Epstein-Barr Virus-Induced Genes and Endogenous Retroviruses in Immortalized B Cells from Patients with Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines and Cell Culture
2.2. Flow Cytometry
2.3. RNA Extraction, cDNA Generation, and Quantitative Real-Time PCR
2.4. RNAseq Analysis
2.5. Statistics
3. Results
3.1. The GAG Regions of HERV-K (HML-2) Loci Are Up-Regulated by EBV-Triggered Immortalization
3.2. Transcription of EBNA-1 from the Lytic Promoter Is Negatively Correlated with Age of PBMC Donors
3.3. Differential Expression Pattern in Human Transcriptome in LCL from MS-Derived Samples and Controls
3.4. Up-Regulation of Distinct HERV-K Loci and ERV3-1 in LCL from MS-Derived Samples
3.5. Discovery of Gene Panels for MS and Relapse Risk Using RNAseq Data from LCL
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tischendorf, P.; Shramek, G.J.; Balagtas, R.C.; Deinhardt, F.; Knospe, W.H.; Noble, G.R.; Maynard, J.E. Development and persistence of immunity to Epstein-Barr virus in man. J. Infect. Dis. 1970, 122, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Warner, H.B.; Carp, R.I. Multiple sclerosis and Epstein-Barr virus. Lancet 1981, 2, 1290. [Google Scholar] [CrossRef]
- Flavell, K.J.; Murray, P.G. Hodgkin’s disease and the Epstein-Barr virus. Mol. Pathol. 2000, 53, 262–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brady, G.; MacArthur, G.J.; Farrell, P.J. Epstein-Barr virus and Burkitt lymphoma. J. Clin. Pathol. 2007, 60, 1397–1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munch, M.; Riisom, K.; Christensen, T.; Møller-Larsen, A.; Haahr, S. The significance of Epstein-Barr virus seropositivity in multiple sclerosis patients? Acta Neurol. Scand. 1998, 97, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, S.; Kennedy, J.; Tellier, R.; Stephens, D.; Banwell, B. Epstein-Barr virus in pediatric multiple sclerosis. JAMA 2004, 291, 1875–1879. [Google Scholar] [CrossRef] [Green Version]
- Pohl, D.; Krone, B.; Rostasy, K.; Kahler, E.; Brunner, E.; Lehnert, M.; Wagner, H.J.; Gärtner, J.; Hanefeld, F. High seroprevalence of Epstein-Barr virus in children with multiple sclerosis. Neurology 2006, 67, 2063–2065. [Google Scholar] [CrossRef]
- Pandit, L.; Malli, C.; D’Cunha, A.; Shetty, R.; Singhal, B. Association of Epstein-Barr virus infection with multiple sclerosis in India. J. Neurol. Sci. 2013, 325, 86–89. [Google Scholar] [CrossRef]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef]
- Haahr, S.; Höllsberg, P. Multiple sclerosis is linked to Epstein-Barr virus infection. Rev. Med. Virol. 2006, 16, 297–310. [Google Scholar] [CrossRef]
- Ascherio, A.; Munger, K.L. Environmental risk factors for multiple sclerosis. Part I: The role of infection. Ann. Neurol. 2007, 61, 288–299. [Google Scholar] [CrossRef]
- Goldacre, M.J.; Wotton, C.J.; Seagroatt, V.; Yeates, D. Multiple sclerosis after infectious mononucleosis: Record linkage study. J. Epidemiol. Community Health 2004, 58, 1032–1035. [Google Scholar] [CrossRef] [Green Version]
- Haahr, S.; Plesner, A.M.; Vestergaard, B.F.; Höllsberg, P. A role of late Epstein-Barr virus infection in multiple sclerosis. Acta Neurol. Scand. 2004, 109, 270–275. [Google Scholar] [CrossRef]
- Thacker, E.L.; Mirzaei, F.; Ascherio, A. Infectious mononucleosis and risk for multiple sclerosis: A meta-analysis. Ann. Neurol. 2006, 59, 499–503. [Google Scholar] [CrossRef]
