Coordination of LMO7 with FAK Signaling Sustains Epithelial Integrity in Renal Epithelia Exposed to Osmotic Pressure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antibodies, Chemial Reagents, and Equipment
2.2. Animal Care and Experiments
2.3. Biopsies Harvest, Specimen Preparation, Histochemical, and Immunohistochemical Staining
2.4. Cell and Epithelial Sheet Culture
2.5. Renal Tubule Cell Primary Culture
2.6. LMO7 Depletion in NRK-52E Cell
2.7. Immunofluorescence Imaging
2.8. Immunoblot
2.9. Quantification in the Fluorescent Imaging
2.10. Statistical Analysis
3. Results
3.1. NRK-52E Cells Derived Secretome Profiling
3.2. LMO Is Present in Renal Tubules in Mouse Kidney
3.3. LMO7 Associates with Cortical Stress Fibers in Epithelial Sheet Cells
3.4. NRK-52E Epithelial Sheet with LMO7 Depletion Is Susceptible to Epithelial Integrity Loss by Osmotic Stress
3.5. Hypertonic Induction Results in FAK Activation in NRK-52E Cell Epithelial Sheet
3.6. FAK Inhibition Results in Fine Cortical Stress Fiber Present in Cell Periphery and Attenuates LMO7 Association with Peripheral Stress Fibers
3.7. LMO7 Depletions Result in Excesses FAK Phosphorylation at Focal Adhesion and Epithelial Integrity Loss in Cells Confronting Osmotic Disturbance
3.8. Role of FAK in Protecting Renal Epithelial Cell from Hyperosmotic Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dantzler, W.H.; Layton, A.T.; Layton, H.E.; Pannabecker, T.L. Urine-concentrating mechanism in the inner medulla: Function of the thin limbs of the loops of Henle. Clin. J. Am. Soc. Nephrol. 2014, 9, 1781–1789. [Google Scholar] [CrossRef] [Green Version]
- Hara, M.; Minami, Y.; Ohashi, M.; Tsuchiya, Y.; Kusaba, T.; Tamagaki, K.; Koike, N.; Umemura, Y.; Inokawa, H.; Yagita, K. Robust circadian clock oscillation and osmotic rhythms in inner medulla reflecting cortico-medullary osmotic gradient rhythm in rodent kidney. Sci. Rep. 2017, 7, 7306. [Google Scholar] [CrossRef] [Green Version]
- Di Ciano, C.; Nie, Z.; Szaszi, K.; Lewis, A.; Uruno, T.; Zhan, X.; Rotstein, O.D.; Mak, A.; Kapus, A. Osmotic stress-induced remodeling of the cortical cytoskeleton. Am. J. Physiol. Cell Physiol. 2002, 283, C850–C865. [Google Scholar] [CrossRef] [Green Version]
- Roffay, C.; Molinard, G.; Kim, K.; Urbanska, M.; Andrade, V.; Barbarasa, V.; Nowak, P.; Mercier, V.; Garcia-Calvo, J.; Matile, S.; et al. Passive coupling of membrane tension and cell volume during active response of cells to osmosis. Proc. Natl. Acad. Sci. USA 2021, 118, e2103228118. [Google Scholar] [CrossRef]
- Romero, S.; Le Clainche, C.; Gautreau, A.M. Actin polymerization downstream of integrins: Signaling pathways and mechanotransduction. Biochem. J. 2020, 477, 1–21. [Google Scholar] [CrossRef]
- Guo, M.; Pegoraro, A.F.; Mao, A.; Zhou, E.H.; Arany, P.R.; Han, Y.; Burnette, D.T.; Jensen, M.H.; Kasza, K.E.; Moore, J.R.; et al. Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proc. Natl. Acad. Sci. USA 2017, 114, E8618–E8627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, K.; Morishita, K.; Zhou, X.; Shiizaki, S.; Uchiyama, Y.; Koike, M.; Naguro, I.; Ichijo, H. Cells recognize osmotic stress through liquid-liquid phase separation lubricated with poly(ADP-ribose). Nat. Commun. 2021, 12, 1353. [Google Scholar] [CrossRef] [PubMed]
