Differentiation via c-Kit/Stem Cell Factor-Dependent Signaling. Am. J. Pathol. 2016, 186, 123–133. [Google Scholar] [CrossRef]
- Terada, T.; Matsunaga, Y. Increased mast cells in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J. Hepatol. 2000, 33, 961–966. [Google Scholar] [CrossRef]
- Goeppert, B.; Frauenschuh, L.; Zucknick, M.; Stenzinger, A.; Andrulis, M.; Klauschen, F.; Joehrens, K.; Warth, A.; Renner, M.; Mehrabi, A.; et al. Prognostic impact of tumour-infiltrating immune cells on biliary tract cancer. Br. J. Cancer 2013, 109, 2665–2674. [Google Scholar] [CrossRef] [Green Version]
- Bo, X.; Wang, J.; Suo, T.; Ni, X.; Liu, H.; Shen, S.; Li, M.; Wang, Y.; Liu, H.; Xu, J. Tumor-infiltrating mast cells predict prognosis and gemcitabine-based adjuvant chemotherapeutic benefit in biliary tract cancer patients. BMC Cancer 2018, 18, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Bo, X.; Wang, C.; Xin, Y.; Nan, L.; Luo, R.; Chen, L.; Shi, X.; Suo, T.; Ni, X.; et al. Low immune index correlates with favorable prognosis but with reduced benefit from chemotherapy in gallbladder cancer. Cancer Sci. 2020, 111, 219–228. [Google Scholar] [CrossRef]
- Kennedy, L.; Hargrove, L.; Demieville, J.; Karstens, W.; Jones, H.; DeMorrow, S.; Meng, F.; Invernizzi, P.; Bernuzzi, F.; Alpini, G.; et al. Blocking H1/H2 histamine receptors inhibits damage/fibrosis in Mdr2−/− mice and human cholangiocarcinoma tumorigenesis. Hepatology 2018, 68, 1042–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varricchi, G.; de Paulis, A.; Marone, G.; Galli, S.J. Future Needs in Mast Cell Biology. Int. J. Mol. Sci. 2019, 20, 4397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Host/Model | MC subtype | Location | Disease outcome | Ref. |
---|---|---|---|---|
Human PBC | Tryptase + | Portal tracts | N.D. | [39] |
Human PBC | Tryptase + | Hepatic lobules with no significant increase Significant increase in fibrotic small portal tracts | Putative fibrosis promoters | [38] |
Human PBC | Chymase + | Fibrotic portal areas | N.D. | [40] |
Human PSC | Tryptase + | Hepatic lobules with no significant increase Significant increase in fibrotic small portal tracts | Putative fibrosis promoters | [38] |
Human PSC | Tryptase+ | Bile ducts | Fibroplasia and inflammation | [42] |
Human PSC | Tryptase+ | Bile ducts | Bile duct obstruction | [43] |
Mouse PSC (Mdr2−/− model) | mMCP-1 | Bile ducts | Fibrosis and biliary proliferation | [43] |
Mouse PSC (Mdr2−/− model) | Chymase+ | Bile ducts | Hepatic fibrosis | [44] |
Host/Model | MC subtype | Location | Disease outcome | Ref. |
---|---|---|---|---|
Human iCCA/eCCA | CD117 (c kit)+ | Tumor microenvironment | Not significant role as predictor | [58] |
Human eCCA (pCCA and dCCA) | Tryptase+ | Tumor stroma | Tumor MCs correlated with favorable prognosis and improved response to gemcitabine therapy | [59] |
Human iCCA | Tryptase+ and Tryptase+ Chymase+ | Tumor stroma | N.D. | [60] |
Human CCA | N.D. | N.D. | Inhibition of histamine receptor reduced BECs proliferation | [61] |
Human CCA | c-kit+, Tryptase+ and Chymase+ | Tumor stroma | N.D. | [56] |
Mouse CCA | Tryptase+ and Chymase+ | Tumor stroma | MCs targeting with cromolyn sodium reduced tumor size and genes associated to EMT | [56] |
Mouse CCA | Toluidine stain+ | Tumor stroma | Histamine receptor blockade reduced tumor size | [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, M.I.; Vannan, D.T.; Eksteen, B.; Flores-Sotelo, I.; Reyes, J.L. Mast Cells in Immune-Mediated Cholangitis and Cholangiocarcinoma. Cells 2022, 11, 375. https://doi.org/10.3390/cells11030375
González MI, Vannan DT, Eksteen B, Flores-Sotelo I, Reyes JL. Mast Cells in Immune-Mediated Cholangitis and Cholangiocarcinoma. Cells. 2022; 11(3):375. https://doi.org/10.3390/cells11030375
Chicago/Turabian StyleGonzález, Marisol I., Danielle T. Vannan, Bertus Eksteen, Irán Flores-Sotelo, and José Luis Reyes. 2022. "Mast Cells in Immune-Mediated Cholangitis and Cholangiocarcinoma" Cells 11, no. 3: 375. https://doi.org/10.3390/cells11030375