- Sheik-Ali, S. Infectious mononucleosis and multiple sclerosis—Updated review on associated risk. Mult. Scler. Relat. Disord. 2017, 14, 56–59. [Google Scholar] [CrossRef]
- Bar-Or, A.; Pender, M.P.; Khanna, R.; Steinman, L.; Hartung, H.P.; Maniar, T.; Croze, E.; Aftab, B.T.; Giovannoni, G.; Joshi, M.A. Epstein-Barr Virus in multiple sclerosis: Theory and emerging immunotherapies. Trends Mol. Med. 2020, 26, 296–310. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, B.M.; Giovannoni, G.; Cuzick, J.; Dobson, R. Systematic review and meta-analysis of the association between Epstein-Barr virus, multiple sclerosis and other risk factors. Mult. Scler. 2020, 26, 1281–1297. [Google Scholar] [CrossRef]
- Gröger, V.; Emmer, A.; Staege, M.S.; Cynis, H. Endogenous retroviruses in nervous system disorders. Pharmaceuticals 2021, 14, 70. [Google Scholar] [CrossRef]
- Haahr, S.; Sommerlund, M.; Møller-Larsen, A.; Nielsen, R.; Hansen, H.J. Just another dubious virus in cells from a patient with multiple sclerosis? Lancet 1991, 337, 863–864. [Google Scholar] [CrossRef]
- De Parseval, N.; Heidmann, T. Human endogenous retroviruses: From infectious elements to human genes. Cytogenet. Genome Res. 2005, 110, 318–332. [Google Scholar] [CrossRef]
- Conrad, B.; Weissmahr, R.N.; Böni, J.; Arcari, R.; Schüpbach, J.; Mach, B. A human endogenous retroviral superantigen as candidate autoimmune gene in type I diabetes. Cell 1997, 90, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Stauffer, Y.; Marguerat, S.; Meylan, F.; Ucla, C.; Sutkowski, N.; Huber, B.; Pelet, T.; Conrad, B. Interferon-alpha-induced endogenous superantigen. A model linking environment and autoimmunity. Immunity 2001, 15, 591–601. [Google Scholar] [CrossRef] [Green Version]
- Emmer, A.; Staege, M.S.; Kornhuber, M.E. The retrovirus/superantigen hypothesis of multiple sclerosis. Cell. Mol. Neurobiol. 2014, 34, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Sutkowski, N.; Conrad, B.; Thorley-Lawson, D.A.; Huber, B.T. Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity 2001, 15, 579–589. [Google Scholar] [CrossRef] [Green Version]
- Bergallo, M.; Pinon, M.; Galliano, I.; Montanari, P.; Daprà, V.; Gambarino, S.; Calvo, P.L. Epstein Barr virus induces HERV-K and HERV-W expression in pediatrics liver transplant recipients? Minerva Pediatr. 2020, 72, 145–148. [Google Scholar] [CrossRef]
- Küppers, R. B cells under influence: Transformation of B cells by Epstein-Barr virus. Nat. Rev. Immunol. 2003, 3, 801–812. [Google Scholar] [CrossRef]
- Thorley-Lawson, D.A.; Gross, A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N. Engl. J. Med. 2004, 350, 1328–1337. [Google Scholar] [CrossRef]
- Lassmann, H. Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front. Immunol. 2019, 9, 3116. [Google Scholar] [CrossRef] [Green Version]
- Greenfield, A.L.; Hauser, S.L. B-cell Therapy for multiple sclerosis: Entering an era. Ann. Neurol. 2018, 83, 13–26. [Google Scholar] [CrossRef]
- Dolei, A. The aliens inside us: HERV-W endogenous retroviruses and multiple sclerosis. Mult. Scler. 2018, 24, 42–47. [Google Scholar] [CrossRef]
- Pérez-Pérez, S.; Domínguez-Mozo, M.I.; García-Martínez, M.Á.; Ballester-González, R.; Nieto-Gañán, I.; Arroyo, R.; Alvarez-Lafuente, R. Epstein-Barr virus load correlates with multiple sclerosis-associated retrovirus envelope expression. Biomedicines 2022, 10, 387. [Google Scholar] [CrossRef]