- Pietuch, A.; Bruckner, B.R.; Janshoff, A. Membrane tension homeostasis of epithelial cells through surface area regulation in response to osmotic stress. Biochim. Biophys. Acta 2013, 1833, 712–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokuda, S.; Yu, A.S.L. Regulation of Epithelial Cell Functions by the Osmolality and Hydrostatic Pressure Gradients: A Possible Role of the Tight Junction as a Sensor. Int. J. Mol. Sci. 2019, 20, 3513. [Google Scholar] [CrossRef] [Green Version]
- Ferrier, J. Osmosis and intermolecular force. J. Theor. Biol. 1984, 106, 449–453. [Google Scholar] [CrossRef]
- Knepper, M.A. Measurement of osmolality in kidney slices using vapor pressure osmometry. Kidney Int. 1982, 21, 653–655. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wexler, A.S. The effects of collecting duct active NaCl reabsorption and inner medulla anatomy on renal concentrating mechanism. Am. J. Physiol. 1996, 270, F900–F911. [Google Scholar] [CrossRef]
- Tomakidi, P.; Schulz, S.; Proksch, S.; Weber, W.; Steinberg, T. Focal adhesion kinase (FAK) perspectives in mechanobiology: Implications for cell behaviour. Cell Tissue Res. 2014, 357, 515–526. [Google Scholar] [CrossRef]
- Rasmussen, L.J.; Muller, H.S.; Jorgensen, B.; Pedersen, S.F.; Hoffmann, E.K. Osmotic shrinkage elicits FAK- and Src phosphorylation and Src-dependent NKCC1 activation in NIH3T3 cells. Am. J. Physiol. Cell Physiol. 2015, 308, C101–C110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galbraith, C.G.; Yamada, K.M.; Galbraith, J.A. Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 2007, 315, 992–995. [Google Scholar] [CrossRef] [Green Version]
- Bae, Y.H.; Mui, K.L.; Hsu, B.Y.; Liu, S.L.; Cretu, A.; Razinia, Z.; Xu, T.; Pure, E.; Assoian, R.K. A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling. Sci. Signal. 2014, 7, ra57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burridge, K.; Chrzanowska-Wodnicka, M. Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 1996, 12, 463–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, L.M.; Jensen, C.C.; Chaturvedi, A.; Yoshigi, M.; Beckerle, M.C. Stretch-induced actin remodeling requires targeting of zyxin to stress fibers and recruitment of actin regulators. Mol. Biol. Cell 2012, 23, 1846–1859. [Google Scholar] [CrossRef]
- Wong, V.W.; Rustad, K.C.; Akaishi, S.; Sorkin, M.; Glotzbach, J.P.; Januszyk, M.; Nelson, E.R.; Levi, K.; Paterno, J.; Vial, I.N.; et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat. Med. 2011, 18, 148–152. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Togawa, A.; Soda, K.; Zhang, J.; Lee, S.; Ma, M.; Yu, Z.; Ardito, T.; Czyzyk, J.; Diggs, L.; et al. Inhibition of podocyte FAK protects against proteinuria and foot process effacement. J. Am. Soc. Nephrol. 2010, 21, 1145–1156. [Google Scholar] [CrossRef]
- He, J.; Zhang, S.; Qiu, Z.; Li, X.; Huang, H.; Jin, W.; Xu, Y.; Shao, G.; Wang, L.; Meng, J.; et al. Inhibiting Focal Adhesion Kinase Ameliorates Cyst Development in Polycystin-1-Deficient Polycystic Kidney Disease in Animal Model. J. Am. Soc. Nephrol. 2021, 32, 2159–2174. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Alderliesten, M.C.; Stokman, G.; Pennekamp, P.; Bonventre, J.V.; de Heer, E.; Ichimura, T.; de Graauw, M.; Price, L.S.; van de Water, B. Focal adhesion kinase signaling mediates acute renal injury induced by ischemia/reperfusion. Am. J. Pathol. 2011, 179, 2766–2778. [Google Scholar] [CrossRef]
- Neuhofer, W.; Kuper, C.; Lichtnekert, J.; Holzapfel, K.; Rupanagudi, K.V.; Fraek, M.L.; Bartels, H.; Beck, F.X. Focal adhesion kinase regulates the activity of the osmosensitive transcription factor TonEBP/NFAT5 under hypertonic conditions. Front. Physiol. 2014, 5, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lunn, J.A.; Rozengurt, E. Hyperosmotic stress induces rapid focal adhesion kinase phosphorylation at tyrosines 397 and 577. Role of Src family kinases and Rho family GTPases. J. Biol. Chem. 2004, 279, 45266–45278. [Google Scholar] [CrossRef] [Green Version]
- Izumi, Y.; Yang, W.; Zhu, J.; Burg, M.B.; Ferraris, J.D. RNA-Seq analysis of high NaCl-induced gene expression. Physiol. Genom. 2015, 47, 500–513. [Google Scholar] [CrossRef] [Green Version]
- Farabaugh, K.T.; Krokowski, D.; Guan, B.J.; Gao, Z.; Gao, X.H.; Wu, J.; Jobava, R.; Ray, G.; de Jesus, T.J.; Bianchi, M.G.; et al. PACT-mediated PKR activation acts as a hyperosmotic stress intensity sensor weakening osmoadaptation and enhancing inflammation. Elife 2020, 9, e52241. [Google Scholar] [CrossRef]
- Ooshio, T.; Irie, K.; Morimoto, K.; Fukuhara, A.; Imai, T.; Takai, Y. Involvement of LMO7 in the association of two cell-cell adhesion molecules, nectin and E-cadherin, through afadin and alpha-actinin in epithelial cells. J. Biol. Chem. 2004, 279, 31365–31373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beati, H.; Peek, I.; Hordowska, P.; Honemann-Capito, M.; Glashauser, J.; Renschler, F.A.; Kakanj, P.; Ramrath, A.; Leptin, M.; Luschnig, S.; et al. The adherens junction-associated LIM domain protein Smallish regulates epithelial morphogenesis. J. Cell Biol. 2018, 217, 1079–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Possidonio, A.C.; Soares, C.P.; Fontenele, M.; Morris, E.R.; Mouly, V.; Costa, M.L.; Mermelstein, C. Knockdown of Lmo7 inhibits chick myogenesis. FEBS Lett. 2016, 590, 317–329. [Google Scholar] [CrossRef] [Green Version]
- Mull, A.; Kim, G.; Holaska, J.M. LMO7-null mice exhibit phenotypes consistent with emery-dreifuss muscular dystrophy. Muscle Nerve 2015, 51, 222–228. [Google Scholar] [CrossRef]
- Matsuda, M.; Chu, C.W.; Sokol, S.Y. Lmo7 recruits myosin II heavy chain to regulate actomyosin contractility and apical domain size in Xenopus ectoderm. Development 2022, 149, dev200236. [Google Scholar] [CrossRef] [PubMed]
- Grgic, I.; Krautzberger, A.M.; Hofmeister, A.; Lalli, M.; DiRocco, D.P.; Fleig, S.V.; Liu, J.; Duffield, J.S.; McMahon, A.P.; Aronow, B.; et al. Translational profiles of medullary myofibroblasts during kidney fibrosis. J. Am. Soc. Nephrol. 2014, 25, 1979–1990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grgic, I.; Hofmeister, A.F.; Genovese, G.; Bernhardy, A.J.; Sun, H.; Maarouf, O.H.; Bijol, V.; Pollak, M.R.; Humphreys, B.D. Discovery of new glomerular disease-relevant genes by translational profiling of podocytes in vivo. Kidney Int. 2014, 86, 1116–1129. [Google Scholar] [CrossRef] [Green Version]
- Faust, D.; Geelhaar, A.; Eisermann, B.; Eichhorst, J.; Wiesner, B.; Rosenthal, W.; Klussmann, E. Culturing primary rat inner medullary collecting duct cells. J. Vis. Exp. 2013, 76, e50366. [Google Scholar] [CrossRef] [Green Version]
- Yamada, A.; Irie, K.; Fukuhara, A.; Ooshio, T.; Takai, Y. Requirement of the actin cytoskeleton for the association of nectins with other cell adhesion molecules at adherens and tight junctions in MDCK cells. Genes Cells 2004, 9, 843–855. [Google Scholar] [CrossRef]