- Ilse, V.; Scholz, R.; Wermann, M.; Naumann, M.; Staege, M.S.; Roßner, S.; Cynis, H. Immunogenicity of the envelope surface unit of human endogenous retrovirus K18 in mice. Int. J. Mol. Sci. 2022, 23, 8330. [Google Scholar] [CrossRef]
- Lear, A.L.; Rowe, M.; Kurilla, M.G.; Lee, S.; Henderson, S.; Kieff, E.; Rickinson, A.B. The Epstein-Barr virus (EBV) nuclear antigen 1 BamHI F promoter is activated on entry of EBV-transformed B cells into the lytic cycle. J. Virol. 1992, 66, 7461–7468. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, B.C.; Strominger, J.L.; Speck, S.H. The Epstein-Barr virus BamHI F promoter is an early lytic promoter: Lack of correlation with EBNA 1 gene transcription in group 1 Burkitt’s lymphoma cell lines. J. Virology 1995, 69, 5039–5047. [Google Scholar] [CrossRef] [Green Version]
- Brink, A.A.; Meijer, C.J.; Nicholls, J.M.; Middeldorp, J.M.; van den Brule, A.J. Activity of the EBNA1 promoter associated with lytic replication (Fp) in Epstein-Barr virus associated disorders. Mol. Pathol. 2001, 54, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Pajic, A.; Polack, A.; Staege, M.S.; Spitkovsky, D.; Baier, B.; Bornkamm, G.W.; Laux, G. Elevated expression of c-myc in lymphoblastoid cells does not support an Epstein-Barr virus latency III-to-I switch. J. Gen. Virol. 2001, 82, 3051–3055. [Google Scholar] [CrossRef] [Green Version]
- Foell, J.L.; Volkmer, I.; Giersberg, C.; Kornhuber, M.; Horneff, G.; Staege, M.S. Loss of detectability of Charcot-Leyden crystal protein transcripts in blood cells after treatment with dimethyl sulfoxide. J. Immunol. Methods 2008, 339, 99–103. [Google Scholar] [CrossRef]
- Bernig, T.; Richter, N.; Volkmer, I.; Staege, M.S. Functional analysis and molecular characterization of spontaneously outgrown human lymphoblastoid cell lines. Mol. Biol. Rep. 2014, 41, 6995–7007. [Google Scholar] [CrossRef]
- Hoennscheidt, C.; Max, D.; Richter, N.; Staege, M.S. Expression of CD4 on Epstein-Barr virus-immortalized B cells. Scand. J. Immunol. 2009, 70, 216–225. [Google Scholar] [CrossRef]
- Giebler, M.; Staege, M.S.; Blauschmidt, S.; Ohm, L.I.; Kraus, M.; Würl, P.; Taubert, H.; Greither, T. Elevated HERV-K Expression in soft tissue sarcoma is associated with worsened relapse-free survival. Front. Microbiol. 2018, 9, 211. [Google Scholar] [CrossRef]
- Karimi, A.; Esmaili, N.; Ranjkesh, M.; Zolfaghari, M.A. Expression of human endogenous retroviruses in pemphigus vulgaris patients. Mol. Biol. Rep. 2019, 46, 6181–6186. [Google Scholar] [CrossRef]
- Hipp, N.; Symington, H.; Pastoret, C.; Caron, G.; Monvoisin, C.; Tarte, K.; Fest, T.; Delaloy, C. IL-2 imprints human naive B cell fate towards plasma cell through ERK/ELK1-mediated BACH2 repression. Nat. Commun. 2017, 8, 1443. [Google Scholar] [CrossRef] [Green Version]
- Lévy, R.; Langlais, D.; Béziat, V.; Rapaport, F.; Rao, G.; Lazarov, T.; Bourgey, M.; Zhou, Y.J.; Briand, C.; Moriya, K.; et al. Inherited human c-Rel deficiency disrupts myeloid and lymphoid immunity to multiple infectious agents. J. Clin. Investig. 2021, 131, e150143. [Google Scholar] [CrossRef]
- Engel, K.; Wieland, L.; Krüger, A.; Volkmer, I.; Cynis, H.; Emmer, A.; Staege, M.S. Identification of Differentially expressed human endogenous retrovirus families in human leukemia and lymphoma cell lines and stem cells. Front. Ooncol. 2021, 11, 637981. [Google Scholar] [CrossRef]
- Afgan, E.; Baker, D.; van den Beek, M.; Blankenberg, D.; Bouvier, D.; Čech, M.; Chilton, J.; Clements, D.; Coraor, N.; Eberhard, C.; et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 2016, 44, W3–W10. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Smyth, G.K.; Shi, W. Feature counts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stepp, M.W.; Folz, R.J.; Yu, J.; Zelko, I.N. The c10orf10 gene product is a new link between oxidative stress and autophagy. Biochim. Biophys. Acta 2014, 1843, 1076–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; He, G.; Song, W. BACE2, as a novel APP theta-secretase, is not responsible for the pathogenesis of Alzheimer’s disease in Down syndrome. FASEB J. 2006, 20, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Cortese, M.; Munger, K.L.; Martínez-Lapiscina, E.H.; Barro, C.; Edan, G.; Freedman, M.S.; Hartung, H.P.; Montalbán, X.; Foley, F.W.; Penner, I.K.; et al. BENEFIT Study Group. Vitamin D, smoking, EBV, and long-term cognitive performance in MS: 11-year follow-up of BENEFIT. Neurology 2020, 94, e1950–e1960. [Google Scholar] [CrossRef]
- Pierrot-Deseilligny, C.; Souberbielle, J.C. Vitamin D and multiple sclerosis: An update. Mult. Scler. Rel. Disord. 2017, 14, 35–45. [Google Scholar] [CrossRef]
- Salzer, J.; Nyström, M.; Hallmans, G.; Stenlund, H.; Wadell, G.; Sundström, P. Epstein-Barr virus antibodies and vitamin D in prospective multiple sclerosis biobank samples. Mult. Scler. 2013, 19, 1587–1591. [Google Scholar] [CrossRef] [Green Version]
- Décard, B.F.; von Ahsen, N.; Grunwald, T.; Streit, F.; Stroet, A.; Niggemeier, P.; Schottstedt, V.; Riggert, J.; Gold, R.; Chan, A. Low vitamin D and elevated immunoreactivity against Epstein-Barr virus before first clinical manifestation of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2012, 83, 1170–1173. [Google Scholar] [CrossRef]
- Brütting, C.; Stangl, G.I.; Staege, M.S. Vitamin D, Epstein-Barr virus, and endogenous retroviruses in multiple sclerosis—Facts and hypotheses. J. Integr. Neurosci. 2021, 20, 233–238. [Google Scholar] [CrossRef]
- Latifi, T.; Zebardast, A.; Marashi, S.M. The role of human endogenous retroviruses (HERVs) in multiple sclerosis and the plausible interplay between HERVs, Epstein-Barr virus infection, and vitamin D. Mult. Scler. Rel. Disord. 2022, 57, 103318. [Google Scholar] [CrossRef]
- Ricigliano, V.A.; Handel, A.E.; Sandve, G.K.; Annibali, V.; Ristori, G.; Mechelli, R.; Cader, M.Z.; Salvetti, M. EBNA2 binds to genomic intervals associated with multiple sclerosis and overlaps with vitamin D receptor occupancy. PLoS ONE 2015, 10, e0119605. [Google Scholar] [CrossRef]
- Sutkowski, N.; Chen, G.; Calderon, G.; Huber, B.T. Epstein-Barr virus latent membrane protein LMP-2A is sufficient for transactivation of the human endogenous retrovirus HERV-K18 superantigen. J. Virol. 2004, 78, 7852–7860. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, F.C.; Lin, M.; Tai, A.; Chen, G.; Huber, B.T. Cutting edge: Epstein-Barr virus transactivates the HERV-K18 superantigen by docking to the human complement receptor 2 (CD21) on primary B cells. J. Iimmunol. 2006, 177, 2056–2060. [Google Scholar] [CrossRef] [Green Version]
- Mameli, G.; Astone, V.; Arru, G.; Marconi, S.; Lovato, L.; Serra, C.; Sotgiu, S.; Bonetti, B.; Dolei, A. Brains and peripheral blood mononuclear cells of multiple sclerosis (MS) patients hyperexpress MS-associated retrovirus/HERV-W endogenous retrovirus, but not Human herpesvirus 6. J. Gen. Virol. 2007, 88, 264–274. [Google Scholar] [CrossRef]