- Du, T.T.; Dewey, J.B.; Wagner, E.L.; Cui, R.; Heo, J.; Park, J.J.; Francis, S.P.; Perez-Reyes, E.; Guillot, S.J.; Sherman, N.E.; et al. LMO7 deficiency reveals the significance of the cuticular plate for hearing function. Nat. Commun. 2019, 10, 1117. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Gay, J.M.; Nunley, H.; Spencer, M.; di Pietro, F.; Guirao, B.; Bosveld, F.; Markova, O.; Gaugue, I.; Pelletier, S.; Lubensky, D.K.; et al. Apical stress fibers enable a scaling between cell mechanical response and area in epithelial tissue. Science 2020, 370, eabb2169. [Google Scholar] [CrossRef]
- Klingbeil, C.K.; Hauck, C.R.; Hsia, D.A.; Jones, K.C.; Reider, S.R.; Schlaepfer, D.D. Targeting Pyk2 to beta 1-integrin-containing focal contacts rescues fibronectin-stimulated signaling and haptotactic motility defects of focal adhesion kinase-null cells. J. Cell Biol. 2001, 152, 97–110. [Google Scholar] [CrossRef]
- Lee, F.Y.; Zhen, Y.Y.; Yuen, C.M.; Fan, R.; Chen, Y.T.; Sheu, J.J.; Chen, Y.L.; Wang, C.J.; Sun, C.K.; Yip, H.K. The mTOR-FAK mechanotransduction signaling axis for focal adhesion maturation and cell proliferation. Am. J. Transl. Res. 2017, 9, 1603–1617. [Google Scholar]
- Millan, J.; Cain, R.J.; Reglero-Real, N.; Bigarella, C.; Marcos-Ramiro, B.; Fernandez-Martin, L.; Correas, I.; Ridley, A.J. Adherens junctions connect stress fibres between adjacent endothelial cells. BMC Biol. 2010, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Semba, S.; Khan, R.I.; Bochimoto, H.; Watanabe, T.; Fujiya, M.; Kohgo, Y.; Liu, Y.; Taniguchi, T. Focal adhesion kinase regulates intestinal epithelial barrier function via redistribution of tight junction. Biochim. Biophys. Acta 2013, 1832, 151–159. [Google Scholar] [CrossRef]
- Quadri, S.K.; Bhattacharjee, M.; Parthasarathi, K.; Tanita, T.; Bhattacharya, J. Endothelial barrier strengthening by activation of focal adhesion kinase. J. Biol. Chem. 2003, 278, 13342–13349. [Google Scholar] [CrossRef] [Green Version]
- Marchiando, A.M.; Graham, W.V.; Turner, J.R. Epithelial barriers in homeostasis and disease. Annu. Rev. Pathol. 2010, 5, 119–144. [Google Scholar] [CrossRef]
- Choudhury, M.I.; Li, Y.; Mistriotis, P.; Vasconcelos, A.C.N.; Dixon, E.E.; Yang, J.; Benson, M.; Maity, D.; Walker, R.; Martin, L.; et al. Kidney epithelial cells are active mechano-biological fluid pumps. Nat. Commun. 2022, 13, 2317. [Google Scholar] [CrossRef] [PubMed]
- Hinze, C.; Ruffert, J.; Walentin, K.; Himmerkus, N.; Nikpey, E.; Tenstad, O.; Wiig, H.; Mutig, K.; Yurtdas, Z.Y.; Klein, J.D.; et al. GRHL2 Is Required for Collecting Duct Epithelial Barrier Function and Renal Osmoregulation. J. Am. Soc. Nephrol. 2018, 29, 857–868. [Google Scholar] [CrossRef] [Green Version]
- Janacek, K.; Sigler, K. Osmosis: Membranes impermeable and permeable for solutes, mechanism of osmosis across porous membranes. Physiol. Res. 2000, 49, 191–195. [Google Scholar]
- Kiil, F. Mechanism of osmosis. Kidney Int. 1982, 21, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Knepper, M.A.; Chou, C.L.; Pisitkun, T. Large-scale phosphotyrosine proteomic profiling of rat renal collecting duct epithelium reveals predominance of proteins involved in cell polarity determination. Am. J. Physiol. Cell Physiol. 2012, 302, C27–C45. [Google Scholar] [CrossRef] [Green Version]
- Hsia, D.A.; Mitra, S.K.; Hauck, C.R.; Streblow, D.N.; Nelson, J.A.; Ilic, D.; Huang, S.; Li, E.; Nemerow, G.R.; Leng, J.; et al. Differential regulation of cell motility and invasion by FAK. J. Cell Biol. 2003, 160, 753–767. [Google Scholar] [CrossRef]