- Mameli, G.; Poddighe, L.; Mei, A.; Uleri, E.; Sotgiu, S.; Serra, C.; Manetti, R.; Dolei, A. Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: Inference for multiple sclerosis. PLoS ONE 2012, 7, e44991. [Google Scholar] [CrossRef]
- Garcia-Montojo, M.; Rodriguez-Martin, E.; Ramos-Mozo, P.; Ortega-Madueño, I.; Dominguez-Mozo, M.I.; Arias-Leal, A.; García-Martínez, M.Á.; Casanova, I.; Galan, V.; Arroyo, R.; et al. Syncytin-1/HERV-W envelope is an early activation marker of leukocytes and is upregulated in multiple sclerosis patients. Eur. J. Immunol. 2020, 50, 685–694. [Google Scholar] [CrossRef]
- Rasmussen, H.B.; Geny, C.; Deforges, L.; Perron, H.; Tourtelotte, W.; Heltberg, A.; Clausen, J. Expression of endogenous retroviruses in blood mononuclear cells and brain tissue from multiple sclerosis patients. Mult. Scler. 1995, 1, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, H.B.; Heltberg, A.; Lisby, G.; Clausen, J. Three allelic forms of the human endogenous retrovirus, ERV3, and their frequencies in multiple sclerosis patients and healthy individuals. Autoimmunity 1996, 23, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Mi, M.; Li, X.; Zheng, X.; Wu, G.; Zhang, L. lncRNA OSTN-AS1 may represent a novel immune-related prognostic marker for triple-negative breast cancer based on integrated analysis of a ceRNA network. Front. Genet. 2019, 10, 850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, X.; Wang, X.; Huang, K.; Han, C.; Deng, J.; Yu, T.; Yang, C.; Huang, R.; Liu, X.; Yu, L.; et al. Integrated analysis of competing endogenous RNA network revealing potential prognostic biomarkers of hepatocellular carcinoma. J. Cancer 2019, 10, 3267–3283. [Google Scholar] [CrossRef] [PubMed]
- Samuelson, L.C.; Wiebauer, K.; Snow, C.M.; Meisler, M.H. Retroviral and pseudogene insertion sites reveal the lineage of human salivary and pancreatic amylase genes from a single gene during primate evolution. Mol. Cell. Biol. 1990, 10, 2513–2520. [Google Scholar] [CrossRef]
- Kamp, C.; Hirschmann, P.; Voss, H.; Huellen, K.; Vogt, P.H. Two long homologous retroviral sequence blocks in proximal Yq11 cause AZFa microdeletions as a result of intrachromosomal recombination events. Hum. Mol. Genet. 2000, 9, 2563–2572. [Google Scholar] [CrossRef] [Green Version]
- Grandi, N.; Tramontano, E. Human endogenous retroviruses are ancient acquired elements still shaping innate immune responses. Front. Immunol. 2018, 9, 2039. [Google Scholar] [CrossRef] [Green Version]
- Ramasamy, R.; Mohammed, F.; Meier, U.C. HLA DR2b-binding peptides from human endogenous retrovirus envelope, Epstein-Barr virus and brain proteins in the context of molecular mimicry in multiple sclerosis. Immunol. Lett. 2020, 217, 15–24. [Google Scholar] [CrossRef]
- Lanz, T.V.; Brewer, R.C.; Ho, P.P.; Moon, J.S.; Jude, K.M.; Fernandez, D.; Fernandes, R.A.; Gomez, A.M.; Nadj, G.S.; Bartley, C.M.; et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 2022, 603, 321–327. [Google Scholar] [CrossRef]
- Schneider-Hohendorf, T.; Gerdes, L.A.; Pignolet, B.; Gittelman, R.; Ostkamp, P.; Rubelt, F.; Raposo, C.; Tackenberg, B.; Riepenhausen, M.; Janoschka, C.; et al. Broader Epstein-Barr virus-specific T cell receptor repertoire in patients with multiple sclerosis. J. Exp. Med. 2022, 219, e20220650. [Google Scholar] [CrossRef]
- Serafini, B.; Rosicarelli, B.; Veroni, C.; Mazzola, G.A.; Aloisi, F. Epstein-Barr virus-specific CD8 T cells selectively infiltrate the brain in multiple sclerosis and interact locally with virus-infected cells: Clue for a virus-driven immunopathological mechanism. J. Virol. 2019, 93, e00980-19. [Google Scholar] [CrossRef] [Green Version]
- Veroni, C.; Aloisi, F. The CD8 T cell-Epstein-Barr virus-B cell trialogue: A central issue in multiple sclerosis pathogenesis. Front. Immunol. 2021, 12, 665718. [Google Scholar] [CrossRef]
- Fu, B.; Ma, H.; Liu, D. Endogenous retroviruses function as gene expression regulatory elements during mammalian pre-implantation embryo development. Int. J. Mol. Sci. 2019, 20, 790. [Google Scholar] [CrossRef] [Green Version]
- Mentzer, A.J.; Brenner, N.; Allen, N.; Littlejohns, T.J.; Chong, A.Y.; Cortes, A.; Almond, R.; Hill, M.; Sheard, S.; McVean, G.; et al. Identification of host-pathogen-disease relationships using a scalable multiplex serology platform in UK Biobank. Nat. Commun. 2022, 13, 1818. [Google Scholar] [CrossRef]
Target | Exemplary Accession Number | Sequence of Forward (f) and Reverse (r) Primer (5′-3′) |
---|---|---|
EBNA-1 | V01555.2:62399-107964 [38] | f: GCTTTGCGAAAACGAAAGTG r: CCCCTCGTCAGACATGAT |
EBNA-2 | V01555.2:48888-49287 [39] | f: TCTGCTATGCGAATGCTTTG r: GAGGGTGCATTGATTGGTCT |
HERV-K GAG | JN675025.1:1621-1787 [40] | f: GGCCATCAGAGTCTAAACCACG r: CTGACTTTCTGGGGGTGGCCG |
HERV-W1 ENV | NM_014590.4:2206-2341 [41] | f: TGCTAACCGCTGAAAGAGGG r: CGAAGCTCCTCTGCTCTACG |
EBNA-2 | EBNA-1 F Promoter | HERV-K4 GAG | HERV-W1 ENV | MSRV ENV | |
---|---|---|---|---|---|
GENDER | |||||
Female (n = 21) | 52.68 ± 18.79 | 32.69 ± 17.39 | 1.260 ± 0.4868 | 0.5098 ± 0.1336 | 0.2671 ± 0.0825 |
Male (n = 11) | 50.72 ± 10.94 | 21.94 ± 22.88 | 1.145 ± 0.6285 | 0.4633 ± 0.1589 | 0.2747 ± 0.0856 |
SMOKING BEHAVIOR | |||||
Smoker (n = 11) | 58.75 ± 35.12 | 28.17 ± 24.38 | 1.275 ± 0.6163 | 0.5157 ± 0.1433 | 0.2326 ± 0.0830 |
Non-Smoker (n = 21) | 50.75 ± 17.97 | 29.43 ± 17.55 | 1.192 ± 0.4969 | 0.4823 ± 0.1435 | 0.2891 ± 0.0768 |
VITAMIN D DEFICIENCY | |||||
Deficient (n = 14) | 50.27 ± 21.30 | 31.28 ± 20.28 | 1.303 ± 0.4520 | 0.5074 ± 0.1258 | 0.2613 ± 0.0677 |
Non-Deficient (n = 7) | 46.47 ± 8.694 | 25.61 ± 13.12 | 1.153 ± 0.5582 | 0.4910 ± 0.1539 | 0.2620 ± 0.1024 |
Unknown (n = 11) | 57.73 ± 11.50 | 28.24 ± 23.62 | 1.159 ± 0.6399 | 0.4783 ± 0.1649 | 0.2853 ± 0.0913 |
AGE AT STUDY ENTRY | |||||
Age 20–30 years (n = 6) | 48.70 ± 12.04 | 31.38 ± 28.13 | 1.044 ± 0.6815 | 0.4035 ± 0.1595 | 0.2604 ± 0.0483 |
Age 31–40 years (n = 12) | 56.25 ± 18.99 | 37.85 ± 19.26 | 1.402 ± 0.4946 | 0.5590 ± 0.1213 | 0.3071 ± 0.0801 |
Age 41–50 years (n = 8) | 46.37 ± 16.39 | 22.67 ± 13.87 | 1.165 ± 0.5178 | 0.4544 ± 0.1427 | 0.2646 ± 0.0794 |
Age 50–60 years (n = 6) | 54.33 ± 15.15 | 17.34 ± 11.16 | 1.108 ± 0.4931 | 0.5064 ± 0.1266 | 0.2110 ± 0.0951 |
DURATION OF DISEASE | |||||
Time > 10 years (n = 11) | 51.44 ± 18.31 | 33.71 ± 21.30 | 1.218 ± 0.4479 | 0.5140 ± 0.1233 | 0.2618 ± 0.0986 |
Time ≤ 10 years (n = 21) | 52.30 ± 15.70 | 26.52 ± 18.99 | 1.222 ± 0.5823 | 0.4832 ± 0.1526 | 0.2739 ± 0.0747 |
LIFETIME WITH DISEASE † | |||||
Lifetime ≥ 20% (n = 15) | 51.66 ± 16.37 | 35.64 ± 23.88 | 1.282 ± 0.5405 | 0.5238 ± 0.1365 | 0.2726 ± 0.0860 |