- Jiang, W.; Cai, F.; Xu, H.; Lu, Y.; Chen, J.; Liu, J.; Cao, N.; Zhang, X.; Chen, X.; Huang, Q.; et al. Extracellular signal regulated kinase 5 promotes cell migration, invasion and lung metastasis in a FAK-dependent manner. Protein Cell 2020, 11, 825–845. [Google Scholar] [CrossRef] [Green Version]
- Zouq, N.K.; Keeble, J.A.; Lindsay, J.; Valentijn, A.J.; Zhang, L.; Mills, D.; Turner, C.E.; Streuli, C.H.; Gilmore, A.P. FAK engages multiple pathways to maintain survival of fibroblasts and epithelia: Differential roles for paxillin and p130Cas. J. Cell Sci. 2009, 122, 357–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, P.; Lu, Y. Born to Run? Diverse Modes of Epithelial Migration. Front. Cell Dev. Biol. 2021, 9, 704939. [Google Scholar] [CrossRef]
- Hidalgo-Carcedo, C.; Hooper, S.; Chaudhry, S.I.; Williamson, P.; Harrington, K.; Leitinger, B.; Sahai, E. Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat. Cell Biol. 2011, 13, 49–58. [Google Scholar] [CrossRef] [PubMed]
Gene Symbol | Protein Description | Function Description | Score (PM) | Score (CK) |
---|---|---|---|---|
CTNNA1 | α-Catenin | Associated with cadherin located on plasma membrane | 5 | 5 |
CAVIN1 | Caveolae associated protein 1 | Caveolae formation and organization | 5 | 2 |
CLTA | Clathrin light chain | Receptor-mediated endocytosis | 4 | 4 |
LASP1 | LIM and SH3 protein | Regulation on actin dynamics | 3 | 4 |
LIMAI1 | LIM domain and actin binding 1 | Actin binding protein involved in actin dynamics | 5 | 5 |
LMO7 | LIM domain only 7 | Actin binding protein associated with cell–cell junction complex | 4 | 3 |
MRC2 | Mannose receptor C type 2 | Playing role as endocytotic lectin receptor | 4 | 2 |
PICALM | Phosphatidylinositol binding clathrin assembly protein | Playing role in clathrin-mediated endocytosis | 5 | 2 |
SPTA | ⍺-spectrin | Forming cytoskeletal network-associated with membrane | 5 | 5 |
STIP1 | Stress induced phosphoprotein 1 | Acting as a co-chaperone HSP90AA1 | 3 | 2 |
TJP1 | ZO-1, Tight-junction protein 1 | Linking to tight junction transmembrane proteins | 5 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhen, Y.-Y.; Wu, C.-H.; Chen, H.-C.; Chang, E.E.; Lee, J.-J.; Chen, W.-Y.; Chang, J.-M.; Tseng, P.-Y.; Wang, Y.-F.; Hung, C.-C. Coordination of LMO7 with FAK Signaling Sustains Epithelial Integrity in Renal Epithelia Exposed to Osmotic Pressure. Cells 2022, 11, 3805. https://doi.org/10.3390/cells11233805
Zhen Y-Y, Wu C-H, Chen H-C, Chang EE, Lee J-J, Chen W-Y, Chang J-M, Tseng P-Y, Wang Y-F, Hung C-C. Coordination of LMO7 with FAK Signaling Sustains Epithelial Integrity in Renal Epithelia Exposed to Osmotic Pressure. Cells. 2022; 11(23):3805. https://doi.org/10.3390/cells11233805
Chicago/Turabian StyleZhen, Yen-Yi, Chien-Hsing Wu, Hung-Chun Chen, Eddy Essen Chang, Jia-Jung Lee, Wei-Yu Chen, Jer-Ming Chang, Pei-Yun Tseng, Yue-Fang Wang, and Chi-Chih Hung. 2022. "Coordination of LMO7 with FAK Signaling Sustains Epithelial Integrity in Renal Epithelia Exposed to Osmotic Pressure" Cells 11, no. 23: 3805. https://doi.org/10.3390/cells11233805
APA StyleZhen, Y.-Y., Wu, C.-H., Chen, H.-C., Chang, E. E., Lee, J.-J., Chen, W.-Y., Chang, J.-M., Tseng, P.-Y., Wang, Y.-F., & Hung, C.-C. (2022). Coordination of LMO7 with FAK Signaling Sustains Epithelial Integrity in Renal Epithelia Exposed to Osmotic Pressure. Cells, 11(23), 3805. https://doi.org/10.3390/cells11233805