Lifetime < 20% (n = 17) | 52.31 ± 16.84 | 23.13 ± 13.43 | 1.166 ± 0.5357 | 0.4674 ± 0.1455 | 0.2672 ± 0.0814 |
RELAPSES IN THE LAST 2 YEARS | |||||
Relapses > 2 (n = 7) | 46.51 ± 15.05 | 27.71 ± 13.08 | 1.250 ± 0.5834 | 0.4629 ± 0.1424 | 0.2389 ± 0.0421 |
Relapses 1–2 (n = 17) | 49.06 ± 13.71 | 22.35 ± 14.34 a | 1.041 ± 0.4737 | 0.4471 ± 0.1205 | 0.2722 ± 0.0903 |
Relapse free (n = 8) | 63.09 ± 19.20 | 44.24 ± 27.20 b | 1.577 ± 0.4753 | 0.6201 ± 0.1192 | 0.2914 ± 0.0912 |
p value | a vs. b: p < 0.01 | ||||
DISEASE-MODIFYING THERAPIES (DMT) | |||||
Natalizumab (n = 14) | 49.40 ± 19.73 | 37.24 ± 21.63 c | 1.578 ± 0.3895 | 0.5632 ± 0.0361 | 0.2742 ± 0.0816 |
No DMT (n = 10) | 56.70 ± 13.53 | 15.79 ± 10.82 d | 0.8971 ± 0.5186 | 0.4036 ± 0.1593 | 0.2671 ± 0.0794 |
Other therapies ‡ (n = 8) | 50.70 ± 13.38 | 31.06 ± 17.93 | 0.9989 ± 0.4087 | 0.4852 ± 0.1046 | 0.2652 ± 0.0971 |
p value | c vs. d: p< 0.01 | ||||
EXPANDED DISABILITY STATUS SCALE (EDSS) | |||||
EDSS 1.0–1.5 (n = 6) | 48.13 ± 26.23 | 44.34 ± 33.14 | 1.252 ± 0.6962 | 0.4987 ± 0.1757 | 0.3046 ± 0.0996 |
EDSS 2.0–2.5 (n = 11) | 55.21 ± 11.88 | 28.68 ± 14.78 | 1.211 ± 0.5583 | 0.4981 ± 0.1516 | 0.2803 ± 0.0668 |
EDSS 3.0–3.5 (n = 6) | 53.58 ± 18.80 | 21.98 ± 15.75 | 1.137 ± 0.4647 | 0.4841 ± 0.1660 | 0.2963 ± 0.0741 |
EDSS 4.0–5.5 (n = 8) | 50.27 ± 14.00 | 24.88 ± 12.94 | 1.277 ± 0.5465 | 0.4984 ± 0.1188 | 0.2132 ± 0.0835 |
Name | Mean (co) n = 20 [FPKM] | Mean (MS) n = 59 [FPKM] | p Value | Adjusted p Value (Bonferroni–Dunn) | FDR q Value (Benjamini–Hochberg) | AUC ± SE | Cut-Off [FPKM] at 100% Specificity |
---|---|---|---|---|---|---|---|
MT-TY | 24.09 | 55.71 | 0.00003 | 0.0011 | 0.0006 | 0.790 ± 0.056 | 67.83 |
MT-TC | 146.6 | 417.2 | 0.00004 | 0.0013 | 0.0006 | 0.847 ± 0.046 | 355.7 |
AL669831.1 | 0.1678 | 0.2549 | 0.00005 | 0.0017 | 0.0006 | 0.800 ± 0.052 | 0.277 |
MT-TE | 4.012 | 9.250 | 0.00007 | 0.0024 | 0.0006 | 0.790 ± 0.053 | 10.39 |
LINC01529 | 0.0394 | 0.1054 | 0.00010 | 0.0034 | 0.0006 | 0.797 ± 0.052 | 0.119 |
AL365273.1 | 1.442 | 2.960 | 0.00010 | 0.0034 | 0.0006 | 0.773 ± 0.058 | 3.426 |
SNORA79B | 0.2844 | 0.7127 | 0.00019 | 0.0065 | 0.0009 | 0.800 ± 0.053 | 0.807 |
MIR34AHG | 0.4675 | 0.9528 | 0.00033 | 0.0116 | 0.0014 | 0.743 ± 0.062 | 1.189 |
ENTPD1-AS1 | 0.3070 | 0.5408 | 0.00037 | 0.0129 | 0.0014 | 0.761 ± 0.059 | 0.622 |
MFSD14C | 0.7940 | 1.0780 | 0.00039 | 0.0137 | 0.0014 | 0.748 ± 0.060 | 1.263 |
RNU7-20P | 0.2588 | 0.7819 | 0.00071 | 0.0247 | 0.0022 | 0.780 ± 0.055 | 1.016 |
REELD1 | 0.0213 | 0.0683 | 0.00076 | 0.0265 | 0.0022 | 0.791 ± 0.053 | 0.081 |
MT-TG | 6.905 | 14.600 | 0.00088 | 0.0307 | 0.0022 | 0.734 ± 0.062 | 19.16 |
GABARAP | 0.2457 | 0.5464 | 0.00088 | 0.0308 | 0.0022 | 0.757 ± 0.059 | 0.616 |
SNORD20 | 0.6918 | 1.5220 | 0.00107 | 0.0375 | 0.0025 | 0.747 ± 0.060 | 2.164 |
AL669831.3 | 0.0185 | 0.0411 | 0.00178 | 0.0622 | 0.0039 | 0.729 ± 0.063 | 0.049 |
RF00012 | 0.0564 | 0.1735 | 0.00219 | 0.0766 | 0.0045 | 0.775 ± 0.055 | 0.217 |
MPL | 0.0084 | 0.0188 | 0.00234 | 0.0817 | 0.0045 | 0.726 ± 0.060 | 0.024 |
FAM89B | 0.5908 | 0.8061 | 0.00743 | 0.2599 | 0.0137 | 0.701 ± 0.060 | 0.946 |
AC006001.3 | 0.5246 | 0.6044 | 0.00847 | 0.2963 | 0.0141 | 0.721 ± 0.058 | 0.657 |
EBF2 | 0.0007 | 0.0024 | 0.00849 | 0.2970 | 0.0141 | 0.696 ± 0.059 | 0.004 |
CFAP73 | 0.0359 | 0.0552 | 0.00998 | 0.3491 | 0.0159 | 0.699 ± 0.062 | 0.063 |
LINC01118 | 0.0050 | 0.0120 | 0.01080 | 0.3781 | 0.0164 | 0.682 ± 0.060 | 0.016 |
HERV-K 3p12.3 | 0.1862 | 0.2447 | 0.01254 | 0.4390 | 0.0177 | 0.637 ± 0.061 | 0.334 |
DLG1-AS1 | 0.0023 | 0.0103 | 0.01262 | 0.4416 | 0.0177 | 0.664 ± 0.063 | 0.016 |
DIAPH2-AS1 | 0.0130 | 0.0321 | 0.01402 | 0.4908 | 0.0189 | 0.713 ± 0.059 | 0.033 |
RPL41P1 | 133.8 | 317.3 | 0.01642 | 0.5746 | 0.0212 | 0.675 ± 0.062 | 276.9 |
MIR3150BHG | 0.0372 | 0.1018 | 0.01693 | 0.5924 | 0.0212 | 0.680 ± 0.059 | 0.102 |
TTLL7-IT1 | 0.0022 | 0.0109 | 0.02014 | 0.7048 | 0.0243 | 0.704 ± 0.059 | 0.009 |
RNU6-32P | 0.0636 | 0.1835 | 0.02500 | 0.8751 | 0.0292 | 0.670 ± 0.062 | 0.273 |
GOLGA6L4 | 0.0004 | 0.0041 | 0.02800 | 0.9798 | 0.0316 | 0.736 ± 0.055 | 0.002 |
HIST2H2AC | 0.8899 | 1.21 | 0.06537 | >0.999999 | 0.0654 | 0.606 ± 0.065 | 1.379 |
C3P1 | 0.0014 | 0.0045 | 0.02933 | >0.999999 | 0.0321 | 0.659 ± 0.062 | 0.005 |
MIR221 | 0.4966 | 0.9103 | 0.03409 | >0.999999 | 0.0351 | 0.614 ± 0.064 | 1.158 |
HERV-K11 | 0.2805 | 0.3140 | 0.03055 | >0.999999 | 0.0324 | 0.683 ± 0.064 | 0.303 |
Name | Mean MS with Relapses in the Last 2 Years n = 14 [FPKM] | Mean MS w/o Relapses in the Last 2 Years n = 15 [FPKM] | p Value | Adjusted p Value (Bonferroni–Dunn) | FDR q Value (Benjamini–Hochberg) | AUC ± SE | Cut-Off [FPKM] at 100% Specificity |
---|---|---|---|---|---|---|---|
UP | |||||||
AK7 | 0.550 | 0.228 | 0.0001 | 0.0007 | 0.0004 | 0.895 ± 0.062 | 0.188 |
BX664727.3 | 0.0123 | 0.0004 | 0.0012 | 0.0105 | 0.0017 | 0.957 ± 0.043 | 0.006 |
DOWN | |||||||
ZNF302 | 1.904 | 2.942 | 0.0000 | 0.0003 | 0.0003 | 0.943 ± 0.041 | 2.237 |
PM20D2 | 1.224 | 2.598 | 0.0005 | 0.0046 | 0.0015 | 0.924 ± 0.053 | 1.410 |
ZNF283 | 0.293 | 0.471 | 0.0008 | 0.0068 | 0.0017 | 0.905 ± 0.059 | 0.347 |
DHFRP1 | 6.004 | 12.360 | 0.0009 | 0.0084 | 0.0017 | 0.871 ± 0.073 | 8.061 |
XKR9 | 0.037 | 0.085 | 0.0015 | 0.0135 | 0.0019 | 0.876 ± 0.071 | 0.044 |
ZNF195 | 1.658 | 2.670 | 0.0017 | 0.0153 | 0.0019 | 0.867 ± 0.075 | 1.787 |
TCERG1 | 4.837 | 6.280 | 0.0133 | 0.1195 | 0.0133 | 0.871 ± 0.078 | 4.994 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wieland, L.; Schwarz, T.; Engel, K.; Volkmer, I.; Krüger, A.; Tarabuko, A.; Junghans, J.; Kornhuber, M.E.; Hoffmann, F.; Staege, M.S.; et al. Epstein-Barr Virus-Induced Genes and Endogenous Retroviruses in Immortalized B Cells from Patients with Multiple Sclerosis. Cells 2022, 11, 3619. https://doi.org/10.3390/cells11223619
Wieland L, Schwarz T, Engel K, Volkmer I, Krüger A, Tarabuko A, Junghans J, Kornhuber ME, Hoffmann F, Staege MS, et al. Epstein-Barr Virus-Induced Genes and Endogenous Retroviruses in Immortalized B Cells from Patients with Multiple Sclerosis. Cells. 2022; 11(22):3619. https://doi.org/10.3390/cells11223619
Chicago/Turabian StyleWieland, Lisa, Tommy Schwarz, Kristina Engel, Ines Volkmer, Anna Krüger, Alexander Tarabuko, Jutta Junghans, Malte E. Kornhuber, Frank Hoffmann, Martin S. Staege, and et al. 2022. "Epstein-Barr Virus-Induced Genes and Endogenous Retroviruses in Immortalized B Cells from Patients with Multiple Sclerosis" Cells 11, no. 22: 3619. https://doi.org/10.3390/cells11223619
APA StyleWieland, L., Schwarz, T., Engel, K., Volkmer, I., Krüger, A., Tarabuko, A., Junghans, J., Kornhuber, M. E., Hoffmann, F., Staege, M. S., & Emmer, A. (2022). Epstein-Barr Virus-Induced Genes and Endogenous Retroviruses in Immortalized B Cells from Patients with Multiple Sclerosis. Cells, 11(22), 3619. https://doi.org/10.3390/cells11223619